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Abstract 

An eigenvalue-eigenvector analysis is used to extract meaningful kinetic information 
from linear sensitivity coefficients computed for several species of a reacting system 
at  several time points. The main advantage of this method lies in its ability to reveal 
those parts of the mechanism which consist of strongly interacting reactions, and to 
indicate their importance within the mechanism. Results can be used to solve three 
general kinetic problems. Firstly, an objective condition for constructing a minimal 
reaction set is presented. Secondly, the uncovered dependencies among the parameters 
are shown to confirm or deny validity of quasi-steady-state assumptions under the 
considered experimental conditions. Thirdly, taking into account only sensitivities of 
observed species, the analysis is used to yield error estimates on unknown parameters 
determined from the experimental observations, and to suggest the parameters that 
should be kept fixed in the estimation procedure. To illustrate we chose the well-known 
hydrogen-bromine reaction and the kinetics of formaldehyde oxidation in the presence 
of co. 

Introduction 

Detailed kinetic models involving elementary reactions are primarily 
used to gain insight into mechanism of the kinetic process. As suggested 
by Allara and Edelson [1,21, at the first stages of a fundamental kinetic 
analysis it is advisable to consider a large family of relevant elementary 
reactions in order to reduce the possibility of something important 
being left out. However, the more complex the model becomes the 
more difficult it is to see the relative importance of its parts or to  
explain certain features of the kinetic behavior. To solve such problems 
some sort of sensitivity analysis is usually required [ 1-51. 

In most cases the results of sensitivity analysis are expressed in 
terms of normalized sensitivity coefficients aln[Al/dlnk,, where [A] 
denotes the concentration of the species A and k, is the rate coefficient 
of the reaction j .  Sensitivities are evaluated at some nominal parameter 
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value ko and are functions of time. Several efficient numerical methods 
have been proposed for computing these coefficients C3-61, thereby 
bringing extensive sensitivity analysis within range of practical com- 
putation. It should be, however, emphasized that for complex models 
the array of sensitivity coefficients at each time point contains a large 
number of elements and hence, it is far from simple to  obtain the 
meaningful kinetic information from such a mass of numerical infor- 
mation. A method proposed in the literature [71 is to rank the reactions 
according to the absolute values of their normalized sensitivities for 
each species at  each time point and then to  cumulate these ratings 
for the entire calculation. Though the approach offers a convenient 
measure for relative reaction significance, the ratings can no longer 
be used to  predict concentration changes brought about by a variation 
in rate constants. Furthermore, as it will be shown, the information 
on parameter interactions, originally contained in the array of sensitivity 
coefficients, is also lost in the rank-ordering procedure. 

The objective of the present paper is to propose a less heuristic and 
more informative summary of the sensitivity results in terms of ei- 
genvalues and eigenvectors of the matrix STS, where S denotes the 
array of normalized sensitivity coefficients. Eigenvalues will be shown 
to provide an absolute measure of significance for some parts of the 
mechanism, consisting of closely interacting elementary reactions. 
This information then offers an objective criterion for selecting a minimal 
reaction set. The second and perhaps even more important advantage 
of the eigenvalue-eigenvector analysis is that it reveals the possible 
dependencies among the parameters in the model and can confirm or  
deny the validity of simplifying kinetic assumptions (such as quasi 
steady-state hypothesis) under the considered experimental conditions. 

Response Surface and Sensitivities 

Let y,(t, k) denote the concentration of the ith species at time t and 
parameters k. To simplify the presentation we will restrict our con- 
sideration to isothermal processes and the components of the p-vector 
k will be taken as rate constants. Assume that sensitivities are of 
interest for species concentrations y,(t, k), . . . , y,(t, k) at  selected time 
points t,, tz, . . . , tq. As usual, we introduce the normalized parameters 

(1) c u , = l n k , , i = 1 , 2  , . . . ,  p 

Let k0 denote nominal parameter values, then cup = In kp. The effect 
on the calculated behavior of a reaction mechanism brought about by 
a variation in the rate coefficients may be quite naturally expressed 
in terms of a function defined by 
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where ~ , , ~ ( a )  = y,(t,, a) ,  i = 1, 2, . . . , m, denote concentrations of 
“observed” species. Since &(a) is the sum of squared relative deviations 
of these “observed” concentrations, it gives a clear picture of the effect 
of a particular change in the parameter values (see Fig. 1). Expanding 
(2) about the point a’ into its Taylor series gives us 

1 
2 

&(a) = Q(a’) i- GT(ao) Aa + - (Aa)TH(ao)Aa (3) 

where Aa = a - a’, G is the gradient vector and H is the Hessian 
matrix of Q, defined by [GI, = dQ/da, and [HI,,, = J2Q/da,da,, respectively. 
Both G and H are evaluated at  a’. Since a’ is a minimum of Q, 
&(a’) = 0 and G(a’) = 0, thus 

1 
2 (4) 

Furthermore 

&(a) = - ( A C Y ) ~ H ( ~ Y O ) A ~  

H =  [a] = 2STS  + R 
da,  amj l=l,....p 

“ 4  

Figure 1. The response surface. 
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where 
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S =  
(6) 5.1 
is the array of normalized sensitivities according to the time points 
t l ,  . . . , tq7 thus 

(7) s. = 

8 In Ym,i a ln Ym,i 8 In Ym,r  ______ ~ . . .  
dlnk ,  dln k, dlnk, - 

In eq. ( 5 )  only the term R involves second derivatives of concentrations 
(see, e.g., Bard [81, p. 97). According to the well-known Gauss ap- 
proximation [8], this term can be neglected and hence we can use the 
approximate response function 

(8) &(a,) = Q(a) = ( A c x ) ~  STS ( A a )  

to study the effect of parameter variations. 

Principal Components 

Expression (8) is a quadratic function of the variation Aa, ,  i = 
1,2, . . . , p .  At any fixed F the inequality &(a) 8 E defines an ellipsoid 
in the parameter space with principal axes in general not along the 
components of a (see Fig. 2). To see how Q changes with a we need 
to examine the eigenvalues of STS. The function Q is most sensitive 
to change in a along the principal axis corresponding to the largest 
eigenvalue and is least sensitive to  change in a along the principal 
axis corresponding to the smallest eigenvalue of STS. 

The fill picture is obtained by diagonalization (eigenvalue-eigenvector 
decomposition) of the matrix STS, say 

(9) sTs = U A P  
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Abo(2 t 
Q ( a ) s c  

* 
*dl 

Figure 2. An approximate region defined by Q(a) s E .  

where A is a diagonal matrix formed by the eigenvalues of STS and 
U denotes the matrix of normed eigenvectors u,, i = 1 ,2 ,  . . . , p such 
that U: ui = 1 for each i. Define the new set of the parameters 

(10) 1I’= uTa 
called principal components (see Bard [Sl, p. 1841, then AW = UT A a .  
In their terms 

(11) 

where Al  > A2 . . . > A, are the eigenvalues of STS and l /AWl/12 = 

. . . , u , , , ) ~  denote the eigenvector corresponding 
to the largest eigenvalue A 1 ,  thus Yl = (ul,lal, . . . , ~ ~ , ~ a ~ ) ~ .  Selecting 
Aal = ln(K,/K;) = u ~ , ~ ,  i = 1, 2, . . . , p ,  we move along the vector u1 
in the space of parameters a. Then ( 1  AW1 ( 1  = 1 and by orthogonality 
of the eigenvectors Q(W = A l .  If S 0.2, then AaJ contributes less 
than 4% to this effect and hence for an approximate analysis such 
components of u1 can be excluded from consideration. Assume that 
dropping its small entries, u1 takes on the form U = (q1, u ~ . ~ ,  . . . , 
qr, 0, 0, . . . , 0). Then the largest effect on concentrations is brought 
about by a simultaneous change in the rate coefficients kl, . . . , h, 
along the vector U l .  Therefore, the corresponding elementary reactions 
form the most influential part of the mechanism. This analysis em- 
phasizes that such a “mechanism kernel” is not simply a set of separate 
significant steps, but a closely interacting reaction sequence. 

Useful kinetic information can be gained also from the existence of 
small eigenvalues. The following section presents this result. 

) T ( ~ %  1. 
Let u1 = (q1, 
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Dependencies among the Parameters and the 
Quasi-Steady-State Approximation 

Consider first the particular case in which the eigenvector corre- 
sponding to a small eigenvalue A, -- 0 possesses two nonzero components, 
say, u, = ( u , , ~ ,  u,,,, 0 ,  . . . , 0)  and let c =  U , , ~ / U , , ~  be constant. Then 
&(a) = const along the line Aa, = Aa,/c,  which defines the curve 
k,/k; = const in the space of the original parameters. Therefore, the 
response function &(a) depends only upon the parameter combination 
k,/kg and does not depend upon the parameters k, and k, separately. 

From a practical point of view the most important particular cases 
are c = 1 and c = -1. Since u, is normed (i.e., l\utl/ = 11, at  c = 1 
we obtain u, = (0.707, 0.707, 0, 0, . . . , 01, and this specific form of 
the eigenvector reveals that the response function (8) depends only 
upon the ratio k,/k, of the two involved parameters. Similarly, a t  
c = - 1 the normed eigenvector is u, = (0.707, -0.707, O., . . . , 0.) 
and then the response function depends only upon the product klk,. 

Consider now the more general case u, = (u, u /c2 ,  u /c3 ,  . . . , u/c,), 
where c,, . . . , cp are constants. Returning to  the original parameters 
shows that now the response function (8) depends on the nonlinear 
parameter combination k,/kT, k,/ky, . . . , k,/k:. These parameter 
combinations are obviously not unique, since, e.g., k,/ k? can be replaced 
by kF/ky. It should be, however, emphasized that the case of several 
interconnected parameters in the principal component W, can always 
be reduced to the more simple situation already discussed. Indeed, 
evaluating the sensitivity matrix S only with respect to a pair of the 
parameters, say k, and k,, while keeping the others fixed, we obtain 
u, = (u, u / c )  and the analysis enables us to determine the exact form 
of dependency among the parameters. 

As it is well known, application of the quasi-steady-state hypothesis 
to some of the species in the reacting system usually leads to nonlinear 
parameter combinations of the form k,/kJ appearing in the kinetic 
differential equations and hence in the response function (2). Therefore, 
as our first example shows, the presence or lack of such parameter 
interactions can confirm or deny, respectively, the validity of the 
hypothesis. 

Example 1: Hydrogen-Bromine Reaction 

The well-known reaction mechanism 
1-2 Br, + X G 2 Br + X 

(13) 3-4 Br + H, S H + HBr 
5 H + Brz Br + HBr 
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was chosen to give a first insight into the proposed analysis method. 
Expressing concentrations in mol/cm3, the rate constants are k1 = 
6.26 x lo5, k, = 1.56 x lo1,, k3 = 2.61 x lo9, k, = 1.39 x 
1013, and k, = 1.17 x lo1,. The constants and the initial conditions 
[Brp10 = [H,], = 1 x lo-’, [XIo = [XI = 1 x lo - ,  were taken from 
Snow [9], where X represents the “third body” and [XI is kept constant. 

Let the “observed” components be Br,, H2, and HBr. Selecting ten 
time points within the interval 0.01-1 s we obtain eigenvalues and 
eigenvectors shown in Table I. The principal component T5, corre- 
sponding to the small eigenvalue A, clearly reveals that the response 
function depends only upon the ratio k 4 / k 5  and does not depend on 
k, and k,  separately. To prove this the kinetic equations were solved 
a t  kL = kp, i = 1, 2, 3, k, = lOki,  and k ,  = 10 k:, (i.e., keeping k , / k ,  
fixed). As shown in Table 11, even at  the end point of the considered 
time interval concentrations of the molecular species are only slightly 
changed in spite of the considerable changes in [Brl and [HI. On the 
other hand, setting k, = 10 ki while keeping k5 = kg fixed results in 
rather different solutions for the molecular species as well (see column 
3 of Table 11). 

To show that the relationship between k, and k ,  stems from the 
validity of a quasi-steady-state assumption (QSSA), we first consider 
[Brl and [HI as also “observed” components. Then the small eigenvalue 
is removed (see Table 111, where according to ‘P2,  the parameter k ,  

TABLE I. 
system if all molecular species are “observed.” 

Eigenvalues and eigenvectors in the hydrogen-bromine 

5.66(-I ) 

I .  13(-1) 

4 5.21(-2) 

2.25 (- 10) 

k l  k 2  k3 k4 kg 

.441 -.354 .789 -. 169 . I 6 9  

.550 .454 .lo5 .490 -.490 

-.276 -.692 -.045 .470 -.470 

.653 -.436 -.603 -.099 .099 

.oo .oo .oo .707 .707 
- __ 

.~ 

“Time points are 0.01, 0.05, 0.1, 0.2, 0.3, 0.4. 0.5, 0.7. 0.8, and 
1.0 s. 

Numbers in parentheses denote powers of ten. 
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Species - 

Br2 

HBr 

H2 

Bf 

H 

TABLE 11. 
1 s with nominal and perturbed rate coefficients. 

Computed concentrations in the hydrogen-bromine system at  t = 

k=ko 

3 raoleslcm 
x 108 

. 12878(0) 

. l6699(1) 

.16506(0) 

.72568(-I) 

.81599(-6) 

I 

2 

3 

4 

5 

k 4 =10k4’ ,k5= 10ko 5 

A 

2 . 2 1 ( 1 )  

7.31(0) 

3.05(0)  

9.8l(-l) 

2.98(-1) 

noles/cm3 devia- 
r( 108 tions % 

. l3384(0) 6.9 

. 16506(1) -0.6 

. 16809(0) 3.4 

.51447(-1) -29.1 

.95377(-7) -88.3 

k4=IOk 4 

no le s I cm devia- 
x 106 tions % 

.28828(0) 123.8 

.13155(1) -21.2 

.34225(0) 107.3 

. 10795(0) 48.8 

.48416(-6) -40.7 

has a significant and independent effect on concentrations). On the 
other hand, the partial QSSA d[Hl/dt = 0 leads to rate equations 

(14) 
d d 
- IH21 = - r2;  - [Br] = 2r1 d t  dt 

TABLE 111. Eigenvalues and eigenvectors in the hydrogen-bromine system if 
all species are “observed.” 

k l  k2 kg k4 kg 

.476 -.352 .771 -.I64 -.I67 

-.033 .007 .234 -.003 .971 

.628 -.502 -.549 -.I61 .I57 

. 528  .705 ,093 .464 -.008 

-.313 -.355 .201 .855 -.054 
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with 

depending on k,, kp,  k3, and k4/k5. 
The principal component analysis, however, denies the validity of 

the additional QSSA d[Brl/dt = 0 under the considered experimental 
conditions. Indeed, together with the already justified assumption on 
the stationarity of [HI, this QSSA would imply 

d d d 
- [Br,] = - r  , - dt [HBrl = 2r, - dt [H2]  = - r  dt (16) 

with the well-known rate expression 

(17) 

depending only upon the parameter combinations k,  = (k, /k,)'"k3 
and kt = k,/k5. Since Table I does not reveal any dependency among 
k,, k2, and k, (i.e., there are no further small eigenvalues), the existence 
of parameter k, is excluded. This result is obvious, for the concentration 
of atomic bromine reaches the same magnitude as the concentration 
of the molecular species (see Table 11). 

Since the hydrogen-bromine reaction played a key role in the de- 
velopment of the steady-state approximation theory, it is interesting 
to find the experimental conditions under which rate expression (17) 
applies. Consider the time interval 1-10 s and evaluate STS for the 
molecular species. Then we still have only two small eigenvalues, 
indicating the parameter groups k, /k, and k, /kp , parameter k, being 
independent. Both QSS assumptions apply, however, if the only observed 
component is HBr. Then we obtain three small eigenvalues ( ~ 1 0 - ' ) .  
To identify the exact form of the relationship among k,, kp ,  and k3, 
we evaluated partial STS matrices from the columns (1,2), (1,3), and 
(2,3), respectively, of the sensitivity matrix S. Table IV shows the 
eigenvector u,,, corresponding to the smallest eigenvalue A,,, for each 
of these cases. The derived relationships clearly reveal that the un- 
derlying parameter group is (k, /k, ki. Applicability of the quasi 
steady-state approximation to describe the [HBrI time pattern is proved 
by solving eqs. (16) and (17). Calculated concentrations for HBr are 
close to the original ones (the mean absolute deviation is 3.57~1, while 
concentrations of other species, including Brz and H2, are considerably 
changed. 
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TABLE IV. Eigenvectors corresponding to smallest eigen- 
values of partial STS matrices if only [HBrl is “observed.”“ 

relationship 
parameters 

kl/k2 .707 .707 

1 kl’k3 
1 k29k3 

.a93 - . 450  

.a93 . 450  

k l  k32 

k2/k3’ 

”Time points are 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 
and 10.0 s. 

Remark 1: Though our analysis is completely deterministic, it is 
obviously rooted in the nonlinear parameter estimation theory. Indeed, 
the response function (2) may be regarded as the least-squares objective 
function. If we want to estimate the parameters of the model by 
minimizing this function, then linear combinations (principal com- 
ponents) of the parameters a that correspond to small eigenvalues 
are poorly determined (large variance), whereas principal components 
corresponding to large eigenvalues are well determined (small variance). 
Since near singularity of the matrix STS is one of most frequent causes 
of failure in nonlinear parameter estimation, its eigenvalue-eigenvectr 
decomposition is a well-established step of the estimation procedure. 
The really new contribution of this paper is, however, demonstrating 
the advantages stemming from the use of normalized sensitivities 
dln y,/dln k ,  (i.e., the introduction of the parameter transformations 
a, = In k,, i = 1 ,2 ,  . . . , p ) .  As it has been shown, the linear dependencies 
among the transformed parameters a,  uncovered by the principal com- 
ponent analysis, correspond to nonlinear dependencies of the form 
k L / k ;  = const among the original parameters and these latter rela- 
tionships are usually connected with the validity of some kind of quasi 
steady-state assumption. 

Remark 2: The method extracts information from the response 
function (2) and is a compact way of exhibiting relative importance 
of system parameters. However, the response function measures only 
total sensitivity of the system over arbitrarily selected time points, 
whereas the importance of certain reactions can be different at different 
stages of the process. Similarly, the analysis does not necessarily 
uncover parameter dependencies existing only for a certain period of 
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time but not over the entire time domain of interest. One way to avoid 
these difficulties is to look at the plots of the temporal behavior of 
sensitivity coefficients for the proper selection of time points [10,11]. 
If necessary, one can also select several time intervals and apply the 
principal component analysis separately. 

As a matter of fact, the sensitivity plots can be directly used for 
unraveling parameter dependencies (see [ l l l ) .  Such an analysis is, 
however, quite tedious in complex mechanisms and some relationships 
may be overlooked. Therefore, principal components with properly 
selected time points and/or subintervals offer a useful summary and 
provide quantitative characterization of all dependencies among the 
parameters. 

Remark 3: To obtain the very small eigenvalues (e.g., h5 = 2.25 x 
10- lo in Table I) accurate sensitivity coefficients are required. In this 
paper we used the decomposed direct (DD) method [3l, recently im- 
plemented as the compact FORTRAN subroutine ROW4S [12] in con- 
junction with a semi-implicit Runge-Kutta algorithm [131 for solving 
the differential equations. 

As shown in [12], the DD method provides highly accurate sensitivities 
and for kinetic problems of moderate complexity is competitive with 
the well-known Green’s function (GF) approach [4,5] also in terms of 
computer time requirements. To analyze highly complex mechanisms 
it is, however, advisable to use the GF or the polynomial approximations 
(PA) methods [ l l l  for their economic advantages with possible sacrifice 
of accuracy in the results. Then the smallest eigenvalues can be in- 
creased, whereas the eigenvectors are generally quite invariant. For 
the principal component analysis it is sufficient to keep the “small” 
eigenvalues below certain limits (usually lo-*, see also the next section). 
A proper selection of the grid points in GF and PA methods to satisfy 
this condition offers a tradeoff between computational cost and reli- 
ability. Choosing a particular method and a rule for selecting the grid 
points, it is useful to solve example 1 and observe the eigenvalue A5 
in order to see whether or not the obtained sensitivities are sufficiently 
accurate for computing the eigenvalues. 

We note that the listing of the ROW4S procedure is available by 
request [12]. 

Mechanism Reduction 

As it has already been noted, the fundamental kinetic approach of 
including a large number of elementary reactions to  reduce the pos- 
sibility of something important being left out results in a complex 
reaction mechanism. Selecting the most important part of this reaction 
set is then desirable both for kinetic analysis and practical applications. 
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Though sensitivity is a measure of reaction significance, the possibility 
of eliminating reactions with small sensitivities is far from obvious 
(see C1 and 21). Now we will show that the principal component analysis 
offers a n  effective means for the solution of this problem. 

Since the transformations (1) are not defined at  k,  = 0, we introduce 
another parameter transformation given by' 

(18) 

It should be emphasized that a t  k,  = kp we obtain 

6, = k, /ko, ,  i = 1, 2 , .  . . , p  

(19) a lny,  a lny ,  
a 6, a In k ,  

-- - 

thus both transformations (1) and (18) yield the same normalized 
sensitivities. Therefore, the properties of STS can also be studied in 
terms of the parameters 6. 

Let A, and u, denote a small eigenvalue and the corresponding ei- 
genvector, respectively. As shown in the previous section, several 
significant (i.e., 3 0.2) entries in u, reveal dependencies among the 
parameters and hence we here restrict our consideration to the case 
u, = (0, 0,  . . . , 1, 0 ,  . . . , 01, thus Y, = 6, for some j .  

Since 6; = kJ /kJ  = 1, k?, = 0 implies  AT,^^ = IlA$ll = llliJ - 111 
= 1. Setting A?, = 0 we move along u,, hence Q(6) = A,.  Therefore, 
A, is a measure of the effect brought about by setting k,  = 0, thus 
eliminating the j t h  reaction. Then the change in the concentration of 
the species i a t  the time point t, can be characterized by the relative 
deviation 

If we require lAyc,rl/y,,r c 0.01 for each i and r ,  then approximately 
Q (6) zz mq x Since Q(6) = A,,  eliminating a reaction which 
is a dominant element of a principal component corresponding to an 
eigenvalue A, S mq x we may expect small ( ~ 1 % )  changes in 
each of the observed concentrations. 

Example 2: Formaldehyde Oxidation Kinetics 

To show an application of the proposed procedure we chose the 
moderately complex mechanism given by Vardanyan, Sachyan, and 
Nalbandyan [14] for the kinetics of formaldehyde oxidation in the 
presence of CO. Note that detailed sensitivity results are available 
for this model [5]. 

The reaction set, rate constants, and initial species concentrations 
are listed in Table V. We calculated normalized sensitivities for all 
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species dt the time points 1 x 
2 x 3 x and 5 x s, i.e., up to  the time point 
considered in [5]. Eigenvalues of STS and significant entries (30,2) 
of the corresponding eigenvectors are shown in Table VI. According 
to the magnitude of eigenvalues, the reactions can be divided into 
three classes as follows: 

5 x lo-’, 1 x 1 x 

(i) Eigenvalues hl-h9 are much larger than the remaining ones 
(Cy=~ h,/ 2;; hJ = 0.999). Principal components ql-q9 contain 
steps 1, 2, 3, 4, 9, 10, 11, 12, 16, and 22, forming the “basic” 
part of the mechanism. (Though step 8 is present in Y9, its 
contribution is small and hence is moved to the next group.) 
According to  ql,  the most influential reaction sequence is 
formed by (221, (101, (4), and (9). This “reaction kernel” em- 
phasizes that the largest effect is brought about by setting 
kl .= ky eul.i (i.e., k,, = 0.55 k i 2 ,  k lo  = 0.59 k&,  k9 = 0.73 
kg, and k ,  = 1.51 k: )  and not by perturbing a single parameter. 

= 8.4 x 
According to qlo-T13, reactions (81, (131, and (61 are 

of “transitional” importance: As it will be shown, in spite of 
their small contributions they can not be removed from the 
mechanism. 

(iii) Finally, reactions (51, (71, (141, (151, (171, (181, (191, (201, (211, 
(231, (241, and (25) contained in q 1 4 - q Z 5  with eigenvalues 
below 8.4 x are unimportant and can be eliminated. 
Notice that the simplification condition proposed in this section 
may immediately only apply to Yz,-Yz5 and TI, [i.e., to 
reactions (211, (191, (151, (201, and (2411. According to q19- 
qzl steps 17, 5, and 23 are not independent, but all combi- 
nations are eliminable. Similarly, q16 and Y18 indicate that 
the solution depends on k 1 4 / k 7  and k7 x k14, both being 
unimportant. Finally, we drop steps 25 and 18 according to 

(ii) In this example m = 12, q = 7, and my x 

and q17. 

Weeding out the class (iii), the obtained minimal mechanism consists 
of thirteen reactions (11, (21, (31, (41, (61, (81, (91, (101, (111, (121, (131, 
(161, and (22). As it has been expected, the mean change in the con- 
centrations is less then 1% and even the maximum deviations, obtained 
at  the end point 5 x s are small. Column A of Table VII shows 
relative deviations of the product concentrations from the “true” ones, 
computed by the complete model and listed in column 1 of the same 
table. Notice that the product distribution is even less affected by the 
reduction of the model and the relative deviations remain below 0.5% 
for each species and time point. Thus the proposed rule for selecting 
a minimal reaction set is completely justified. 
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TABLE V. Formaldehyde oxidation in the presence of CO." 

Reaction Rate constant 

1 .  

2 .  

3.  

4 .  

5. 

6. 

7. 

8. 

9. 

10. 

I I .  

12. 

13. 

14. 

15. 

16. 

17.  

18. 

19.  

20. 

2 1 .  

2 2 .  

HC0+02+ H 0 2 + C 0  

H 0 2 + C H 2 0 +  H 2 0 2 + H C 0  

H202+M + 2 0 H + M  

OH + C H 2 0  f H 2 0 + H C 0  

OH+H202 + H 2 0 + H 0 2  

H 2 0 2  a destruction 
H 0 2  wall, destruction 

H02+H02 + H 0 +O 2 2  2 

OH+CO + C02+H 

H 0 2 + C 0  + C O  +OH 2 

H+CH20 + H  +HCO 2 

H+O + OH+O 2 

H+02+M + H02+M 

H02+M + H + 0 2 + M  

O + H 2 +  OH+H 

O+CH20 +OH+HCO 

H+H202 + H 0 2 + H 2  

H+H202 + H 2 0 + O H  

2 O+H202 + OH+HO 

HCO + H+CO 

OH+H2 + H 2 0 + H  

C H 2 0 + 0 2  * HCO+H02 

l.0(-13) 

5 .7 ( -  1 4 )  

6.66(- 18) 

1.6(-10) 

5. I ( - 1 2 )  

1.05(+2)  

I .05 ( + I  ) 

3.00(- 12) 

3.3(- 13) 

l.2(-15) 

2 . 7 ( - 1 2 )  

5.51 ( - 1 4 )  

1.0(-32) 

4 . 7 ( - 1 9 )  

3 . 0 2  ( - 1  3) 

l . O ( - l O )  

l.3(-12) 

5.9(-  12)  

I . O ( -  13) 

4 . 6 (  - 12)  

l . O ( - I  I )  

2 . 9 ( - 2 0 )  
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TABLE V. (Continued from previous page.) 

React ion Rate constant 

23. H+H02 + 2 0 H  5 .0(-12)  

2 4 .  H+H02 + H 2 0 + 0  5.0( -1  I )  

25. H + H 0 2  + H 2 + 0 2  4 . 5 ( - 1 1 )  

a Units: molecules, cm2, s. Initial concentrations: [CH,OI'" = 

6.77(16); [O,.l'o' = 1.27(18); [CO]''' = 2.83(18); [MI : 7.09(18). The 
remaining initial species concentrations are zero. 

We show that no further reduction of the mechanism is possible if 
all concentration changes should be small. Indeed, according to  V12 
the next reaction of low significance is step 6. Dropping this step, all 
concentrations are significantly changed (see column B in Table VII). 
As shown in column C of Table VII, elimination of step 13, the dominant 
element of qlo gives a similar effect. Finally, dropping the set {8,13,6} 
(i.e., all reactions of "transitional" importance) quite large concentration 
deviations occur (see column D in Table VII). 

Remark 4: According to our result, reactions in principal components 
with small eigenvalues can be dropped. It should be, however, carefully 
checked that the effects of such steps through other principal compo- 
nents also be small, e.g., ii12 is a significant entry in V13 with A13 = 
4.06 x Step 12 is, however, also present in the important prin- 
cipal components V3, T4, and V7 and hence can not be eliminated. 

Remark 5: As reported by Dougherty, Hwang, and Rabitz [5], the 
most important rate constants at t = 5 x s are 10, 22, 3, 2, 9, 
4, and 8, roughly in order of decreasing sensitivity, whereas we obtained 
22, 10, 4, 9, 2, and 16. The difference clearly stems from the fact that 
we selected several time points. Indeed, reactions (2) and (3) are rel- 
atively unimportant a t  the beginning of the reaction and increase 
their importance as the overall reaction proceeds. It was also shown 
by Dougherty, Hwang, and Rabitz [51 that reactions (141425) (with 
the exception of step 22) are unimportant, a t  least a t  the considered 
stage of the reaction. Our analysis shows, however, that reaction (16) 
is also definitely important (it is present in the important principal 
components V2, V3, V4, and v', , see Table VI). Indeed, dropping step 
16 from the minimal mechanism, all concentrations are altered and 
a dramatic increase in [Ol occurs (column E in Table VII). The source 
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1 1 . 3 8 ( 2 )  

2 2 . 1 2 ( 1 )  

1 ' 4 5 ( 1 )  

TABLE VI. Eigenvalues and principal components for the formaldehyde oxidation kinetics. 

22 10 4 9 
- .60 - .52  .41 - .32 

22 2 9 4 16 I 
. 5 1  .48 -.42 .40 .26  -.21 

2 10 12 1 1  16 3 22 
- .60  .36  - .34 .31 .30 - .29  .21  

h 

~~ ~ 

3.17(-2)  

12 1 . 5 2 ( - 2 )  

13 4 . 0 6 ( - 3 )  

l i ,  6 . 5 3 ( - 4 )  

Dominant elements of the principal components a 

a 1 6  12 13 
.59 .46 .46 .42 

6 1 3  
.94 .26  

12 I 6  13 8 3 6 
-.47 -.47 .43 .41 . 2 J  - . 2 6  

24 
.96 

1 2  4 2 1 1  9 2 2  3 
.49 - .48  - .36 .31 .31 .28 - . 27  . 2 2  4 6 .90 (0 )  I 
I0 9 22 3 

.62 - .43 - .42 .41 5 . 4 3 ( 0 )  

1 2 
.95 . 2 2  4 . 9 6 ( 0 )  

12 1 6  1 7 3 . 0 8 ( 0 )  1 .A; .35  -.31 

I I 

1 
3 2 10 a 22 I 1 ' 1 5 ( 0 )  I .72 - .46 -.31 - .26  .26 
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x 

15 7 .30( -5)  

16 3 .75( -5)  

17 1.35(-5) 

18 1.61(-6)  

19 4.21(-8)  

2 0  1.38(-8) 

21 3 .76( -9)  

22 4 .48( -12)  

2 3  2.12(-13) 

24 1..33(-17) 

25 3.27(-29) 

TABLE VI. (Continued from previous page.) 

Dominant elements of the principal components a 

25 18 
.8b .44 

7 1 4  
. 7 3  .64 

18 25  7 
. 8 6  - .42 - .26  

14  7 
.76  -.61 

17 2 3  
.88 -.39. 

5 2 3  17 
- .a2  . 4 3  .32  

2 3  5 17 
.80 . 5 3  . 2 5  

21 
.98  

19 
.98 

15 
. 9 8  

20 
1 .oo 

a Top line refers to the rate constant for the reaction listed in Table V. The bottom 
line lists eigenvector components of magnitude 30.20. 

of this contradiction is that step 16 is particularly important by virtue 
of interactions with other important steps, as q2, q3, q4, and q7 
show. Further discussion will be given in Remark 8. 
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TABLE VII. 
complete and different partial models a t  t = 5. ( ~ 3) . s. 

Product concentrations in formaldehyde oxidation, computed from the 

Concentra- 
.tions from 

comp 1 e t e 
model a 

Species t h e  

HCO 3 . 5 9 1 0 ( 1 2 )  

H 0 2  5 . 8 1 9 7 ( 1 3 )  

H 2 0 2  3 .4201 ( 1 4 )  

OH 2 . 0 4 5 3  ( 10) 

H 2 0  3 . 8 6 9 6 (  14) 

C 0 2  3 . 9 3 3 1 ( 1 4 )  

H 5 . 5 2 8 7 ( 1 0 )  

H2  1 . 7 9 2 4 ( 1 3 )  

0 6 .0204 (8) 

% deviations 

A B C D E F 

2 . 3  

2 . 4  

I . 9  

2 . 3  

1 . 6  

1 . 7  

3 . 6  

1 .o 

- 0 . 4  

1 1 . 2  

10 .6  

22 .1  

1 2 . 2  

7 . 4  

6 . 5  

1 3 . 8  

6 . 8  

9 . 4  

1 2 . 9  

1 I . 3  

9 . 5  

1 2 . 5  

9 . 8  

8 . 9  

55.1 

48 .2  

4 9 . 2  

8 7 . 5  -20.0 -11.4 

8 7 . 5  -19 .0  -11.8 

4 7 .  I -16.2 1 . 1  

9 0 . 0  -20. I - 1  1 . 2  

44 .7  -16.5 - 1 1 . 1  

4 3 . 9  -15.4 -11.3 

158.3 -19 ,7  2 2 . 2  

9 5 . 5  -17.4 1 9 . 9  

1 4 9 . 2  9 6 5 3 . 3  13741.2  

a Units: molecules/cm”. 
A: reactions (11, (2), (3), (4), (6), (81, (9), (101, ( l l) ,  (12), (13), (16), and (22); B: 

reactions (11, (21, (31, (41, (81, (91, (101, ( l l ) ,  (121, (13), (161, and (22); C: reactions (l),  
(2), ( 3 ) ,  (41, (61, (81, (9), (101, ( l l ) ,  (12), (16), and (22); D: reactions (11, (2), (31, (41, 
(91, ( lo) ,  (111, (121, (16), and (22); E: reactions (l), (2),  (3), (41, (6), ( 8 ) ,  (9), ( lo) ,  (111, 
(121, (13), and (22); F: reactions ( l ) ,  (2), (31, (41, ( 8 ) ,  (9), (101, (111, (12), and (22). 

Remark 6: Eigenvalues and eigenvectors are based on sensitivities 
computed for several components and several time points. A similar 
summary of this kind is the “overall” sensitivity coefficient defined 
by 

(21) 

i.e., the sum of squared sensitivities for all observed components and 
time points. Notice that the B’s are the diagonal entries of S’S, and 
B ,  = Cf= A, u,”,,. Though B, is a convenient measure of the significance 
of reaction (r), its application for mechanism reduction can lead to 
erroneous conclusions, e.g., in order of decreasing overall sensitivity 
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the reactions of Table V are (221, ( lo) ,  (41, (91, (21, (161, (121, (111, (11, 
(131, (141, (31, (61, (71, (241, (81, (251, (231, (181, (171, (51, (211, (191, (151, 
and (20). The most important steps [i.e., (221, (101, (41, (91, (21, (161, 
(121, (111, and (111 and the most unimportant ones [i.e., (251, (231, (181, 
(171, (51, (211, (191, (151, and (2011 are those also revealed by the 
principal component analysis. As shown in column A of Table VII, 
eliminating the latter set of reactions implies small changes in con- 
centrations. Additional elimination of step 8, as suggested by the 
overall sensitivities leads, however, to large deviations (e.g., a t  t = 
5 x s the relative difference for [HO,] is 51%). On the other 
hand, some reactions [e.g., (141 and (711 with much larger overall 
sensitivities can be dropped. To explain this result notice that the 
relative importance of step 8 is in its interactions with other important 
reactions (see T9--Tl1) and such secondary effects are not shown by 
the “overall” sensitivity coefficients. 

Remark 7: We may ask whether or not the reduced mechanism, 
consisting of thirteen reactions can be further simplified if small changes 
are required only in [HO,] and [CO,], the other concentrations being 
unobserved 1141. Eigenvalues and eigenvectors for the two observed 
species shown in Table VIII, suggest that reactions (161, (131, and (6) 
can also be dropped, according to q,,, q12, and q9, respectively. This 
choice, however, results in large deviations also for [HO,] and [CO,], 
as shown in column F of Table VII. 

We show that the above contradiction stems from a general problem 
of sensitivity analysis. Consider the simple sequence 

of first-order reactions, assume that k ,  >> 112, (say, k 2 / k 1  = 100) and 
the observed species are A and C .  Then, as discussed by Boudart [ E l ,  
step 1 is rate determining, the QSSA d[Bl/dt = 0 applies, and d[Cl/dt = 
k , [ A l .  Since d[AI/dk, = 0, sensitivities with respect to  l z ,  are very 
small in spite of obvious significance of step 2 in the simple mechanism. 
Decreasing k2 the sensitivity will be increased. However, with k2 >> 
k ,  the situation is changed if and only if [Bl is also observed, since 
the normalized sensitivity d ln[Bl/d In kB is large in spite of small [B] 
values. 

It may be easily shown that observing only [HO,] and [CO,], the 
insensitivity of reaction (16) in the formaldehyde system stems from 
the source just discussed. Indeed, the. slow reactions (151, (19), and 
(241 have already been eliminated, hence the atomic 0 is produced 
only in step 12 and will react in 16. Since [CH20] and [O,] are almost 



74 VAJDA, VALKO, AND TURANYI 

TABLE VIII. 
mechanism, observing [HO, ] and [CO,]. 

Eigenvalues and eigenvectors for the reduced formaldehyde oxidation 

A 

I 

1 1 .8711)  
I 

t 

3.57 (-2) 

7.21 (-3) 

6 5.31(-4) 

7 5.06(-5) 

8 1.73(-5) 

9 6.06(-7) 

10 5.84(-8) 

1 1  1.86(-8) 

Dominant elements of the principal component a 

10 22 
-55 .79  

I0 22 
.83 -.54 

2 3 a 22 
.61 .61 -.24 - .25 

1 4 8 9 12 
.76 .30 -.29 -.30 -.25 

1 4 8 9 12 
.59 -.28 .59 .29 .25 

2 3 4 8 9 12 
.25  .33 .30  .69 -.29 -.29 

2 4 9 I 1  12 
. 2 0  .47 - .37  - .38 . 60  

2 3 
.68 -.66 

6 
.97 

4 9 
.68 .72 

1 1  12 
. a2  -.55 



PRINCIPAL COMPONENT ANALYSIS OF KINETIC MODELS 75 

TABLE VIII. (Continued from previous page.) 

Dominant elements of t h e  principal component a 

12 13 
12 2.55(-9) 1 .20 .97 

~ 

I I 7 

13 2.25(-10) 1.00 I l 6  
I I L 

“Top line refers to the rate constant for the reactions listed in Table V. The 
bottom line lists eigenvector components of magnitude 30.20. 

unchanged a t  the considered stage of the reaction, the involved reaction 
rates are approximately given by rlz = LJHI and )“16 = Ll6[Ol with 
rate coefficients El, = k l z  [Oz3 = 6 x lo4 and i l 6  = kl, [CHzOl -- 
6 x lo6, respectively. Therefore, we obtain the sequence (21) just 
discussed and k 1 6 / k 1 2  = 100. As expected from this analysis, a decrease 
on the value of 1216 increased its sensitivity even by an order of mag- 
nitude. In view of the above examples i t  should be emphasized that 
considering only “observed species very low sensitivities can be obtained 
both for relatively slow as well as relatively fast and hence quite 
important reaction steps. This intrinsic ambiguity is somewhat over- 
looked in the literature (see, e.g., [2 and 611, where computing sen- 
sitivities for the observable species is usually considered as the source 
of complete and useful sensitivity information. To avoid erroneous 
conclusions, reduction of the mechanism clearly requires performing 
sensitivity analysis for all species. It should be, however, noted that 
the reduced mechanism obtained this way will retain all species present 
in the original system and hence the rule here proposed can be considered 
only as a first and quite conservative step toward a systematic model 
reduction methodology. 

Remark 8: Table VIII reveals further useful kinetic information. 
According to qlo, concentrations of observed species depend only on 
the ratio k 4 / k g .  Notice that in the reduced mechanism the OH radical 
reacts only in steps 4 and 9 and hence the QSSA d[OHI/dt = 0 yields 
the steady-state concentration 

(22) 



76 VAJDA, VALKO, AND TURANYI 

where ri denotes the rate of the reaction (i). Setting (22) into the set 
of kinetic equations, it will depend only upon the ratio k,/k9. 

A similar explanation applies also to the dependence between kll 
and k,,, revealed by qll in Table VIII. Indeed, the QSSA d[H]/dt = 
0 yields the steady-state concentration 

r, (23) [HI, = 

for atomic H. Since step 13 is relatively unimportant, the ratio kll/k12 
will appear in the kinetic equation, somewhat corrupted by the presence - 
of reaction (13). 

We note that applicability of these two QSSA assumptions differs 
considerably. Considering all molecular components (i.e., .HzOz, HzO, 
CO,, Hz, CH20, O,, and CO) and H02 as “observed” species, the 
resulting eigenvectors still reveal the relationship between k4 and k,, 
whereas kl l  and klz become independent. Indeed, setting k, = 100 
k: and k, = 100 kg all the obtained concentrations (including radicals) 
differ less than 0.1% from those of the reduced (13-parameter) model. 
On the other hand, kl l  = 100 kyl and klz = 100 ky2 give only slight 
changes in [HO,] and [CO,] while considerably changing the concen- 
tration patterns of other species. We note that there exists a further 
dependency among the parameters, i.e., according to  q8 in Table VIII, 
[HO,] and [CO,] depend only on the product kzk3. This relationship 
is, however, eliminated if all molecular species are observed. 

kii[CH,Ol + kiJOz1 + kJM1 [OzI 

Practical Identifiability of the Parameters 

Studying formaldehyde oxidation kinetics the main interest of Var- 
danyan, Sachyan, and Nalbandyan [141 was in determining the rate 
constant k,, from [CO,] and [HO,] measured at  a single point. The 
approach they used relies on a number of assumptions and does not 
yield any error estimates. As outlined Dougherty, Hwang, and Rabitz 
[51, a more fundamental parameter estimation procedure should have 
utilized the computer model. We will now show that the principal 
component analysis can be then used to  yield the expected error es- 
timates on the parameters. 

Assume that [CO,] and [HO,] are measured a t  several time points 
such that the method of least squares applies. Using sensitivity in- 
formation for error bound estimation has been discussed in [16]. Fur- 
thermore, as shown in Remark l, eigenvalues and eigenvectors offer 
a natural characterization of the expected variances. It should be 
emphasized that the presence of small eigenvalues reveals large vari- 
ances and hence practical unidentifiability of some parameters. In the 
estimation literature this situation is described by saying the model 
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is poorly parametrized [171 or the parameter estimation problem is 
nearly singular [181. Numerous efficient minimization methods have 
been proposed for the solution of such problems [191, usually resulting 
in a reasonable fit to the data. The estimates of ill-conditioned pa- 
rameters are, however, frequently at variance with the best experimental 
and theoretical values available [201. Therefore, many chemists feel 
it is advisable to estimate only some of the parameters while keeping 
the others fixed at values obtained from the relevant literature (see, 
e.g., [21]). We show that the principal component analysis offers a 
justification for this “partial estimation” approach. 

To answer the question whether or not the parameter estimation 
problem is nearly singular let & and 2 denote the unknown true value 
and its least-square estimate, respectively, of the transformed pa- 
rametrization vector (18). Since we can choose kp = k , ,  6 = 1. As 
shown in [23], using the usual linearization approach the average 
value of the squared distance 6 from 2 = 1 is given by 

(24) 

where c2 denotes the variance of relative measurement errors. Thus, 
in case of small eigenvalues the least-squares estimates of the pa- 
rameters will be pulled away from their true values. It is reasonable 
to require 10% relative error margin in each of the estimated parameters, 
thus E{l6 - 112} d 0.01 and > a2/0.01. Assuming, e.g., 1% relative 
measurement errors we have cr2 = and the bound A,,, 3 0.01 
on the eigenvalues. 

Remark 9: Expression (24) assumes A, > 0 for each i, i = 1, 2, 
. . . , p .  In fact, the matrix S’S is positive semidefinite by definition, 
thus A, b 0. The totally singular (i.e., A,,, = 0) case means exact 
linear dependencies among the sensitivities. Detection of such models 
is the objective of the numerous studies on deterministic (structural) 
identifiability [23,241. Structurally unidentifiable models are rare in 
reaction kinetics and hence we may assume A,,, > 0. 

According to Table VIII, measurements of [HO,] and [CO,] a t  the 
selected time points do not allow one for estimating all parameters 
simultaneously. To formulate a sensible (i.e., well conditioned) esti- 
mation problem the following decisions should be taken. 

(i) Fix parameters k I 6 ,  k I 3 ,  and k6 at  their nominal values to 
eliminate the small eigenvalues AI3 ,  A,,, and A9. Notice that 
these selected values will practically not affect the response 
function and the estimates of the other parameters. 

(ii) Since we can estimate the parameter combinations k , / k 9 ,  
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k11/k12, and kzk3, fix k9, k12,  and k3 to eliminate the eigenvalues 
A l o , ~ A l l ,  and A8. It should be emphasized that the estimates 
k,, kl l ,  and R2 will then heavily depend on the selected nominal 
values ki, k:2, and ki, respectively. 

To see the sources of further small eigenvalues, a t  this point we 
performed an  additional principal component analysis with respect to 
the remaining “free” parameters kl, k 2 ,  k, , k8, klo , kll  , and k22. According 
to its result, there exists a relationship between k4 and K l l ,  leading 
to an  eigenvalue A,,, = 1.66 x Therefore 

(iii) fix kl l  = kyl, thereby influencing A, 
A further principal component analysis with respect to kl, k 2 ,  k,, 

kg, Klo,  and kz2 shows that the parameter k, is also connected with 
k2 and kg. Since this parameter combination results in an eigenvalue 
imin = 2.8 x lo-,., 

(iv) set k, = kt, thereby influencing the estimates 1, and R g  
According to the decisions (i)-(iv), the parameters to be estimated 

are kl, k 2 ,  kg, klo, and k2,.  The corresponding eigenvalues and ei- 
genvectors shown in Table IX are then used to predict the expected 
parameter variances. According to 9, and *,, the parameters k l o  and 
k22,  though correlated, can be determined with small (ca. 1%) variances. 
Notice that file and f f2 ,  will not depend on the estimates of the other 
parameters, since ‘Pl and*, are orthogonal to the corresponding co- 
ordinate axes. Small variance (<lo%) is expected also for f i 2 ,  it is, 
however, slightly correlated with and depends on the selected values 
ki, ki, and k;. According to q4, the expected variance of R 1  is about 
10% and this parameter is independent of the others. Finally, only 
an  “order of magnitude” estimate can be obtained for kg (see q5) and 
this value depends on f f 2 ,  k:, and k:. This detailed analysis shows 
that in spite of difficulties, observations of [HO,] and [C021 at  several 
sample points allow one to obtain a reliable estimate for klo  without 
the assumptions used by Vardanyan, Sachyan, and Nalbandyan [14]. 
Though some parameters should be kept fixed during the estimation 
procedure, their values will not influence the derived parameter llo. 
However, k2,  should be estimated simultaneously, since its selected 
value k!& would heavily influence f f lo .  Furthermore, to obtain a good 
fit it is advisable to estimate also k 2 ,  kl, and k8, though R2 will depend 
on a number of assumptions, whereas 1, and Rg will have considerable 
variances. It should be emphasized that such a preliminary analysis 
is absolutely necessary to obtain relaible estimates for some of the 
parameters a t  the least, since otherwise the poor parametrization of 
the model will lead to serious numerical difficulties in the estimation 
process and to meaningless estimates. 
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h 

1 1.81(1) 

2 2 . 4 5 ( 0 )  

Dominant e lements  of t h e  p r i n c i p a l  component a 

22 10 
.81 .57 

10 2 2  
.82  .56 

7 . 9 9 ( - I )  1 .: .:7 
2.46(-2)  . 9 8  

5 3.50(-3) 
8 2 

.91 .37 

- 
a Top line refers to the rate constant for the reactions listed in Table V. The 

bottom line lists eigenvector components of magnitude 20.20. 

Conclusions 

The main objectives of kinetic analysis are usually the identification 
of the most important elementary reactions in a mechanism and elim- 
ination of the least important ones in order to obtain a tractable 
kinetic model. A generally accepted method of solving such problems 
is sensitivity analysis. Sensitivity studies, however, produce a mass 
of numerical information, rather difficult to deal with. As shown in 
the present paper, principal component analysis offers an effective 
means for extracting useful kinetic information from the derived sen- 
sitivity tables. Eigenvectors reveal strongly interacting reaction se- 
quences and the corresponding eigenvalues measure the significance 
of these separate parts of the mechanism. Three application areas 
have been briefly discussed. 

Firstly, considering sensitivities for all species present in the system, 
results can be used to select a minimal reaction set. This step is 
particularly useful when a large number of elementary processes is 
to be investigated, say in detailed atmospheric and combustion models. 
Secondly, evaluating principal components only from sensitivities of 
molecular components, some dependencies among the parameters are 
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assessed which can confirm or deny the validity of quasi-steady-state 
assumptions under the considered experimental conditions. Thirdly, 
taking into account only observed species, the identified parameter- 
parameter interactions provide answers as to how errors on known 
parameters affected the ability to use the mechanism for determining 
unknown parameters and how large variances can be expected for 
parameter estimates. 

As noted by Dougherty, Hwang, and Rabitz [51, in kinetic analysis 
one should always be alert for possible secondary nonlinear effects in 
the mechanism leading to parameter interactions. Using principal 
components forgotten or unknown relationships can be made manifest. 
When dependencies are found, it is up to  the kineticist to uncover 
their causes on the basis of available chemical knowledge. 

Finally, we emphasize that having computed the sensitivity coef- 
ficients, little effort need be expended for evaluating also the principal 
components. From the same sensitivity table eigenvalues and eigen- 
vectors can be computed with respect to different sets of observed 
species and parameters. The entire time interval of interest can also 
be divided into subintervals. The relatively simple examples of this 
paper are presented to  illustrate the method of analysis. More complex 
mechanisms (e.g. , pyrolysis of simple hydrocarbons) have also been 
studied, including estimation of the parameters. Other problems (e.g., 
mechanisms for oscillating reactions) required separate principal com- 
ponent analysis over several short time intervals. These applications 
will be described in forthcoming papers and support that principal 
components provide a way of gaining considerable insight into chemical 
mechanism. 

Bibliography 

[I]  D. L. Allara and D. Edelson, Znt. J .  Chem. Kinet., 7, 479 (1975). 
[21 D. Edelson, Science, 214, 981 (1981). 
131 R. P. Dickinson and R. J. Gelinas, J .  Comput. Phys., 21, 123 (1976). 
[41 J. T. Hwang, E. P. Dougherty, S. Rabitz, and H. Rabitz, J .  Chern. Phys., 69, 5180 

[5J E. P. Dougherty, J. T. Hwang, and J. Rabitz, J .  Chem. Phys., 71, 1974 (1979). 
[6J D. Edelson and D. L. Allara, Znt. J .  Chem. Kinet., 12, 605 (1980). 
[7] H. Rabitz, Comp. Chem., 5, 167 (1980). 
[SJ Y. Bard, “Nonlinear Parameter Estimation,” Academic, New York, 1974. 
[9J R. H. Snow, J .  Phys. Chem., 70, 2780 (1966). 

. 

(1978). 

[lo] J. T. Hwang, Proc. Nutl. Sci. Council, R.O.C., 6, 270 (1982). 
[ l l ]  J. T. Hwang, Znt. J .  Chem. Kznet., 15, 959 (1983). 
[ la]  P. Valko and S Vajda, “An Extended ODE Solver for Sensitivity Calculations,” 

[13] B. A. Gottwald and G. Wanner, Simulation, 37, 1969 (1982). 
1141 I. A. Vardanyan, G. A. Sachyan, and A. B. Nalbandyan, Int. J .  Chem. Kinet., 7, 

Comp. Chem., in press. 

23 (1975). 



PRINCIPAL COMPONENT ANALYSIS OF KINETIC MODELS 81 

[151 M. Boudak, “Kinetics of Chemical Processes,” Prentice-Hall, Inc., Englewood Cliffs, 

[161 R. W. Atherton, R. B. Schainker, and E. R. Ducot, AZChE J . ,  21, 441 (1975). 
[17] R. I. Jennrich and P. F. Sampson, Technornetrics, 10, 63 (1968). 
[181 R. R. Hocking, Technornetrics, 25, 219 (1983). 
1191 J. Garcia-Pena, S. P. Azen, and R. N. Bergman, Appl. Math. Cornp., 12, 1 (1983). 
[201 D. Edelson and D. L. Allara, AIChE J . ,  19, 638 (1973). 
[21] G. H. Denis and T. E. Daubert, AZChE J. ,  20, 720 (1974). 
[221 A. E. Hoerl and R. W. Kennard, Technornetrics, 12, 55 (1970). 
[231 J. A. Jacquez, Math. Cornp. Sirnul., XXIV, 452 (1982). 
[24] S. Vajda, Znt. J .  Syst. Sci., 14, 1229 (183). 

N.J., 1968. 

Received March 1, 1984 
Accepted July 31, 1984 


