Desidratação

Autora: Ana Paula de Carvalho Panzeri Carlotti

Introdução

A água é o componente mais abundante do corpo. Constitui cerca de 60% do

peso corporal em adolescentes e adultos, e aproximadamente 70% em recém-

nascidos e lactentes jovens. Dois terços da água corporal situam-se no compartimento

intracelular e um terço, no compartimento extracelular. Os mecanismos de controle

fisiológico da homeostase hídrica incluem a sede, a reabsorção renal de água no

túbulo proximal (70%) e a concentração urinária no túbulo distal e no duto colector,

sob a influência do hormônio antidiurético (ADH).

A desidratação é uma das principais causas de morbidade e mortalidade em

crianças no mundo todo. É definida como déficit de água do organismo e geralmente

se acompanha de distúrbios hidroeletrolíticos. Além da gastroenterite, outras doenças

podem causar desidratação, como gengivoestomatite, estenose hipertrófica do piloro e

infecções agudas.

Avaliação do Grau de Desidratação

O "padrão ouro" para avaliar o grau de desidratação é a alteração aguda do

peso corporal. A desidratação é classificada como leve (perda de 3% a 5% de peso

corporal), moderada (perda de 6% a 9% de peso) e grave (perda de ≥ 10% de peso).

Porém, o peso anterior ao início da doença raramente é conhecido. Desta forma, o

grau de desidratação é frequentemente avaliado por sinais clínicos. No entanto, a

avaliação do grau de desidratação baseada em sinais clínicos isolados é imprecisa.

Assim, para possibilitar maior precisão diagnóstica, foram desenvolvidas escalas de

avaliação da gravidade da desidratação, utilizando a combinação de vários sinais. As

escalas mais utilizadas são a Escala de Avaliação de Desidratação, desenvolvida para

crianças de duas semanas a 15 anos de idade (Tabela 1), a Escala Clínica de

Desidratação, desenvolvida para crianças de 1 a 36 meses de idade (Tabela 2) e a

Escala de Gorelick, validada para crianças de 1 mês a 5 anos de idade (**Tabela 3**).

1

Tabela 1: Escala de Avaliação de Desidratação

Sinal	Desidratação leve	Desidratação	Desidratação
	(3%-5%)	moderada	grave
		(6%-9%)	(≥10%)
Estado geral	Alerta, agitado	Sonolento	Sonolento, apático,
			frio, sudoreico,
			extremidades
			cianóticas
Pulso radial	Amplo, frequência	Rápido e fraco	Rápido, fino ou não
	normal		palpável
Respiração	Normal	Profunda, pode ser	Profunda e rápida
		rápida	
Fontanela anterior	Normal	Deprimida	Muito deprimida
Pressão arterial	Normal	Normal ou baixa,	Baixa
sistólica		hipotensão postural	
Elasticidade da	Normal	Diminuída	Muito diminuída
pele			
Olhos	Normais	Encovados	Muito encovados
Lágrimas	Presentes	Ausentes	Ausentes
Membranas	Secas	Secas	Muito secas
mucosas			

Adaptada de Vega e Avner, 1997.

Tabela 2: Escala Clínica de Desidratação

Característica	0	1	2
Estado geral	Normal	Agitado ou letárgico, mas	Sonolento, apático, frio, sudoreico ±
		reativo quando tocado	comatoso
Olhos	Normais	Levemente encovados	Muito encovados
Membranas mucosas (língua)	Úmidas	Saliva espessa	Secas
Lágrimas	Presentes	Diminuídas	Ausentes

Escore = 0, ausência de desidratação; escore = 1-4, desidratação leve; escore = 5-8, desidratação moderada a grave. Fonte: Friedman et al., 2004.

Tabela 3: Escala de Gorelick

Achado Clínico		
Mau estado geral		
Membranas mucosas secas		
Lágrimas ausentes		
Tempo de enchimento capilar > 2 s		
Elasticidade da pele diminuída		
Respirações anormais		
Olhos encovados		
Pulso radial anormal		
Taquicardia (frequência cardíaca > 150 bpm)		
Diurese reduzida		

Modelo dos quatro primeiros itens: presença de 2 ou mais achados clínicos, ≥ 5% de desidratação; 3 ou mais achados, ≥ 10% de desidratação. Modelo dos 10 itens: presença de 3 ou mais achados clínicos, ≥ 5% de desidratação; 7 ou mais achados, ≥ 10% de desidratação. Fonte: Gorelick et al., 1997.

Exames laboratoriais como concentração plasmática de ureia, bicarbonato, relação ureia/ creatinina e densidade urinária têm utilidade limitada para o diagnóstico de desidratação.

Métodos não invasivos de diagnóstico de desidratação significativa (≥ 5%) incluem a medida do tempo de enchimento capilar por videografia digital e o ultrassom à beira do leito. A medida do tempo de enchimento capilar por meio digital consiste em pressionar a extremidade do dedo com uma haste pontiaguda por 5 segundos, com a mão elevada levemente acima do nível do coração. A ponta do dedo é filmada usando câmera de vídeo digital, com software gráfico customizado que calcula o tempo entre a liberação da pressão e a recuperação da cor do dedo. O tempo de enchimento capilar digital ≥ 0,4 segundo indica ≥ 5% de desidratação. A relação entre o máximo diâmetro da veia cava inferior medido na fase expiratória e o máximo diâmetro da aorta medido na sístole por ultrassom indica desidratação ≥ 5% quando os valores são menores que 0,8.

Classificação da Desidratação

A desidratação é classificada com base nas concentrações plasmáticas de sódio ([Na⁺]) em isonatrêmica ([Na⁺] 130-150 mEq/L), hiponatrêmica ([Na⁺] < 130 mEq/L) e hipernatrêmica ([Na⁺] > 150 mEq/L). A desidratação isonatrêmica reflete perda proporcional de água e sódio e ocorre tipicamente em casos de diarreia secretora, em que a concentração de soluto na diarreia é a mesma do plasma. A desidratação hiponatrêmica ocorre quando há perda proporcionalmente maior de sódio em relação à perda de água ou quando as perdas diarreicas são repostas com fluidos hipotônicos. A hiponatremia associa-se a desvio de água do compartimento extracelular para o intracelular, porque a água se move livremente através das membranas celulares em direção ao equilíbrio osmótico. Assim, a desidratação hiponatrêmica se associa a sinais clínicos de maior gravidade e instabilidade hemodinâmica mais acentuada. O aumento do volume do compartimento intracelular pode ocasionar edema cerebral, com manifestações neurológicas como cefaleia, vômitos, convulsões e coma. A desidratação hipernatrêmica reflete perda de água proporcionalmente maior do que a perda de sódio e ocorre frequentemente na gastroenterite viral causada por rotavírus ou em neonatos e lactentes jovens, com reposição inadequada da perda hídrica por diarreia e das perdas insensíveis de água. Como a hipernatremia causa o desvio de água do compartimento intracelular para o extracelular, o grau de desidratação é frequentemente subestimado e instabilidade hemodinâmica é rara. As manifestações clínicas da desidratação hipernatrêmica incluem sede, irritabilidade e febre, podendo evoluir com sintomas neurológicos como confusão mental, convulsões, espasticidade e coma, secundários à hemorragia intracraniana relacionada à redução do compartimento intracelular.

Tratamento

Terapia de Reidratação Oral

A terapia de reidratação oral é o tratamento de escolha para pacientes com desidratação leve a moderada. As contraindicações da terapia de reidratação oral incluem instabilidade hemodinâmica, íleo paralítico, vômitos incoercíveis e alteração do nível de consciência com comprometimento dos reflexos de proteção de vias aéreas. A reidratação por sonda nasogástrica pode ser utilizada para crianças que não toleram a reidratação por boca. Crianças com desidratação grave ou que não melhoram com a terapia de reidratação oral devem ser reidratadas pela via endovenosa.

A solução de reidratação oral originalmente desenvolvida para a correção da desidratação causada por cólera e adotada pela Organização Mundial de Saúde (OMS) contém 90 mEq/L de Na⁺ e osmolaridade de 311 mOsm/L. Como houve redução dos casos de diarreia por cólera e aumento da incidência de diarreia viral ao longo dos anos, tem-se recomendado a utilização de soluções de reidratação oral com menor conteúdo de Na⁺ e menor osmolaridade. Revisão da Cochrane mostrou que o uso de soluções de menor osmolaridade se associou com menor volume das fezes, menos vômito e menos necessidade de hidratação endovenosa em comparação com a solução original da OMS. Além disso, não houve maior risco de hiponatremia com o uso de soluções de reidratação oral de menor osmolaridade. A **Tabela 4** mostra a composição de algumas soluções de reidratação oral.

Tabela 4: Composição de soluções de reidratação oral

Solução	Sódio	Potássio	Cloro	Citrato	Glicose	Osmolaridade
	(mEq/L)	(mEq/L)	(mEq/L)	(mEq/L)	(g/dL)	(mOsm/L)
OMS	90	20	80	10	2,0	311
OMS 2002	75	20	65	10	1,35	245
Pedialyte® 45	45	20	35	30	2,5	250
Pedialyte® 60	60	20	50	30	1,18	250

OMS, Organização Mundial de Saúde.

Normalmente, a terapia de reidratação oral é realizada em 4 horas. Para garantir melhor aceitação, a solução de reidratação oral deve ser administrada de forma fracionada, em pequenas porções. O volume calculado do déficit deve ser inicialmente administrado em alíquotas de 5 mL a cada 2 minutos, aumentando-se gradativamente a dose e o intervalo, conforme tolerância. Após a correção da desidratação, inicia-se a fase de manutenção, que consiste na rápida reintrodução da alimentação associada à suplementação hídrica. Para lactentes em aleitamento materno exclusivo, recomenda-se que a amamentação seja mantida durante a fase de reidratação e de manutenção. Para bebês alimentados com fórmula láctea, a alimentação deve ser reintroduzida, sem diluições, logo após o término da fase de reidratação. Para crianças maiores, deve-se reintroduzir a dieta habitual contendo líquidos e sólidos após reidratação completa, evitando-se açúcares simples e alimentos gordurosos. Atenção deve ser dada à reposição das perdas persistentes, que devem ser repostas volume a volume durante as duas fases anteriores. Sugere-se administrar solução de reidratação oral 2 mL/kg para cada episódio de vômito e 10 mL/kg para cada evacuação diarreica, quando o volume exato das perdas não puder ser mensurado.

Hidratação Endovenosa

A hidratação endovenosa está indicada para pacientes com desidratação grave e em situações de falha ou contraindicação da terapia de reidratação oral. A composição dos fluidos endovenosos para o tratamento da desidratação tem sido

debatida nos últimos anos, pelo risco de hiponatremia iatrogênica associada à administração de solução salina hipotônica em crianças gravemente doentes. Como a depleção de volume é potente estímulo para a liberação de ADH, a administração endovenosa de fluidos hipotônicos a pacientes com depleção de volume e reduzida capacidade de excretar água livre pode levar à hiponatremia. Há evidências de aumento da liberação de ADH em pacientes com gastroenterite e alta incidência de hiponatremia quando eles são tratados com fluidos intravenosos hipotônicos. Além disso, demonstrou-se que a administração endovenosa de salina isotônica para reidratação resultou em manutenção do sódio plasmático em pacientes inicialmente normonatrêmicos e elevação da natremia naqueles inicialmente hiponatrêmicos, sem a ocorrência de hipernatremia.

A recomendação atual é administrar soro fisiológico (NaCl 0,9%) 20 mL/kg em bolus até a restauração da perfusão tecidual, em pacientes com desidratação iso, hipo ou hipernatrêmica. Após a estabilização hemodinâmica, recomenda-se o uso de solução salina isotônica para o tratamento da desidratação isonatrêmica e hiponatrêmica. O déficit de água calculado pode ser reposto em 4 horas (protocolo de reidratação rápida) ou em 24 horas, adicionado ao volume de manutenção (protocolo de reidratação lenta). A solução de reidratação deve ser acrescida de cloreto de potássio (20 mEq/L) e glicose a 5%. Ressalta-se que a adição de potássio ao soro de reidratação só deve ser feita após a observação de diurese adequada e na ausência de hipercalemia. Em casos de hiponatremia aguda (< 48 horas de duração) sintomática, deve-se administrar NaCl 3% 5 mL/kg em 30 minutos. Em serviços em que não se dispõe de NaCl 3%, deve-se diluir a solução de NaCl 20% 1:7, ou seja, adicionando-se uma parte de NaCl 20% a 6 partes de água destilada, transformando-a em solução a aproximadamente 3%. Na hiponatremia crônica (duração > 48 horas) sem sintomas, deve-se elevar a concentração plasmática de Na⁺ no máximo 8 mEq/L/dia, para prevenção de desmielinização osmótica. Pacientes com desidratação hipernatrêmica devem ser tratados com NaCl 0,45%, com a adição de cloreto de potássio 20 mEq/L e glicose 5%. Geralmente, administra-se o déficit de água calculado adicionado ao volume de manutenção em 24 horas. Na hipernatremia crônica (> 48 horas de duração), recomenda-se diminuição da natremia de, no máximo, 8 mEq/L/dia, para prevenção de edema cerebral associado à correção rápida da natremia.

Os distúrbios acidobásicos são frequentes em pacientes desidratados, mas na maioria das vezes, autolimitados e melhoram com a reidratação. Em casos de acidose metabólica grave, com pH < 7,20, pode-se utilizar bicarbonato de sódio. A quantidade

de bicarbonato pode ser calculada pela fórmula: peso x 0,3 x base excess (BE) (máximo 6 mEq/kg). Lembrar que a administração de bicarbonato de sódio resulta na produção de CO₂ e água e, portanto, é importante garantir ventilação adequada para que o CO₂ produzido seja eliminado apropriadamente pelos pulmões. Outro ponto a ser considerado é que o uso de bicarbonato de sódio se associa ao deslocamento de potássio do compartimento extracelular para o intracelular. Desta forma, deve-se acrescentar potássio à solução contendo bicarbonato de sódio, caso as concentrações plasmáticas de potássio estejam normais ou diminuídas. Além de hipopotassemia, os riscos do tratamento com bicarbonato de sódio incluem hipocalcemia e correção rápida de hiponatremia crônica com desmielinização osmótica.

Na maioria dos serviços pediátricos, as necessidades hídricas de manutenção de crianças hospitalizadas são calculadas utilizando a regra de Holliday e Segar:

0 a 10 kg: 100 mL/kg/d

10 a 20 kg: 1000 mL + 50 mL/kg para cada kg acima de 10 kg

> 20 kg: 1500 mL+ 20 mL/kg para cada kg acima de 20 kg

As quantidades recomendadas de sódio, potássio e cloro por esta regra são de 3, 2 e 2 mEq/100 mL/dia, respectivamente. Entretanto, em crianças gravemente enfermas, a administração de 100% do volume de manutenção calculado segundo a regra de Holliday e Segar, sob a forma de salina hipotônica pode resultar em hiponatremia. Por outro lado, a administração de fluidos isotônicos em excesso também pode causar hiponatremia. Portanto, após a fase de reidratação, recomendase iniciar a fluidoterapia de manutenção com 70%-100% do volume calculado pela regra de Holliday-Segar sob a forma de solução salina isotônica (NaCl 0,9%) adicionada de cloreto de potássio 20 mEq/L e glicose 5%. Quantidades basais de cálcio (40 mg/kg/dia) e magnésio (0,3 mEq/kg/dia) devem ser acrescentadas à solução de manutenção, especialmente em lactentes jovens. É importante ajustar diariamente o volume e a composição da solução de acordo com o peso, o balanço hídrico e as concentrações plasmáticas de eletrólitos.

Independentemente do sódio sérico e do esquema escolhido para a reidratação endovenosa, as perdas persistentes devem ser repostas em sua totalidade. Caso não seja possível mensurar o volume das perdas, elas devem ser estimadas como se segue: vômitos 10 mL/kg/dia, diarreia leve 10-25 mL/kg/dia, diarreia moderada 25-50 mL/kg/dia, diarreia grave 50-75 mL/kg/dia.

Referências

- 1. ARMON, K. et al. An evidence and consensus based guideline for acute diarrhea management. **Archives of Disease in Childhood**, v. 85, n. 2, p. 132-142, 2001.
- BRANDT, K. G.; ANTUNES, M. M. C.; DA SILVA, G. A. P. Acute diarrhea: evidence-based management. Jornal de Pediatria (Rio de Janeiro), v. 91, n. 6 Suppl 1, p. S36-S43, 2015.
- 3. COLLETTI, J. E. et al. The management of children with gastroenteritis and dehydration in the emergency department. **The Journal of Emergency Medicine**, v. 18, n. 5, p. 686-698, 2010.
- 4. FREEDMAN, S. B. et al. Diagnosing clinically significant dehydration in children with acute gastroenteritis using noninvasive methods: a meta-analysis. **The Journal of Pediatrics**, v. 166, n. 4, p. 908-916, 2015.
- 5. FRIEDMAN, J. N. et al. Development of a clinical dehydration scale for use in children between 1 and 36 months of age. **The Journal of Pediatrics**, v. 145, n. 2, p. 201-207, 2004.
- GORELICK, M. H.; SHAW, K. N.; MURPHY, K. O. Validity and reliability of clinical signs in the diagnosis of dehydration in children. **Pediatrics**, v. 99, n. 5, p. e6, 1997.
- 7. HAHN, S.; KIM, Y.; GARNER, P. Reduced osmolarity oral rehydration solution for treating dehydration caused by acute diarrhea in children. **Cochrane Database of Systematic Reviews**, CD002847, 2002.
- 8. HOLLIDAY, M. A.; SEGAR, W. E. The maintenance need for water in parenteral fluid therapy. **Pediatrics**, v. 19, n. 5, p. 823-832, 1957.
- MORITZ, M. L.; AYUS, J. C. Maintenance intravenous fluids in acutely ill patients. The New England Journal of Medicine, v. 373, n. 14, p. 1350-1360, 2015.
- 10. MORITZ, M. L.; AYUS, J. C. Misconceptions in the treatment of dehydration in children. **Pediatrics in Review**, v. 37, n. 7, p. e29-e31, 2016.
- 11. NEVILLE, K. A. et al. Isotonic is better than hypotonic saline for intravenous rehydration of children with gastroenteritis: a prospective randomized study. **Archives of Disease in Childhood**, v. 91, n. 3, p. 226-232, 2006.

- 12. POWERS, K. S. Dehydration: Isonatremic, hyponatremic, and hypernatremic recognition and management. **Pediatrics in Review**, v. 36, n. 7,p. 274-285, 2015.
- 13. SALGADO, M. et al. Desidratação aguda na criança. **Saúde Infantil**, v. 31, n. 3, p. 103-110, 2009.
- 14. SHAVIT, I. et al. A novel imaging technique to measure capillary-refill time: improving diagnostic accuracy for dehydration in young children with gastroenteritis. **Pediatrics**, v. 118, n. 6, p. 2402-2408, 2006.
- 15. STEINER, M. J.; DEWALT, D. A.; BYERLEY, J. S. Is this child dehydrated? **Journal of the American Medical Association**, v. 291, n. 22, p. 2746-2754, 2004.
- 16. VEGA, R. M.; AVNER, J. R. A prospective study of the usefulness of clinical and laboratory parameters for predicting percentage of dehydration in children. **Pediatric Emergency Care**, v. 13, n. 3, p. 179-182, 1997.