Universidade de São Paulo Instituto de Física de São Carlos 7600023 - Termodinâmica e Física Estatística - 2023-2

Prof. Leonardo Paulo Maia

Gabarito da Prova 02 - 2023/11/22

- 1. (3,5) Um ar condicionado ideal absorve calor Q_2 de uma casa à temperatura T_2 e descarta calor Q_1 no ambiente externo de temperatura T_1 , com $T_1 > T_2$, às custas de uma quantidade E de energia elétrica. No mesmo ciclo temporal de operação do ar condicionado, um calor $Q = A(T_1 T_2)$, onde A é uma constante positiva, invade a casa vindo do ambiente (lei de Newton).
 - a. No estado estacionário, determine T_2 em termos de A, T_1 e E.
 - b. O sistema é controlado por um termostato para manter sempre a casa a 20° C. A demanda energética do aparelho depende da temperatura externa, mas há um limite para o fornecimento desse trabalho elétrico. Quando o ambiente está a 30° C, o sistema atende o que dele se pede consumindo 30% da sua "alimentação limite". Qual é a máxima temperatura ambiente na qual é possível o controle desejado?

Resolução:

a. $E=Q_1-Q_2$ (balanço energético do refrigerador) e $Q_2=Q=A(T_1-T_2)$ (para a temperatura da casa permanecer constante). Como o ar condicionado é ideal, $Q_1/Q_2=T_1/T_2$. Eliminando os calores, surge uma equação quadrática para determinar T_2 como função das demais grandezas,

$$E = Q_2 \left(\frac{Q_1}{Q_2} - 1\right) = A(T_1 - T_2) \left(\frac{T_1}{T_2} - 1\right).$$

Apenas uma das duas raízes algébricas da equação quadrática corresponde a $T_2 < T_1$,

$$T_2 = T_1 + \frac{E}{2A} - \sqrt{\left(\frac{E}{2A}\right)^2 + T_1 \frac{E}{A}}.$$

b. Continua valendo a mesma equação quadrática, mas agora T_2 é apenas uma grandeza constante (como foi T_1 no item a) e é analisado o comportamento de T_1 em função das demais grandezas e, em particular, em função do trabalho disponível **quando** há um limite para essa alimentação externa.

Se $0 < \alpha < 1$ for o "fator de uso" da máxima alimentação energética $E_{\rm max}$ que pode ser fornecida ao refrigerador, uma temperatura externa T_1 onde o balanço energético é possível deve satisfazer

$$(T_1 - T_2)^2 = \frac{(\alpha \cdot E_{\text{max}})T_2}{A} \tag{1}$$

e é claramente uma função crescente de α (note que só um sinal da raiz gera $T_1 > T_2$),

$$T_1 = T_2 + \sqrt{\frac{\alpha \cdot E_{\text{max}} T_2}{A}},$$

atingindo seu valor máximo T_1^{max} quando $\alpha = 1$,

$$(T_1^{\text{max}} - T_2)^2 = \frac{E_{\text{max}} T_2}{A}.$$
 (2)

O "quociente das equações" (2) e (1) leva a

$$\left(\frac{T_1^{\max} - T_2}{T_1 - T_2}\right)^2 = \frac{1}{\alpha} \implies \boxed{T_1^{\max} = T_2 + \frac{1}{\sqrt{\alpha}}(T_1 - T_2)}$$
(3)

e o resultado numérico $T_1^{\text{max}} \approx 38,26\,^{o}\text{C}$ decorre de $\alpha=0,3$ e das temperaturas dadas, sem qualquer necessidade de conversão para Kelvin (pois só ocorrem diferenças de temperaturas, idênticas em Celsius e Kelvin).

- 2. (3,5) Custo entrópico de um banho Em sua banheira, você pretende misturar um volume V_1 de água quente à temperatura T_1 a um volume V_2 da mesma substância à temperatura T_2 , $T_1 > T_2$, para ter um banho agradável. O calor específico da água é c, em unidades de energia por (massa . temperatura), e sua densidade volumétrica de massa é ρ . Imagine que um estado "final" de equilíbrio, termalizado, seja atingido antes que qualquer calor apreciável seja perdido para a atmosfera ou para as paredes da banheira.
 - a. Qual é a temperatura final T_f da água?
 - b. Qual será a variação ΔS da entropia do universo? Mostre que $\Delta S > 0$.
 - c. Com base nas expressões $(1+x)^{-1} \approx 1-x$ e $\log(1+x) \approx x$ quando $x \ll 1$, obtenha os termos principais de T_f e ΔS quando $V_2 \ll V_1$, ou seja, determine os termos constantes daquelas duas grandezas como séries de potências em λ se $\lambda \equiv V_2/V_1$.

Resolução:

a. Desprezando variações de volume nas duas amostras de água (sugerido pela ausência de qualquer informação nesse sentido), a variação de energia interna ΔU_k , k=1,2, de cada amostra corresponde ao calor $Q_k=C_k\Delta T_k$ por ela recebido (pode ser negativo!), onde $C_k=m_kc=\rho V_kc$ é a capacidade térmica da k-ésima amostra. Por conservação da energia, $0=\Delta U=\Delta U_1+\Delta U_2=C_1(T_f-T_1)+C_2(T_f-T_2)$. Basta isolar T_f ,

$$T_f = \frac{V_1 T_1 + V_2 T_2}{V_1 + V_2}$$

b. Mesmo que o processo seja irreversível na prática, o mesmo estado final seria obtido por um processo reversível, que leva à mesma variação entrópica.

$$\Delta S = \Delta S_1 + \Delta S_2 = \int_{T_1}^{T_f} \frac{dQ_1^{\text{rev}}}{T} + \int_{T_2}^{T_f} \frac{dQ_2^{\text{rev}}}{T} =$$

$$= \int_{T_1}^{T_f} C_1 \frac{dT}{T} + \int_{T_2}^{T_f} C_2 \frac{dT}{T} = C_1 \log \frac{T_f}{T_1} + C_2 \log \frac{T_f}{T_2}$$

$$\therefore \Delta S = \rho c \left\{ V_1 \log \frac{T_f}{T_1} + V_2 \log \frac{T_f}{T_2} \right\}$$

Em geral, é difícil mostrar que o resultado "integrado/global" acima é positivo. Porém, em qualquer momento antes do equilíbrio térmico ser alcançado, o corpo inicialmente mais quente tem temperatura T'_1 e o inicialmente mais frio, temperatura T'_2 , com $T_1 > T'_1 > T'_2 > T_2$. Se dQ for o calor infinitesimal cedido reversivelmente do corpo 1 ao corpo 2,

$$dS = \frac{-dQ}{T_1'} + \frac{+dQ}{T_2'} = \frac{dQ}{T_1'T_2'} (T_1' - T_2') \ge 0$$

e o fluxo de calor do corpo mais quente para o mais frio é espontâneo, de acordo com o princípio do aumento da entropia (para um sistema termicamente isolado, mesmo que composto).

c.

$$T_f = \frac{V_1 T_1 + V_2 T_2}{V_1 + V_2} = \frac{T_1 + \lambda T_2}{1 + \lambda} = (T_1 + \lambda T_2)(1 + \lambda)^{-1} \approx$$
$$\approx (T_1 + \lambda T_2)(1 - \lambda) : T_f = T_1 - \lambda(T_1 - T_2)$$

Essa expressão é consistente em 1a. ordem em λ e necessária para lidar corretamente com uma indeterminação em uma das parcelas da resposta do item anterior.

$$\frac{\Delta S}{\rho c V_2} = \frac{V_1}{V_2} \log \frac{T_f}{T_1} + \log \frac{T_f}{T_2} =$$

$$= \frac{1}{\lambda} \log \frac{T_1 - \lambda (T_1 - T_2)}{T_1} + \log \frac{T_1 - \lambda (T_1 - T_2)}{T_2} =$$

$$= \frac{1}{\lambda} \log \left(1 - \lambda \frac{T_1 - T_2}{T_1} \right) + \log \left[\frac{T_1}{T_2} \left(1 - \lambda \frac{T_1 - T_2}{T_1} \right) \right] =$$

$$= \frac{1}{\lambda} \log \left(1 - \lambda \frac{T_1 - T_2}{T_1} \right) + \left\{ \log \frac{T_1}{T_2} + \log \left(1 - \lambda \frac{T_1 - T_2}{T_1} \right) \right\} \approx$$

$$\approx \frac{1}{\lambda} \left[-\lambda \frac{T_1 - T_2}{T_1} \right] + \left\{ \log \frac{T_1}{T_2} - \lambda \frac{T_1 - T_2}{T_1} \right\} \approx -\frac{T_1 - T_2}{T_1} + \log \frac{T_1}{T_2}$$

$$\therefore \Delta S = -\rho c V_2 \frac{T_1 - T_2}{T_1} + \rho c V_2 \log \frac{T_1}{T_2}$$

3. (3,5) Entropia na expansão livre, processo de Joule - Considere um recipiente, de paredes rígidas e adiabáticas, mas constituído por dois compartimentos idênticos, de mesmo volume, que só podem compartilhar a matéria de um fluido se for aberta a comporta que separa os compartimentos. Um gás ideal em equilíbrio térmico ocupa inicialmente apenas um dos dois compartimentos, enquanto o outro encontra-se no vácuo. A comporta é aberta e, após um intervalo temporal "suficientemente longo", o sistema exibe um estado de equilíbrio final. Por que é possível o cálculo da variação da entropia nesse processo mesmo sendo ele irreversível e fora do equilíbrio? Determine a variação da entropia nessa expansão livre usando 3 diferentes processos reversíveis e mostrando que as 3 respostas são idênticas entre si.

Resolução: O processo de Joule é uma expansão adiabática irreversível. Como Q=0 e a expansão contra um vácuo não incorre em realização de trabalho, W=0, a 1a. Lei da Termodinâmica impõe que $\Delta U=0$. Como a energia interna de um gás ideal só depende da sua temperatura, $\Delta U=0 \implies \Delta T=0$. Dessa forma, o estado final (denominado f) tem a mesma temperatura T_i do estado inicial, i, embora o volume tenha sido duplicado $V_i \rightarrow 2V_i$. Como o produto $P \cdot V$ deve ser igual nesses dois estados, $P_f = P_i/2$.

Como a entropia é uma função de estado, o conhecimento dos estados inicial e final é suficiente para a determinação da variação da entropia. Qualquer processo reversível que ligue (no sentido correto) aqueles dois estados exibe a mesma variação de entropia.

Acima, apresenta-se uma tabela com P, V e T de todos os pontos necessários para caracterizar 4 possíveis trajetos reversíveis ligando i a f (compostos por trechos bem conhecidos, com expressões analíticas simples). Abaixo, seguem as análises pertinentes.

a. $i \to f$, expansão isotérmica: $dU = \delta Q + \delta W \implies 0 = \delta Q_{\rm rev} - P \, dV$

$$\Delta S = \int_{i \to f} \frac{\delta Q_{\text{rev}}}{T} = \int_{V_i}^{V_f} \frac{1}{T} P \, dV = \int_{V_i}^{V_f} \frac{nR}{V} \, dV = nR \log(V_f/V_i) = nR \log 2$$

b. $i \to A \to f$, expansão isobárica até V_f , seguida de redução isocórica de pressão até P_f . Como A foi escolhido para que $P_A = P_i$ e $V_A = 2\,V_i$, $(V/T)_i = (V/T)_A \implies T_A = 2\,T_i$.

$$\Delta S = \int_{i \to A} \frac{\delta Q_{\text{rev}}}{T} + \int_{A \to f} \frac{\delta Q_{\text{rev}}}{T} = \int_{i \to A} \frac{C_P dT}{T} + \int_{A \to f} \frac{C_V dT}{T} =$$

$$= C_P \log \frac{T_A}{T_i} + C_V \log \frac{T_f}{T_A} = C_P \log 2 + C_V \log \frac{1}{2} = (C_p - C_V) \log 2 = nR \log 2$$

c. $i \to A \to f$, redução isocórica de pressão até P_f seguida de expansão isobárica até V_f . Como B foi escolhido para que $V_B = V_i$ e $P_B = P_f$, $(P/T)_i = (P/T)_B \implies T_B = T_i/2$.

$$\Delta S = \int_{i \to B} \frac{\delta Q_{\text{rev}}}{T} + \int_{B \to f} \frac{\delta Q_{\text{rev}}}{T} = \int_{i \to B} \frac{C_V dT}{T} + \int_{B \to f} \frac{C_P dT}{T} = C_V \log \frac{T_B}{T_i} + C_P \log \frac{T_f}{T_B} = C_V \log \frac{1}{2} + C_P \log 2 = (C_p - C_V) \log 2 = nR \log 2$$

d. $i \to C \to f$, expansão adiabática até V_f , seguida de aumento isocórico de pressão até P_f . Como C foi escolhido para que $V_C = 2\,V_i$, $(PV^\gamma)_i = (PV^\gamma)_C \implies P_C = P_i/2^\gamma$ e $(PV/T)_i = (PV/T)_C \implies T_C = T_i\,2^{1-\gamma}$.

$$\Delta S = \int_{i \to C} \frac{\delta Q_{\text{rev}}}{T} + \int_{C \to f} \frac{\delta Q_{\text{rev}}}{T} = 0 + \int_{C \to f} \frac{C_V dT}{T} =$$
$$= C_V \log \frac{T_f}{T_C} = C_V \log 2^{\gamma - 1} = (\gamma - 1)C_V \log 2 = nR \log 2$$