Seleção de exercícios

Preparativos para a P2 (Matemática III)

3.1.6

1. Prove que cada uma das transformações abaixo é linear.

(a)
$$F: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$$
 dada por $F(p(t)) = t^2 p''(t)$

(b) $F: \mathbb{M}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ dada por F(X) = MX - XM onde

$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

(c)
$$T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_4(\mathbb{R})$$
 dada por $(Tp)(x) = xp(x+1)$.

2. Consideremos uma transformação linear $T:U\to V$ onde U e V são \mathbb{K} -espaços vetoriais tais que $\dim_{\mathbb{K}} V<\dim_{\mathbb{K}} U<\infty$.

(a) Prove que existe um elemento não nulo $u \in U$ tal que T(u) = 0.

(b) Se \mathcal{B} é uma base arbitrária de U, existe sempre um vetor $u \in \mathcal{B}$ tal que T(u) = 0? Prove ou dê um contraexemplo.

3.2.6

3. Considere \mathbb{R}^4 e seus subespaços $V,W\subset\mathbb{R}^4,\ V=[(1,0,1,1),(0,-1,-1,-1)]$ e $W=\{(x,y,z,t)\in\mathbb{R}^4:x+y=0\ \text{e}\ t+z=0\}$. Determine uma transformação linear $T:\mathbb{R}^4\to\mathbb{R}^4$ tal que $\ker T=V$ e $\operatorname{Im} T=W$.

OBS: $V = [v_1, v_2]$ é o subespaço gerado pela combinação linear dos vetores v_1 e v_2 . ker T é o kernel ou núcleo de T e Im T é o conjunto imagem de T.

1

4. Determine o núcleo e a imagem das seguintes transformações lineares:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T(x,y) = (x-y, x+y)$

(b)
$$T: \mathbb{C}^2 \to \mathbb{R}^2$$
 dada por $T(x+yi, z+ti) = (x+2x, -x+2t)$.

- **10.** Sejam V um espaço vetorial sobre \mathbb{K} e $T:V\to V$ uma transformação linear. Prove que as seguintes condições são equivalentes:
 - (a) $\ker T \cap \operatorname{Im} T = \{0\}$
 - (b) Se $(T \circ T)(v) = 0$ para $v \in V$, então T(v) = 0.

3.1.6

- 1. Mostre que a transformação linear $F: \mathbb{R}^3 \to \mathbb{R}^3$ a seguir é invertível e determine a transformação linear inversa.
 - F(x, y, z) = (x 3y 2z, y 4z, -z)
- **2.** Sejam \mathbb{K} um corpo e $T : \mathbb{K}^2 \to \mathbb{K}^2$ o operador dado por $T(x_1, x_2) = (x_1 + x_2, x_1)$ para todo $(x_1, x_2) \in \mathbb{K}^2$. Prove que T é um isomorfismo e exiba T^{-1} .
- **4.** Seja $T: \mathbb{C}^3 \to \mathbb{C}^3$ a transformação linear definida por T(1,0,0) = (1,0,i), T(0,1,0) = (0,1,1), T(0,0,1) = (i,1,0). Decida se T é invertível.
- 5. Sejam $T:\mathbb{R}^3\to\mathbb{R}^2$ e $S:\mathbb{R}^2\to\mathbb{R}^3$ transformações lineares. Prove que $S\circ T$ não é invertível.

3.4.7

4. Seja $T: \mathbb{M}_2(\mathbb{C}) \to \mathbb{M}_2(\mathbb{C})$ uma transformação linear dada por

$$T\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 0 & x \\ z - w & 0 \end{pmatrix}.$$

Determine a matriz de T com relação à base canônica.

3. Sejam $T: \mathbb{R}^3 \to \mathcal{P}_2(\mathbb{R})$ e $G: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ transformações lineares tais que

$$[T]_{\mathbb{B},\mathbb{C}} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{e} \quad [G]_{\mathbb{C},\mathbb{B}} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$$

onde \mathcal{B} e \mathcal{C} são as bases $\mathcal{B} = \{(1,1,0), (0,1,0), (0,0,1)\}$ e $\mathcal{C} = \{1,1+x,1+x^2\}$.

- (a) Determine bases para $\ker T \in \operatorname{Im} T$.
- (b) Determine bases para $\ker(G \circ T)$ e $\operatorname{Im}(G \circ T)$.

(c) Determine a matriz de $H = 3(T \circ G) + \mathbb{I}_{\mathscr{P}_2(\mathbb{R})}$ com relação à base $\{1, x, x^2\}$ de $\mathscr{P}_2(\mathbb{R})$.

OBS: $\mathbb{I}_{\mathscr{P}_2(\mathbb{R})}$ é a transformação identidade em $\mathscr{P}_2(\mathbb{R})$, $\mathbb{I}_{\mathscr{P}_2(\mathbb{R})}(p) = p$.

6.1.10

2. Mostre que a função $\langle , \rangle : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ dada por

$$\langle (a,b,c,d), (x,y,z,w) \rangle = 2ax + by + cz + dw$$

é um produto interno de \mathbb{R}^4 .

3. Use a desigualdade de Schwartz em \mathbb{R}^3 para provar que dados valores reais positivos $a_1, a_2, a_3 \in \mathbb{R}$, vale

$$(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right) \ge 9.$$

6.2.10

- **2.** Seja $S = [(1+i, 3i, 2-i), (2-3i, 10+2i, 5-1)] \subset \mathbb{C}^3$. Determine uma base ortogonal para S, considerando em \mathbb{C}^3 o produto interno canônico.
- 4. Considere o \mathbb{C} -espaço vetorial $V=C([0,1],\mathbb{C})$ com produto interno dado por

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)}$$

dt para $f, g \in V$. Prove que

- (a) $\left| \int_0^1 f(t) \overline{g(t)} \right| \le \left(\int_0^1 |f(t)|^2 \right)^{1/2} \left(\int_0^1 |g(t)|^2 \right)^{1/2}$.
- (b) Sejam $f_n(x) = \sqrt{2}\cos(2\pi nx)$ e $g_n(x) = \sqrt{2}\sin(2\pi nx)$. Prove que $S = \{1, f_2, g_1, f_2, g_2, \dots\}$ é um conjunto ortonormal em V.
- (c) Prove que $S = \{h_n\}$ onde $h_n = e^{2\pi i n x}$ para $n = 0, \pm 1, \pm 2, \ldots$ é um conjunto ortonormal em V.

Exercícios do Poole "Álgebra Linear"

Exemplo 4.25 Mostre que não é possível diagonalizar a matriz

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix}.$$

Exemplo 4.26 Encontre a matriz P que diagonaliza a matriz

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

Exercícios da Seção 11.3 do Bartle "Introduction to Real Analysis"

OBS: Atenção! Dizer que um conjunto "não é aberto" é diferente de dizer que um conjunto é "fechado". Fechado significa que o complementar do conjunto é aberto. Por exemplo, \mathbb{R} e $\mathbb{R}^C = \emptyset$ são simultaneamente abertos e fechados.

- 1. Seja $f: \mathbb{R} \to \mathbb{R}$ definido em $f(x) = x^2$ para $x \in \mathbb{R}$.
 - (a) Mostre que a imagem inversa $f^{-1}(I)$ de um intervalo aberto I=(a,b) é um intervalo aberto, ou uma união de dois intervalos abertos, ou vazia, dependendo de a e b.
 - (b) Mostre que se I é um intervalo aberto contendo O, então a imagem direta f(I) não é aberta.
- **5.** Mostre que se $f: \mathbb{R} \to \mathbb{R}$ é continuo, então o conjunto $\{x \in \mathbb{R} : f(x) < \alpha\}$ é aberto em \mathbb{R} para cada $\alpha \in \mathbb{R}$.
- **6.** Mostre que se $f: \mathbb{R} \to \mathbb{R}$ é continuo, então o conjunto $\{x \in \mathbb{R} : f(x) \leq \alpha\}$ é fechado em \mathbb{R} para cada $\alpha \in \mathbb{R}$.
- **8.** Dê um exemplo de função $f: \mathbb{R} \to \mathbb{R}$ tal que o conjunto $\{x \in \mathbb{R} : f(x) = 1\}$ não é nem aberto e nem fechado em \mathbb{R} .