

Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Biotecnologia

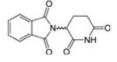
Curso: Engenharia Bioquímica

Biossegurança na produção de fármacos e Vacinas

Prof: Tatiane da Franca Silva

tatianedafranca@usp.br

1


 Segurança para o consumidor e para o trabalhador da indústria

Segurança de fármaco

Talidomida

1954: Alemanha desenvolve droga destinada a controlar a ansiedade, tensão e náuseas

1960: descobertos os efeitos teratogênicos

1965: descobre efeitos benéficos da droga no tratamento da hanseníase.

3

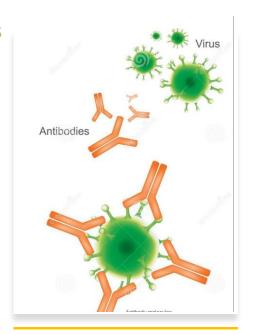
Segurança de imunobiológicos

Década de 30: vacina BCG contaminada com o *Mycobacterium tuberculosis*

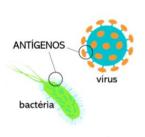
1955 EUA: aplicação de vacina contra a poliomielite contendo vírus inadequadamente inativado

Edward Jenner criador da vacina 1796

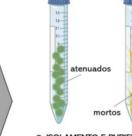
Biossegurança na Produção de Vacinas e Medicamentos


5

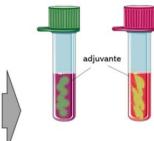
Biossegurança na Produção de Vacinas


Princípios da Vacina

- Imunidade humoral
- Reconhecimento de antígenos
- Diferença de Soro X Vacina



COMO SÃO PRODUZIDAS AS VACINAS?

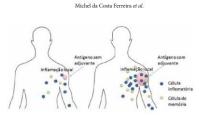

1. OBTENÇÃO DO ANTÍGENO

Antígeno é a parte do microrganismo que as células de defesa reconhecem: é como um número de RG, específico para cada um. Para produzir a vacina, podemos usar como antígeno o microrganismo inteiro ou só um pedaço dele

2. ISOLAMENTO E PURIFICAÇÃO DO ANTÍGENO

Uma vez produzido, o antigeno precisa ser separado do meio usado para produzi-lo. Diversas técnicas de purificação podem ser usadas, a depender do processo. É nessa etapa que os microrganismos são mortos ou atenuados (enfraquecidos)

3. ADIÇÃO DO ADJUVANTE


A última etapa é a adição do adjuvante, uma substância que aumenta a resposta imune do antigeno. É ele que "chama" as células de defesa para onde o antigeno está. A partir dai a vacina está pronta para ser aplicada em vocêl

8

Elementos adicionais nas vacinas

Devem ser estáveis e não apresentar toxicidade

- Adjuvantes exemplos: hidróxido de alumínio, saponina
- Conservantes exemplos: mercúrio (bactericida)
- Estabilizantes exemplos: albumina, geltina, açúcares. Mantém a eficácia

Tecnologias de produção de vacinas

☐ Subunidades: partes do patógenos. Obtidas por modificação genética ou por método de purificação. Proteínas, enzimas, capas virais, etc.

Risco: Podem gerar imunidade fraca

☐ Vacina atenuado, elimina a patogenicidade, mantendo a imunogenicidade. Métodos químicos, modificações genéticas.

Risco: Risco de Reversão

☐ Vacina inativado microrganismos mortos por processos físicos ou químicos.


Risco: Risco de Inativação incompleta

11

Novas Tecnologias de Vacina

☐ Vacina de DNA: plasmídeo codificando genes virais que podem ser expressos dentro da célula. Ex: Em testes para HIV, Influenza

□ Vacina de RNAm: Transcrição in vitro e tradução do antigeno na célula do indivíduo imunizado. Ex: Covid-19

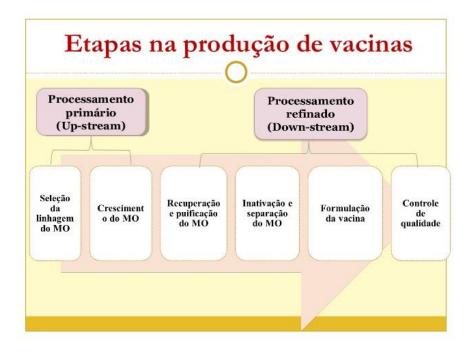
Exemplos de Tipos de Vacinas

Vacinas atenuadas:

- ✓ Tuberculose (BCG).....(bacteriana)
- ✓ Polio oral (VOP)
- ✓ Sarampo
- ✓ Caxumba
- ✓ Rubéola
- ✓ Varicela
- ✓ Rotavírus
- √ Febre amarela

Vacinas Inativadas:

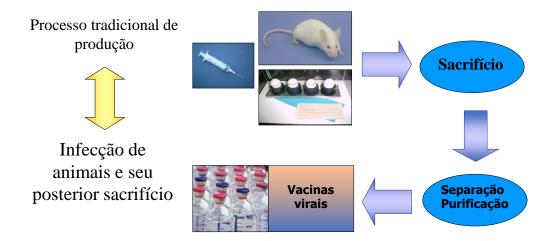
- ✓ Pertussis.....(bacteriana)
- ✓ Polio inativada (VIP)
- ✓ Raiva
- ✓ Influenza


Subunidades (antígeno purificado)

- ✓ Meningocócica
- ✓ Pneumocócica
- √ Haemophilus influenza (Hib)
- ✓ Tétano
- ✓ Difteria
- ✓ Pertussis acelular
- ✓ Hepatite B.....(viral)
- ✓ Papiloma (HPV).....(viral)

Modificações genéticas na Produção de Vacinas

TIPO VACINAL	ESTRATÉGIA BIOTECNOLÓGICA	VACINAS	
Vacinas de subunidades	Produção de proteínas recombinantes em sistemas heterólogos	Hepatite B, pertússis acelular, HPV	
Patógenos atenuados bivalentes	Manipulação genética para inserção de genes que codifiquem antígenos	Dengue, BCG, Salmonella typhi, Adenovírus	
Vacinas de DNA Imunização com plasmídeos recombinante		Vacina contra melanoma#	


^{*}Vacina para uso em cães

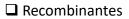
16

Produção de Vacinas com Microrganismos: Método Tradicional

Exemplo Vírus: Maquinário metabólico de células

Crescimento de Microrganismos

- ☐ Suspensão de células
- Ovos embrionados



18

Métodos de produção de vírus

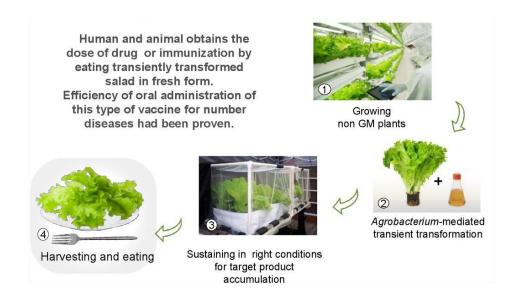
- Ovos embrionados
- ☐ Cultura de Células animais

Ex: Biorreatores

Ex: Leveduras

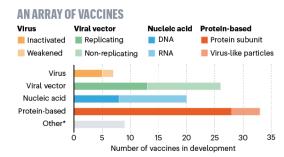
Bactérias

Plantas



Cercopithecus aethiops

Produção de Vacinas em Plantas



20

Workflow produção de Vacinas

Fase Clínica Fase Pré-Clínica ~100 indivíduos Envolve dezenas de voluntários sadios, com o Fase 1 objetivo de avaliar se a vacina testada é segura Cerca de três meses Várias centenas de Começa se voluntários sadios não sofrerem efeitos indivíduos adversos, em áreas atingidas pela pandemia Cerca de seis a oito meses em animais Milhares de indivíduos com risco Sem efeitos adversos, doses são aplicadas em milhares de pessoas selecionadas em local de surto de contágio Cerca de seis a oito meses Aprovação por agências reguladoras Agências reguladoras de medicamentos, como a FDA nos EUA e Anvisa no Brasil, decidem liberar ou não a vacina Cerca de meses a um ano Fonte: FDA

Vacinas Covid-19

Fonte: The race for coronavirus vaccines: a graphical guide – Nature

Tabela 1: Descrição das seis vacinas candidatas contra a COVID-19 que estão na Fase 3 dos ensaios clínicos (conforme o panorama geral da OMS em 20 de agosto de 2020)

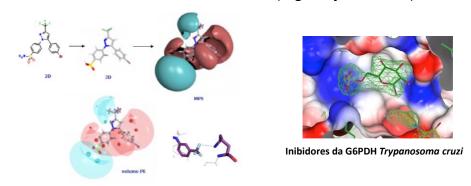
Fabricante	Sinovac (China)	Instituto de Produtos	Instituto de Produtos	Universidade de	Moderna/	BioNTech/
(país)		Biológicos de	Biológicos de	Oxford/	NIAID (EUA)	Fosun Pharma/
		Wuhan/	Pequim/	AstraZeneca		Pfizer (EUA)
		Sinopharm (China)	Sinopharm (China)	(Reino Unido)		
Nome da vacina candidata	Vacina Sinovac	CNBG Wuhan	BBIBP-CorV	ChAdOx1-S	mRNA-1273	BNT162b
Plataforma	Inativada	Inativada	Inativada	Vetor viral não replicante	RNA	RNA

Fonte: Organização Pan-Americana da Saúde 2020.

23

Descobertas de Novos Fármacos

- \checkmark Busca em origem natural (Solos, plantas e animais)
- √ Medicina popular (Etinobotânica)
- √ Modifcação fármacos existentes
- √ Banco de substâncias sintéticas
- √ Síntese combinatória
- ✓ Planejamento com ajuda de Computadores

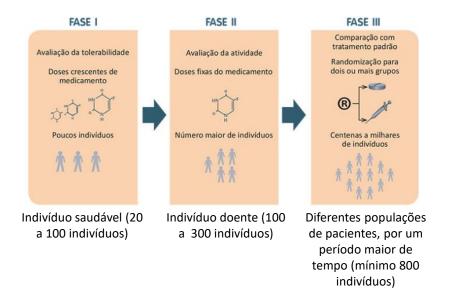


Planejamento Racional de Fármacos

- ✓ Descoberta do alvo
- ✓ Descoberta do Fármaco (high throughput screening) ou desenho de moléculas candidatas a fármacos
- √ Fase Pré-clínica Teste em animais (segurança e eficácia)
- √ Fase Clínica Teste em seres humanos (segurança e eficácia)

25

Workflow produção de Fármacos



Fase Pré-Clínica:

- -Pelo menos 3 anos de testes em laboratório e em cobaias
- -Pelo menos 3 espécies de mamíferos
- De cada 50 substâncias que iniciam os testes pré-clínicos → apenas 1 chegará ao ponto de ser testado em humanos.

Workflow produção de Fármacos

Fase Clínica:

--

Workflow produção de Fármacos - Comercialização

Fase IV: Vigilância pós-comercialização

(Farmacovigilância)

- → estabelecer valor terapêutico
- → surgimento de novas reações adversas e/ou confirmação da frequência das já conhecidas
- \rightarrow estudos de suporte ao marketing;
- →estudos adicionais comparativos com produtos competidores;
- → novas formulações (palatabilidade, facilidade de ingestão)

Agências reguladoras

✓ Promover a saúde da população

Controle Sanitário

Medicamentos e Cosméticos Serviços de Saúde

Alimentos

30

❖ Generally Recognized As Safe (GRAS): Reconhecimento de segurança para uma substância e para uma utilização a que se destina

Critérios para status GRAS

32

Exemplo Etapa de Downstream

Dependendo da natureza do produto e do método de síntese

1- Colheita

- Filtragem
- Centrifugação
- · Lise de Ácido/Surfactante, Absorção de Fase Orgânica
- Floculação e Precipitação

3- Coleta

· Cromotografia

4- Troca de Buffer e Aumento de Concentração

Ultrafiltração e diafiltração

5- **Purificação** (Eliminação de Contaminantes ou Impurezas)

Filtração

Evidência de Segurança

- ✓ **Razoável certeza** dos cientistas que a substância não é nociva nas condições de utilização previstas.
- ✓ Impossível, no estado atual do conhecimento científico, ter a certeza a absoluta inocuidade do uso de qualquer substância.

37

Risco Ocupacional na fabricação de fármacos

O perigo específico é a exposição ao **principio ativo**. Em teoria todos **são biologicamente ativos**!

Exemplos:

- ❖ Agentes citotóxico (carcinogênicos, mutagênicos e teratogênicos)
- Antibióticos, antimicrobianos e antisépticos- (resistência)
- Manipulação de hormônios problemas hepáticos e endócrinos

Avaliação da Exposição

Monitoramento Biológico (análise de Sangue e Urina)

Monitoramento do Ambiente

Investigação Clínica

39

Equipamentos de Proteção

- ✓ Uso de Cabine de segurança biológica
- ✓ Uso de EPIs (protetor respiratório, óculos, luvas , avental e Touca)

