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2.1 INTRODUCTION

Fluid statics:  The study of Fluid statics is the study of fluids in which there is no relative motion between
fluids in which there is no fluid particles. If there is no relative motion, no shearing stresses exist, since
relative motion between fluid  velocity gradients, such as du/dy, are required for shearing stresses to be present.
particles. The only stress that exists is a normal stress, the pressure, so it is the pressure that

is of primary interest in fluid statics.

Three situations, depicted in Fig. 2.1, involving fluid statics will be investi-
gated. These include fluids at rest, such as water pushing against a dam, fluids
contained in devices that undergo linear acceleration, and fluids contained in
rotating cylinders. In each of these three situations the fluid is in static equilibri-
um with respect to a reference frame attached to the boundary surrounding the
fluid. In addition to the examples shown for fluids at rest, we consider instru-
ments called manometers and investigate the forces of buoyancy. Finally, the sta-
bility of floating bodies such as ships will also be presented.

KEY CONCEPT The only
stress that exists where
there is no motion is a
normal stress, the pressure.

2.2 PRESSURE AT A POINT

We have defined pressure as being the infinitesimal normal compressive force
divided by the infinitesimal area over which it acts. This defines the pressure at a
point. One might question whether the pressure at a given point varies as the
normal to the area changes direction. To show that this is not the case, even for
fluids in motion with no shear, consider the wedge-shaped element of unit depth
(in the z-direction) shown in Fig. 2.2. Assume that a pressure p acts on the
hypotenuse and that a different pressure acts on each of the other areas, as
shown. Since the forces on the two end faces are in the z-direction, we have not
included them on the element. Now, let us apply Newton’s second law to the ele-
ment, for both the x- and y-directions:

. AxAy
3 F, = ma,: p Ay — pAssin 0 = p 5
(2.2.1)
AxAy AxAy
3 F,=ma,: p,Ax —pg > — pAscos 6 =p 5

where we have used A¥ = Ax Ay/2 (we could include Az in each term to account

a >
—_ E
@ (b) ©

Fig. 2.1 Examples included in fluid statics: (a) liquids at rest; (b) linear acceleration;
(c) angular rotation.
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e

Fig. 2.2 Pressure at a point in a fluid.

for the depth). The pressures shown are due to the surrounding fluid and are the
average pressure on the areas. Substituting

As sin 6 = Ay As cos 6 = Ax (2.2.2)

we see that Egs. 2.2.1 take the forms

A
Px—DP = pT Ax
223
_ pla,+g) ( )
Py =P = 5 Ay
Note that in the limit as the element shrinks to a point, Ax — 0 and Ay — 0.
Hence the right-hand sides in the equations above go to zero, even for fluids in
motion, providing us with the result that, at a point,

Px=py=p (2.2.4)

Since 6 is arbitrary, this relationship holds for all angles at a point. We could have

analyzed an element in the xz-plane and concluded that p, = p. = p. Thus we = KEY CONCEPT  Pressure
conclude that the pressure in a fluid is constant at a point; that is, pressure is a i a fluid acts equally in all

scalar function. It acts equally in all directions at a given point for both a static ~ directions at a given point.

fluid and a fluid that is in motion in the absence of shear stress.

2.3 PRESSURE VARIATION

A general equation is derived to predict the pressure variation of fluids at rest or
fluids undergoing an acceleration while the relative position of fluid elements to
one another remains the same (this eliminates shear stress). To determine the
pressure variation in such fluids, consider the infinitesimal element displayed in
Fig. 2.3, where the z-axis is in the vertical direction. The pressure variation from
one point to another will be determined by applying Newton’s second law; that
is, the sum of the forces acting on the fluid element is equal to the mass times the
acceleration of the element.
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Fig. 2.3 Forces acting on an infinitesimal element that is at rest in the xyz-reference
frame. The reference frame may be accelerating or rotating.

If we assume that a pressure p exists at the center of this element, the pres-
sures at each of the sides can be expressed by using the chain rule from calculus
with p(x, y, 2):

0,
dp = —dx + —dy + —Zdz (2.3.1)

If we move from the center to a face a distance (dx/2) away, we see that the
pressure is

dx p dx
p(x o z) =p(x,y,2) + 2 (23.2)

The pressures at all faces are expressed in this manner, as shown in Fig. 2.3.
Newton’s second law is written in vector form for a constant-mass system as

2 F = ma (2.3.3)

This results in the three component equations, assuming z to be vertical and using
the mass as p dx dy dz,

Jp
——dxdydz = pa, dx dy dz
0x
op
- 5 dx dy dz = pa, dx dy dz (2.3.4)

0
—a—pdxdy dz = p(a, + g) dx dy dz
Z
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where a,, a,, and a, are the components of the acceleration of the element.
Division by the element’s volume dx dy dz yields

ap B

ox - pay

ap

5 = —pa, (2.3.5)
ap

= — +

Py pla; + g)

The pressure differential in any direction can now be determined from
Eq.2.3.1 as

dp = —pa.dx — pa,dy — p(a, + g)dz (2.3.6)

where z is always vertical. Pressure differences between specified points can be
found by integrating Eq. 2.3.6. This equation is useful in a variety of problems, as
will be demonstrated in the remaining sections of this chapter.

2.4 FLUIDS AT REST

A fluid at rest does not undergo any acceleration. Therefore, set a, = a, =
a, = 0 and Eq. 2.3.6 reduces to

dp = —pg dz (24.1)
or
dp
P (2.4.2)

This equation implies that there is no pressure variation in the x- and y-direc-
tions, that is, in the horizontal plane. The pressure varies in the z-direction, the
vertical direction, only. Also note that dp is negative if dz is positive; that is, the
pressure decreases as we move up and increases as we move down.

2.4.1 Pressures in Liquids at Rest
If the density can be assumed constant, Eq. 2.4.2 is integrated to yield
Ap = —yAz or p+ yz = constant or Py Z = constant (24.3)
Y

so that pressure increases with depth. Note that z is positive in the upward direc-
tion. The quantity (p/y + z) is often referred to as the piezometric head. If the
point of interest were a distance 4 below a free surface (a surface separating a gas
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Free surface: A surface
separating a gas from a liquid.
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KEY CONCEPT The
equation p = yh is used to
convert pressure to a height
of liquid.

Standard atmosphere:
Position at 40° latitude where
calculations are standardized.

Free surface

p=0 gage
Liquid

Fig. 2.4 Pressure below a free surface.

from a liquid), as shown in Fig. 2.4, Eq. 2.4.3 would result in

p=h (2.4.4)

where p = 0 at & = 0. This equation will be quite useful in converting pressure to
an equivalent height of liquid. For example, atmospheric pressure is often
expressed as millimeters of mercury; that is, the atmospheric pressure is equal to
the pressure at a certain depth in a mercury column, and by knowing the specific
weight of mercury, we can then determine that depth using Eq. 2.4.4.

2.4.2 Pressures in the Atmosphere

For the atmosphere where the density depends on height [i.e., p = p(z)], we must
integrate Eq. 2.4.1 along a vertical path. The atmosphere is divided into four
layers: the troposphere (nearest Earth), the stratosphere, the mesosphere, and the
ionosphere.! Because conditions change with time and latitude in the atmosphere
with the layers being thicker at the equator and thinner at the poles, we base cal-
culations on the standard atmosphere, which is at 40° latitude. In the standard
atmosphere the temperature in the troposphere varies linearly with elevation,
T(z) = Ty — az, where the lapse rate o = 0.0065 K/m (0.00357°R/ft) and Ty is
288 K (518°R). In the part of the stratosphere between 11 and 20 km the temper-
ature is constant at —56.5°C. (Commercial aircraft usually fly in the lower part of
this constant-temperature region.) The temperature then increases again and
reaches a maximum near 50 km; it then decreases to the edge of the ionosphere.
The standard atmosphere is sketched in Fig. 2.5. Because the density of the air in
the ionosphere is so low, it is possible for satellites to orbit the earth in this layer.
Figure 2.6 shows how atmospheric pressure varies with altitude on three
mountains. A column of air from the outer atmosphere to a given point on Earth
contains gases that exert a force equal to 14.7 Ib on each square inch. This pres-
sure is 1 atm or 760 mm Hg. At a higher altitude the pressure is less because the
mass of the column of air from the outer atmosphere to that point is less.
Examples of pressure on the three mountains are given on the right of Fig. 2.6.

! The ionosphere is composed of the thermosphere and exosphere.
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Fig. 2.5 Standard atmosphere.

To determine the pressure variation of the troposphere, we can use the ideal-gas law
p = pRT and Eq. 2.4.1; there results

pg
_Ps
RT ¢

or, collecting the pressure p on the left-hand side,

dp =

d
__ 8,

p RT

(2.4.5)

This can be integrated, between sea level and an elevation z in the troposphere:

) fod
/4 8 <
f @__8[_4¢ (2.4.6)
i P R JTy— az
Upon integration this gives
p g Ty — az
In = In—= (2.4.7)
Patm aR TO
Mount Everest
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Fig. 2.6 Atmospheric pressure and altitude on three mountains.
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which can be put in the form

To — oz >g’“R (2.4.8)

p=p atm( i

If we use standard atmospheric conditions in Eq. 2.4.8, we find that p/p,q, =
0.999 at z = 10 m. Consequently, we ignore changes in pressure in a gas such as
air unless z is relatively large. At z = 1000 m, the pressure decreases by about 2%.

In the lower part of the stratosphere, where the temperature is constant,
Eq.2.4.5 is integrated again as follows:

"dp g [
p57 = - RT, . dz (2.4.9)
p_ &
In o =T RL (z = zy) (2.4.10)
or
= p, ex [i(z —z)] 2.4.11)
P = s exp| (2 4.

The subscript s denotes conditions at the troposphere—stratosphere interface.
Properties of the standard atmosphere up to 80 km are listed in Appendix B.3.

Example 2.1

The atmospheric pressure is given as 680 mm Hg at a mountain location. Convert this
to kilopascals and meters of water. Also, calculate the pressure decrease due to 500-m
elevation increase, starting at 2000 m elevation, assuming constant density.

Solution
Use Eq. 2.4.4 and find, using Sy, = 13.6 with Eq. 1.5.2,
P = Yugh
= (9.81 kN/m?® X 13.6) X 0.680 m = 90.7 kPa
To convert this to meters of water, we have
)4
YH,0
_ 90.7
9.810

To find the pressure decrease, we use Eq. 2.4.3 and find the density in Table B.3:

h =

= 9.25 m of water

Ap = —yAz = —pgAz
—1.007 kg/m® X 9.81 m/s*> X 500 m = —4940 Pa

where we used kg = N-s%/m.

Note: Since gravity is known to three significant digits, we express the answer to three
significant digits.
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Example 2.2

Assume an isothermal atmosphere and approximate the pressure at 10000 m.
Calculate the percent error when compared with the values using Eq. 2.4.8 and from
Appendix B.3. Use a temperature of 256 K, the temperature at 5000 m.

Solution
Integrate Eq. 2.4.5 assuming that 7 is constant, as follows:

P dp _ g JZ
—=-—=|dz
101 P RT Jo

po__ 8

In—=

_ — —gz/RT
101 RT or p = 101e

Substituting z = 10 000 m and 7" = 256 K, there results

p = 10198110 000/287x256)
= 26.57 kPa

Using Eq.2.4.8 we have

_ (TO — az)g/aR
P = Patm TO

_ 9.81/0.0065%287
:101<288 0.0065 X 10 000) ~ 263 kPa

288

The actual pressure at 10 000 m is found from Table B.3 to be 26.50 kPa. Hence the per-
cent errors are

26.57 — 263

— o,
— )><100 1.03%

% error = (

26.57 — 26.50

. ) % 100 = 0.26%

% error = (

Because the error is so small, we often assume the atmosphere to be isothermal. Note:
When evaluating gz/RT we use R = 287 J/kg-K, not 0.287 kJ/kg*K. To observe that
gz/R is dimensionless, which it must be since it is an exponent, use N = kg-m/s* so that

[ 82 ] (m/ 52)m m?/s> m?/s? m>/s

RT| (Jkg'K)K N-mkg (kg-m¥s’)kg m2s
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n Hydrostatic Pressure, 517

2.4.3 Manometers

Manometers are instruments that use columns of liquids to measure pressures.
Three such instruments, shown in Fig. 2.7, are discussed to illustrate their use.
Part (a) displays a U-tube manometer, used to measure relatively small pres-
sures. In this case the pressure in the pipe can be determined by defining a point
1 at the center of the pipe and a point 2 at the surface of the right column. Then,
using Eq. 2.4.3,

P11t vzi=p2t v

where the datum from which z; and z, are measured is located at any desired
position, such as through point 1. Since p, = 0 (gage pressure is selected; if
absolute pressure is desired, we would select py = pam) and z, — z; = A,

p1 = vh (2.4.12)
Figure 2.7b shows a manometer used to measure relatively large pressures

since we can select vy, to be quite large; for example, we could select 7y, to be
that of mercury so that y, = 13.6 yyater- The pressure can be determined by

Pipe

Fig. 2.7 Manometers: (a) U-tube manometer (small pressures); (b) U-tube manometer
(large pressures); (c) micromanometer (very small pressure changes).
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introducing the points indicated. This is necessary because Eq. 2.4.3 applies
throughout one fluid; y must be constant. The value of y changes abruptly at
point 2. The pressure at point 2 and at point 2’ is the same since the points are
at the same elevation in the same fluid. Hence

P2 =P (2.4.13)
p1+yh=ps+ vnH
Setting p; = 0 (gage pressure is used) results in

Figure 2.6c shows a micromanometer that is used to measure very small pressure
changes. Introducing the points indicated, requiring that p; = p5’, we can write

p1tvi(zi — 22) + v(22 — 23) = ps + vazs — z4) + v3(za — 23)  (24.15)
Observe that z, — z3 + h = H + 75 — z4 and set ps = 0; then

p1=v(z2 —z21) + 2»(h — H) + ysH
Y1(z2 = z1) + voh + (v3 — )H (2.4.16)

Note that in all of the equations above for all three manometers, we have
identified all interfaces with a point. This is always necessary when analyzing a
manometer.

The micromanometer is capable of measuring small pressure changes
because a small pressure change in p; results in a relatively large deflection
H.The change in H due to a change in p; can be determined using Eq. 2.4.16.
Suppose that p; increases by Ap; and, as a result, z, decreases by Az; then A
and H also change. Using the fact that a decrease in z, is accompanied by an
increase in zs leads to an increase in & of 2Az and, similarly, assuming that
the volumes are conserved, it can be shown that H increases by 2AzD?/d>.
Hence a pressure change Ap; can be evaluated from changes in deflections as
follows:

(s — ¥2)2AzD?

Ap; = yi(=Az) + 1»(2A2) + e (2.4.17)
The rate of change in H with p; is
AH  2AzD*ld’
= (2.4.18)

A_Pl Ap,
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Using Eq.2.4.17 we have

AH 2D?/d?
A_pl T =y + 27 + 2(ys — v2)DYd? (24.19)

An example of this type of manometer is given in Example 2.4.

Example 2.3

Water and oil flow in horizontal pipelines. A double U-tube manometer is connected
between the pipelines, as shown in Fig. E2.3. Calculate the pressure difference between
the water pipe and the oil pipe.

Solution

We first identify the relevant points as shown in the figure. Begin at point (1) and add
pressure when the elevation decreases and subtract pressure when the elevation
increases until point (5) is reached:

p1+ Wz — 22) — ¥S1(z3 — 22) — YSaiza — 23) + ¥82(24 — 25) = Ps

Air

Oil

$=0.9
Fig. E2.3
where y = 62.4 Ib/ft3, §; = 1.6, S, = 0.9, and S,;, = 0. Thus
10 11 6 6
—ps=624——+16X=+0X—=—09X—
D1 — Ps 624( S LEX 00X 09><12)

= 11.44 Ib/ft*> or 0.0794 psi

Note that by neglecting the weight of the air, the pressure at point 3 is equal to the
pressure at point 4.
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Example 2.4

For a given condition the liquid levels in Fig. 2.7c are z; = 0.95 m, z, = 0.70 m,
73 = 0.52m, z4 = 0.65 m, and zs = 0.72 m. Further, y; = 9810 N/m?, y, = 11 500 N/m?,
and y; = 14 000 N/m>. The diameters are D = 0.2 m and d = 0.01 m. (a) Calculate the
pressure p; in the pipe, (b) calculate the change in H if p; increases by 100 Pa, and
(c) calculate the change in 4 of the manometer of Fig. 2.7a if 4 = 0.5 m of water and
Ap; = 100 Pa.

Solution
(a) Referring to Fig. 2.7c, we have
h=0.72 — 0.70 = 0.02 m
H=0.65-052=0.13m
Substituting the given values into Eq. (2.4.16) leads to

P1=v(z2 —21) + oh + (3 — )H
~ 9810(0.70 — 0.95) + 11 500(0.02) + (14 000 — 11 500)(0.13)

= —1898 Pa
(b) If the pressure p; is increased by 100 Pa to p; = —1798 Pa, the change in H is, using
Eq.2.4.19,
A - A 2D%d?
TP ¥ 2y, + 2(ys — yo)DYd?
2(207%)
AH = 100 = 0.0397 m

—9810 + 2(11 500) + 2(14 000 — 11 500) X 207
Thus H increases by 3.97 cm as a result of increasing the pressure by 100 Pa.

(c) For the manometer in Fig. 2.7a, the pressure p; is given by p = yh. Assume that ini-
tially # = 0.50 m. Thus the pressure initially is

p1 = 9810 X 0.50 = 4905 Pa

Now if p; is increased by 100 Pa, & can be found:

p1= Yh
P1 5005

=—="—""">-=0510m. ..Akh=0510—-0.5=0.01
Y~ 9810 510 m 510 5 m

Thus an increase of 100 Pa increases 4 by 1 cm in the manometer shown in part (a),
25% of the change in the micromanometer.

2.4.4 Forces on Plane Areas

In the design of devices and objects that are submerged, such as dams, flow
obstructions, surfaces on ships, and holding tanks, it is necessary to calculate the
magnitudes and locations of forces that act on both plane and curved surfaces. In
this section we consider only plane surfaces, such as the plane surface of general
shape shown in Fig. 2.8. Note that a side view is given as well as a view showing
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Fig. 2.8 Force on an inclined plane area.

the shape of the plane. The total force of the liquid on the plane surface is found
by integrating the pressure over the area, that is,

F= f pdA (2.4.20)

where we usually use gage pressure. (Atmospheric pressure cancels out since it
acts on both sides of the area.) The x and y coordinates are in the plane of the
plane surface, as shown. Assuming that p = 0 at &z = 0, we know that

p=vyh

sin (2.4.21)

where 4 is measured vertically down from the free surface to the elemental area
dA and y is measured from point O on the free surface. The force may then be
expressed as

F= f vh dA
A
= ysin af ydA (2.4.22)
A
The distance to a centroid is defined as
y= 1 J vdA (2.4.23)
A Ja

The expression for the force then becomes

F=vyyAsin «

= yhA = pcA
< (2.4.24)
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where 4 is the vertical distance from the free surface to the centroid of the area
and pcis the pressure at the centroid. Thus we see that the magnitude of the force
on a plane surface is the pressure at the centroid multiplied by the area.The force
does not, in general, act at the centroid.

To find the location of the resultant force F, we note that the sum of the
moments of all the infinitesimal pressure forces acting on the area A must equal
the moment of the resultant force. Let the force F act at the point (x,, y,), the
center of pressure (c.p.). The value of y, can be obtained by equating moments
about the x-axis:

hF:LWdA

= ysin aeJ y*dA = yl, sin a (2.4.25)
A
where the second moment of the area about the x-axis is
L=Jf¢4 (2.4.26)
A

_ The second moment of an area is related to the second moment of an area
I about the centroidal axis by the parallel-axis-transfer theorem,

I, =1+ Ay? (2.4.27)
Substitute Eqgs. 2.4.24 and 2.4.27 into Eq. 2.4.25, and obtain

I + Ay?)sin «
- YyA sin «
1

y

Yp

(2.4.28)

where y is measured parallel to the plane area to the free surface.

Centroids and moments for several areas are presented in Appendix C.
Using the expression above, we can show that the force on a rectangular gate,
with the top edge even with the liquid surface, as shown in Fig. 2.9, acts two-thirds
of the way down. This is also obvious considering the triangular pressure distri-
bution acting on the gate. Note that Eq. 2.4.28 shows that y, is always greater

[ |
F,
N
N\ ||~

Fig. 2.9 Force on a plane area with top edge in a free surface.
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KEY CONCEPT The force
on a plane surface is the
pressure at the centroid
multiplied by the area.

Center of pressure: The
point where the resultant
force acts.

KEY CONCEPT The force
on a rectangular gate, with
the top edge even with the
liquid surface, acts two-
thirds of the way down.
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than Yy; that is, the resultant force of the liquid on a plane surface always acts
below the centroid of the area, except on a horizontal area for which y = =«; then
the center of pressure and the centroid coincide.

Similarly, to locate the x-coordinate x,, of the c.p., we write

x,F = JA xp dA
= ysin « L xy dA = yl,, sin « (2.4.29)
where the product of inertia of the area A is
I, = JA xy dA (2.4.30)

Using the transfer theorem for the product of inertia,

I, =1,, + AXy (2.4.31)
Equation 2.4.29 becomes
— I_xy
X, =X+ A_i
(2.4.32)

We now have expressions for the coordinates locating the center of pressure.

Finally, we should note that the force F in Fig. 2.8 is the result of a pressure
prism acting on the area. For the rectangular area shown in Fig. 2.10, the pres-
sure increases, as shown by the pressure distribution in Fig. 2.10b. If we form the
integral | p dA, we obtain the volume of the pressure prism, which equals the
force F acting on the area, shown in Fig. 2.10c. The force acts through the cen-
troid of the volume. For the rectangular area shown in Fig. 2.10a, the volume
could be divided into two volumes: a rectangular volume with centroid at its
center, and a triangular volume with centroid one-third the distance from the
appropriate base. The location of the force is then found by locating the centroid
of the composite volume.

(a) (b) (c)

Fig. 2.10 Pressure prism: (a) rectangular area; (b) pressure distribution on the area;
(c) pressure prism.
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Example 2.5

A plane area of 80 cm X 80 cm acts as an escape hatch on a submersible in the Great
Lakes. If it is on a 45° angle with the horizontal, what force applied normal to the hatch
at the bottom edge is needed to just open the hatch, if it is hinged at the top edge when
the top edge is 10 m below the surface? The pressure inside the submersible is assumed
to be atmospheric.

Fig. E2.5

Solution
First, a sketch of the hatch would be very helpful, as in Fig. E2.5. The force of the water
acting on the hatch is

F = yhA
= 9810(10 + 0.4 X sin 45°)(0.8 X 0.8) = 64 560 N
The distance y is

h 10 + 04 X sin 45°

y= snd5° sin 45° = 14.542 m
so that
o=yt A_i
0.8 X 0.8%/12
= 14.542 + = 14.546 m

(0.8 X 0.8) X 14.542

Taking moments about the hinge provides the needed force P to open the hatch:

08P = (y, — y + 0.4)F

_ 14546 — 14.542 + 04

F 0.8

64 560 = 32 610 N

Alternatively, we could have sketched the pressure prism, composed of a rectangular
volume and a triangular volume. Moments about the top hinge would provide the
desired force.
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Example 2.6

Find the location of the resultant force F of the water on the triangular gate and the
force P necessary to hold the gate in the position shown in Fig. E2.6a. Neglect the

weight of the gate, as usual.

53°‘\

Water

Fig. E2.6

Solution
First we draw a free-body diagram of the gate, including all the forces acting on the gate

(Fig. E2.6¢). The centroid of the gate is shown in Fig. E2.6b. The y-coordinate of the
location of the resultant F' can be found using Eq. 2.4.28 as follows:

y=2+5=17
_ 1
=y +—
Yp =Y Ay
_ 2 %X 336
_7+73><7 = 7.071 m

To find x,, we could use Eq. 2.4.32. Rather than that, we recognize that the result-
ant force must act on a line connecting the vertex and the midpoint of the opposite side
since each infinitesimal force acts on this line (the moment of the resultant must equal
the moment of its components). Thus, using similar triangles we have

Xp _ 2071
1 3
x, = 0.690 m
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The coordinates x, and y, locate where the force due to the water acts on the gate.
If we take moments about the hinge, assumed to be frictionless, we can determine
the force P necessary to hold the gate in the position shown:

E Mhinge =0
3X P=(3-2071)F
=0.929 X yhA

= 0.929 X 9810 X (7 sin 53°) X 3
where £ is the vertical distance from the centroid to the free surface. Hence

P=50900N or 509kN

2.45 Forces on Curved Surfaces

We do not use a direct method of integration to find the force due to the hydro-
static pressure on a curved surface. Rather, a free-body diagram that contains the
curved surface and the liquids directly above or below the curved surface is iden-
tified. Such a free-body diagram contains only plane surfaces upon which
unknown fluid forces act; these unknown forces can be found as in the preceding
section.

As an example, let us determine the force of the curved gate on the stop,
shown in Fig. 2.11a. The free-body diagram, which includes the water contained
directly above the gate, is shown in Fig. 2.11b; F; and F, are due to the sur-
rounding water and are the resultant forces of the pressure distributions shown;
the body force Fy is due to the weight of the water shown. In Fig. 2.11c the gate
is the free body; the forces F, and F, are the horizontal and vertical compo-
nents, respectively, of the force acting on the hinge. By summing moments
about an axis passing through the hinge, we can determine the force P acting
on the stop.

If the curved surface is a quarter circle, the problem can be greatly sim-
plified. This is observed by considering the free-body diagram of the gate
only (Fig. 2.11c). The horizontal force F;; acting on the gate is equal to F; of
Fig. 2.11b, and the component Fy is equal to the combined force F, + Fy, of
Fig. 2.11b. Now, F and Fy are due to the differential pressure forces acting on
the circular arc; each differential pressure force acts through the center of the
circular arc. Hence the resultant force F;; + Fy (this is a vector addition) must
act through the center. Consequently, we can locate the components F and Fy,
at the center of the quarter circle, resulting in a much simpler problem. Example 2.7
will illustrate.

If the pressure on the free surface is py, we can simply add a depth of liquid
necessary to provide pg at the location of the free surface and then work the
resulting problem with a fictitious free surface located the appropriate distance
above the original free surface. Or, the pressure force pyA is added to the force
F, of Fig. 2.11b.
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KEY CONCEPT The
resultant force ¥;; + Fy,
must act through the center
of the circular arc.
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‘Water ‘

F
Center
Livy b
Stop
Hinge 5 lFW Fy
\ \

Curved
k surface TFV
(a) (b) ©

Fig. 2.11 Forces acting on a curved surface: (a) curved surface; (b) free-body diagram of water and gate;
(c) free-body diagram of gate only.

Example 2.7

Calculate the force P necessary to hold the 4-m-wide gate in the position shown in
Fig. E2.7a. Neglect the weight of the gate.

P P

Water

(@) (b)

Area A; =4m?2 Area A = rm?2

Area A) - A, °

[ i -

w
© () ©
Fig. E2.7
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Solution

The first step is to draw a free-body diagram. One choice is to select the gate and the
water directly below the gate, as shown in Fig. E2.7b. To calculate P, we must determine
F\, B>, Fy, di, d>, and dy; then moments about the hinge will allow us to find P. The
force components are given by

iy = 'YEIAI
=9810 X 1 X (2 X 4)=78480N
F, = ‘YE2A2

=9810 X 2 X (2 X 4) = 156 960 N
FW = vaater

2
:9810><4(4—7TX2

):33700N

The distance dyy is the distance to the centroid of the volume. It can be determined
by considering the area as the difference of a square and a quarter circle as shown in
Fig. E2.7c—e. Moments of areas yield

dw(A; — Az) = X141 — 4,

d _xlAl_szz
W Al_Az
1X4—(4X2Bm) X7
= = 1553 m
4 —m

The distance d, = 1 m. Because Fj is due to a triangular pressure distribution (see
Fig. 2.9), d, is given by

d = %(2) — 0.667m

Summing moments about the frictionless hinge gives

25P = d\F, + doF, — dwFy

0.667 X 78.5 + 1 X 157.0 — 1.553 X 33.7
P = 25 = 62.8 kN

Rather than the somewhat tedious procedure above, we could observe that all the
infinitesimal forces that make up the resultant force (Fz + Fy) acting on the circular
arc pass through the center O, as noted in Fig. 2.11c. Since each infinitesimal force
passes through the center, the resultant force must also pass through the center. Hence
we could have located the resultant force (F;; + Fy) at point O. If Fy, and Fy; were
located at O, F', would pass through the hinge, producing no moment about the hinge.
Then, realizing that F;; = F; and summing moments about the hinge gives

2.5P =2Fy
Therefore,

Py 1848

= 62.8 kN

This was obviously much simpler. All we needed to do was calculate F;; and then sum
moments!
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Example 2.8

Find the force P needed to hold the gate in the position shown in Fig. E2.8a if P acts
3 m from the y-axis. The parabolic gate is 150 cm wide.

P Fy P
dy —] |
F >
dl
4% Fy
(2) (b)

Fig. E2.8

Solution
A free-body diagram of the gate and the water directly above the gate is shown in
Fig. E2.8b. The forces are found to be

F, = yhA
=9810 X 1 X (2 X 1.5) =29430 N

2 2.2 3
=9810J'1.5xdy:14715]%@214715%219620N
0 0

The distance d; is %(2) = 0.667 m since the top edge is in the free surface. The distance
dy, through the centroid is found using a horizontal strip:

2

2
1
f x(f2)dy g f ytdy
0 02 1 25/5

dw = 2 — ="
v jxdy lfyzdy 423
0 2 0

= 0.6 m

Sum moments about the hinge and find P as follows:
3P = lel + dWFW
=0.667 X 29430 + 0.6 X 19620 .. P=10470N
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2.4.6 Buoyancy

The law of buoyancy, known as Archimedes’ principle, dates back some 2200
years to the Greek philosopher Archimedes. Legend has it that Hiero, king of
Syracuse, suspected that his new gold crown may have been constructed of mate-
rials other than pure gold, so he asked Archimedes to test it. Archimedes proba-
bly made a lump of pure gold that weighed the same as the crown. The lump was
discovered to weigh more in water than the crown weighed in water, thereby
proving to Archimedes that the crown was not pure gold. The fake material pos-
sessed a larger volume to have the same weight as gold, hence it displaced more
water. Archimedes’ principle is: There is a buoyancy force on an object equal to
the weight of displaced liquid.

To prove the law of buoyancy, consider the submerged body shown in
Fig. 2.12a. In part (b) a cylindrical free-body diagram is shown that includes the
submerged body with weight W and liquid having a weight Fy; the cross-
sectional area A is the maximum cross-sectional area of the body. From the dia-
gram we see that the resultant vertical force acting on the free-body diagram due
to the water only (do not include W) is equal to

SF=F,— F, — Fy (2.4.33)

This resultant force is by definition the buoyant force Fg. It can be expressed as

T
— F
l.— Wire l l l
hy S Fw
lW‘F FW
h2

(@) () ©
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KEY CONCEPT
Archimedes’ principle states
the buoyancy force on an
object equals the weight of
displaced liquid.

Fig. 2.12 Forces on a submerged body: (a) submerged body; (b) free-body diagram; (c) free body

showing the buoyant force Fp.
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KEY CONCEPT The
buoyant force acts through
the centroid of the displaced
liquid volume.

where ¥y is the liquid volume included in the free-body diagram. Recognizing
that the volume of the submerged body is

we see from Eq.2.4.34 that

Fp = ¥, displaced liquid (2-4-36)

thereby proving the law of buoyancy.
The force necessary to hold the submerged body in place (see Fig. 2.12¢) is
equal to

T=W-—Fy (2.4.37)

where W is the weight of the submerged body.
For a floating object, as in Fig. 2.13, the buoyant force is

Fp = ¥ displaced liquid (2.4.38)

Obviously, T = 0, so that Eq. 2.4.36 gives

Fyp=W (2.4.39)

where W is the weight of the floating object.

From the foregoing analysis it is apparent that the buoyant force Fp acts
through the centroid of the displaced liquid volume. For the floating object, the
weight of the object acts through its center of gravity, so the center of gravity of
the object must lie on the same vertical line as the centroid of the liquid volume.

Fp

Fig. 2.13 Forces on a floating object.
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A hydrometer, an instrument used to measure the specific gravity of liquids,
operates on the principle of buoyancy. A sketch is shown in Fig. 2.14. The upper
part, the stem, has a constant diameter. When placed in pure water the specific
gravity is marked to read 1.0. The force balance is

W = Ywater¥ (2.4.40)

where W is the weight of the hydrometer and ¥ is the submerged volume be-
low the S = 1.0 line. In an unknown liquid of specific weight vy,, a force balance
would be

W = y (¥ — AAh) (2.4.41)

where A is the cross-sectional area of the stem. Equating these two expressions
gives

) (2.4.42)

where Sy = v,/Vwater- FOT @ given hydrometer, ¥ and A are fixed so that the quan-
tity Ak is dependent only on the specific gravity S,. Thus the stem can be cali-
brated to read S, directly. Hydrometers are used to measure the amount of
antifreeze in the radiator of an automobile, or the charge in a battery since the
density of the fluid changes as H,SO, is consumed or produced.

1.0 —

‘Water

o

Heavy
substance

(2) (b)

Fig. 2.14 Hydrometer: (a) in water; (b) in an unknown liquid.
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Hydrometer: An instrument
used to measure the specific
gravity of liquids.
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KEY CONCEPT A
floating object has vertical
stability.

Center of buoyancy:
Centroid of a floating body.

Example 2.9

The specific weight and the specific gravity of a body of unknown composition are
desired. Its weight in air is found to be 200 Ib, and in water it weighs 150 Ib.

Solution
The volume is found from a force balance when submerged as follows (see Fig. 2.12¢):
T=W-—Fg
150 = 200 — 62.4¥ . ¥ = 0.801 ft’
The specific weight is then

_Ww_ 200 _ 3
Y= = ogop = 250 Ib/tt

The specific gravity is found to be

= = == = 401
S Ywater ~ 62.4

2.4.7 Stability

The notion of stability can be demonstrated by considering the vertical stability
of a floating object. If the object is raised a small distance, the buoyant force
decreases and the object’s weight returns the object to its original position.
Conversely, if a floating object is lowered slightly, the buoyant force increases and
the larger buoyant force returns the object to its original position. Thus a floating
object has vertical stability, since a small departure from equilibrium results in a
restoring force.

Consider now the rotational stability of a submerged body, shown in
Fig. 2.15. In part (a) the center of gravity G of the body is above the centroid C
(also referred to as the center of buoyancy) of the displaced volume, and a small
angular rotation results in a moment that will continue to increase the rotation;
hence the body is unstable and overturning would result. If the center of gravity
is below the centroid, as in part (c), a small angular rotation provides a restoring
moment and the body is stable. Part (b) shows neutral stability for a body in
which the center of gravity and the centroid coincide, a situation that is encoun-
tered whenever the density is constant throughout the submerged body.

Next, consider the rotational stability of a floating body. If the center of grav-
ity is below the centroid, the body is always stable, as with the submerged body
of Fig.2.15¢c. The body may be stable, though, even if the center of gravity is above
the centroid, as sketched in Fig. 2.16a. When the body rotates the centroid of the
volume of displaced liquid moves to the new location C’, shown in part (b). If the
centroid C" moves sufficiently far, a restoring moment develops and the body is
stable, as shown. This is determined by the metacentric height GM defined as the
distance from G to the point of intersection of the buoyant force before rotation
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Fig. 2.15 Stability of a submerged body: (a) unstable; (b) neutral; (c) stable.

with the buoyant force after rotation. If GM is positive, as shown, the body is sta-
ble; if GM is negative (M lies below G), the body is unstable.

To determine a quantitative relationship for the distance GM refer to the
sketch of Fig. 2.17, which shows a uniform cross section. Let us find an expression
for x, the x-coordinate of the centroid of the displaced liquid volume. It can be
found by considering the volume to be the original volume plus the added wedge
with cross-sectional area DOE minus the subtracted wedge with cross-sectional
area AOB; to locate the centroid of a composite volume, we take moments as
follows:

x¥ = fov() + flvl - xzvz (2443)

where ¥ is the original volume below the water line, ¥ is the area DOE times
the length X, and ¥, is the area AOB times the length X,; the cross section is
assumed to be uniform so that the length / is constant for the body. The quantity
Xo, the x-coordinate of point C, is zero. The remaining two terms can best be rep-
resented by integrals so that

Fp

(a) (b)
Fig. 2.16 Stability of a floating body: (a) equilibrium position; (b) rotated position.
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KEY CONCEPT I/fGMis
positive, the body is stable.
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Length of body = /
Waterline area = A

Waterline
777777777777777777777777777777 D
Added wedge EOD

\ .

Fig. 2.17 Uniform cross section of a floating body.
x¥ = f x d¥V —f x d¥ (2.4.44)

¥ ¥2

Then d¥ = x tan a dA in volume 1 and d¥ = —x tan « dA in volume 2, where

dA = [ dx, [ being the constant length of the body. The equation above becomes

XV tanaJ xsz—l—tanaJ x> dA
A

A

1 2

= tan af x> dA
A
=Ip tan « (2.4.45)

where I, is the second moment (moment of inertia) of the waterline area about an
axis passing through the origin O. The waterline area would be the length
AE times the length / of the body if / were of constant length. Using x =CM tan «,
we can write

CM¥ =1, (2.4.46)

or,with CG + GM = CM, we have

— 1 —
GM = ;0 ~- T (2.4.47)

For a given body orientation, if GM is positive, the body is stable. Even though
this relationship (2.4.47) is derived for a floating body with uniform cross section,
it is applicable for floating bodies in general. We will apply it to a floating cylin-
der in the following example.
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Example 2.10

A 0.25-m-diameter cylinder is 0.25 m long and composed of material with specific
weight 8000 N/m?>. Will it float in water with the ends horizontal?

Solution
With the ends horizontal, /,, will be the second moment of the circular cross section,

Cmd* wXx025% .
Io =% = 5= = 0000192 m

The displaced volume will be
w8000 X m/4 X 025> X 025

= _ 3
v — 9810 0.0100 m
The depth the cylinder sinks in the water is
v 0.01
depth = — = ————— = 0.204
P = A T T X 025 o
‘ Cylinder
G
T o 0.102
0.204 m ¢ 1 "
0.125 m
Fig. E2.10

Hence, the distance CG, as shown in Fig. E2.10, is

CG = 0.125 — % =0.023m

Finally,

—— _ 0.000192

GM = 0ol 0.023 = —0.004 m

This is a negative value showing that the cylinder will not float with ends horizontal. It
would undoubtedly float on its side.

2.5 LINEARLY ACCELERATING CONTAINERS

In this section the fluid will be at rest relative to a reference frame that is linearly
accelerating with a horizontal component a, and a vertical component a,. Then
Eq. 2.3.6 simplifies to

dp = —pa, dx — p(g + a,) dz (25.1)
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KEY CONCEPT We often
utilize the conservation of
mass and equate the
volumes before and after
the acceleration is applied.

Fig. 2.18 Linearly accelerating tank.

Integrating between two arbitrary points 1 and 2 results in

P2 — P1 = —pa(x; — x;1) — p(g + a;)(z2 — z1) (25.2)

If points 1 and 2 lie on a constant-pressure line, such as the free surface in
Fig. 2.18, then p, — p; = 0 and we have

(2.5.3)

where « is the angle that the constant-pressure line makes with the horizontal.

In the solution of problems involving liquids, we must often utilize the con-
servation of mass and equate the volumes before and after the acceleration is
applied. After the acceleration is initially applied, sloshing may occur. Our anal-
ysis will assume that sloshing is not present; either sufficient time passes to
dampen out time-dependent motions, or the acceleration is applied in such a way
that such motions are minimal.

Example 2.11

The tank shown in Fig. E2.11a is accelerated to the right. Calculate the acceleration a,
needed to cause the free surface, shown in Fig. E2.11b, to touch point A. Also, find pg
and the total force acting on the bottom of the tank if the tank width is 1 m.

X

i Small air hole \T I |
0.2 m Air
T Air
ay ay
1m Water ‘Water
2 m 2m o
B A B A
(a) (b)
Fig. E2.11

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sec. 2.6 / Rotating Containers 69

Solution
The angle the free surface takes is found by equating the air volume (actually, areas
since the width is constant) before and after since no water spills out:

02 x 2 = $(1.2v)

x = 0.667 m
The quantity tan « is now known. It is
_ 12
tan o = 0667 1.8

Using Eq. 2.5.3, we find a, to be, letting a, = 0,

a, = gtan
=9.81 x 1.8 = 17.66 m/s*

We can find the pressure at B by noting the pressure dependence on x. At A, the
pressure is zero. Hence, Eq. 2.5.2 yields

0
PB _%= —pa(xp — Xa)
ps = —1000 X 17.66(—2)
=35300Pa or 35.3kPa
To find the total force acting on the bottom of the tank, we realize that the pres-

sure distribution is decreasing linearly from p = 35.3 kPa at B top = 0 kPa at A. Hence,
we can use the average pressure over the bottom of the tank:

_Pstpa
2

_ 35300+ 0
2

F X area

X2X1=35300N

2.6 ROTATING CONTAINERS

In this section we consider the situation of a liquid contained in a rotating con-
tainer, such as that shown in Fig. 2.19. After a relatively short time the liquid
reaches static equilibrium with respect to the container and the rotating rz-refer-
ence frame. The horizontal rotation will not alter the pressure distribution in the
vertical direction. There will be no variation of pressure with respect to the 6-
coordinate. Applying Newton’s second law (2 F, = ma,) in the r-direction to the
element shown, using sin d6/2 = d6/2, yields

op ap 2
- Edrrd(idz —prdfdz — p drdfdz — E(dr) de dz

de
+2p > drdz + prd0dz = —prdf dr dz ro* (2.6.1)

KEY CONCEPT Horizon-
tal rotation will not alter the
pressure distribution in the
vertical direction.
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KEY CONCEPT The free
surface is a paraboloid of
revolution.

Fig. 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

where the acceleration is rw” toward the center of rotation. Simplify and divide
by the volume rdf dr dz; then

ap )
oy Pre (2.6.2)

where we have neglected the higher-order term that contains the differential dr.
The pressure differential then becomes

(2.6.3)

where we have used the static pressure variation given by Eq. 2.3.5 with a, = 0.
We can now integrate between any two points (7, z;) and (r, z») to obtain

2

w
P2~ P1 =5 (r3=r7) — pg(z> — z1) (2.6.4)

If the two points are on a constant-pressure surface, such as the free surface,
locating point 1 on the z-axis so that r; = 0, there results

wzr

2
T =g(z2— z1)

[}

(2.6.5)

which is the equation of a parabola. Hence the free surface is a paraboloid of rev-
olution. The equations above can now, with the conservation of mass, be used to
solve problems of interest.
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