210 Chapter 5 / Differential Forms of the Fundamental Laws

Example 5.4

The continuity equation can be used to change the form of an expression. Write the
expression p Di/Dt + p V-V, which appears in the differential energy equation, in
terms of enthalpy 4 rather than internal energy u . Recall that & =u + p/p (see Eq. 1.7.11).

Solution

Using the definition of enthalpy, we can write
Di _Dh _1Dp , pDp
Dt Dt p Dt p*Dt

where we used

D (E) _1Dp_pDp
Dt\p) p Dt p*> Dt
The desired expression is then

Dii Dh Dp pDp
= 4+ pVV=p——-—+=—+pV-
P TPV =P T oo TPYY

The continuity equation (5.2.7) is introduced resulting in

i Dh D, D D
p&+pV°V=p———p+£—p+ (_l_p)
Dt Dt Dt p Dt p Dt
_,bh_Dp
PDr T i

and enthalpy has been introduced.

5.3 DIFFERENTIAL MOMENTUM EQUATION

5.3.1 General Formulation

Suppose that we do not know the velocity field or the pressure field in an incom-
pressible® flow of interest and we wish to solve differential equations to provide us
with that information. The differential continuity equation is one differential equa-
tion to help us toward this end; however, it has three unknowns, the three velocity
components. The differential momentum equation is a vector equation and thus pro-
vides us with three scalar equations. These component equations will aid us in our
attempt to determine the velocity and pressure fields. There is a difficulty in deriving
these equations, however, since we must use the stress components to determine the
forces required in the momentum equation. Let us identify these stress components.

There are nine stress components that act at a particular point in a fluid flow.
They are the nine components of the stress tensor 7;. We will not study the prop-
erties of a stress tensor in detail in this study of fluid mechanics since we do
not have to maximize or minimize the stress (as would be required in a solid

3An incompressible flow, when referred to in a general discussion such as in this section, will generally refer to a
constant-density flow. This is true in most fluid mechanics literature, including textbooks on the subject.
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Sec. 5.3 / Differential Momentum Equation 211

mechanics course); we must, however, use the nine stress components in our deri-
vations, then relate the stress components to the velocity and pressure fields with
the appropriate equations. The stress components that act at a point are displayed
on two- and three-dimensional rectangular elements in Fig. 5.2. These elements are
considered to be an exaggerated point, a cubical point; the stress components act
in the positive direction on a positive face (a normal vector points in the positive
coordinate direction) and in the negative direction on a negative face (a normal
vector points in the negative coordinate direction). The first subscript on a stress
component denotes the face upon which the component acts, and the second sub-
script denotes the direction in which it acts; the component 7., acts in the positive
y-direction on a positive x-face and in the negative y-direction on a negative x-face,
as displayed in Fig. 5.2a. A stress component that acts perpendicular to a face is
referred to as a normal stress; the components o, g,,, and o, are normal stresses.  Normal stress: A stress
A stress component that acts tangential to a face is called a shear stress; the com- component that acts
ponents Ty, Ty, Tz, Tzx, Tyz, and 7;, are the shear stress components. perpendicular to an area.
There are nine stress components that act at a particular point in a fluid. TO  gpear stress: A stress
derive the differential momentum equation, consider the forces acting on the  component that acts tangential
infinitesimal fluid particle shown in Fig. 5.3. Only the forces acting on positive  ¢o an area.
faces are shown. The stress components are assumed to be function of x, y, z, and
t, and hence the values of the stress components change from face to face since
the location of each face is slightly different. The body force is assumed to act in
an arbitrary direction.
Newton’s second law applied to a fluid particle, for the x-component direc-
tion, is X F, = ma,. For the particle shown in Fig. 5.3, this takes the form

00, dx I7y dy 7.y dz
(axx + o 7) dy dz + (Tyx + _ay 7) dx dz + (sz + 7) dx dy
A0y dx 0Tyx d}’>
<a'xx ~ 2 ) dy dz <fryx oy 2 dx dz
( —&ﬂ)dxd + pg. dx dy dz = p dx dy dz 2% (53.1)
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Fig. 5.2 Stress components in Cartesian coordinates: (a) two-dimensional stress compo-
nents; (b) three-dimensional stress components.
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212 Chapter 5 / Differential Forms of the Fundamental Laws

pgdx dydz

Fig. 5.3 Forces acting on an infinitesimal fluid particle.

where the component of the gravity vector g acting in the x-direction is g,, and
DulDt is the x-component acceleration of the fluid particle (see Eq. 3.2.9). After
we divide by the volume dx dy dz, the equation above can be simplified to

Du Oxx aTyx asz
===+ + pg. 532
Dt 0x dy 0z Pg ( )

Similarly, for the y- and z-directions we would have

Do 0Ty Oyy T2y
— = 4+ —_—= 4+ —+
PDi ™ Tox oy T ez Pey

' ' (53.3)
p% _ 0Ty, n J7y; n Ozz
Dt ax ay 0z

+ pg;

We can, by taking moments about axes passing through the center of the
infinitesimal element, show that

Tyx = Tay Tyz = Toy Tez = Tax (5.3.4)

That is, the stress tensor is symmetric; so there are actually six independent stress
components.
The stress tensor may be displayed in the usual way as

Oxx Txy Txz
(5.3.5)

Tij = | Tyx Oyy  Tyz
Tex  Tzy  Ozz

The subscripts i and j take on numerical values 1, 2, or 3. Then 7, represents the
element 7,, in the first row, second column.
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5.3.2 Euler's Equations

Good approximations to the components of the stress tensor for many flows,
especially for flow away from a boundary (flow around an airfoil) or in regions
of sudden change (flow through a contraction) are displayed by the array

-p 0 0
0 0 -p

For such flows, we have assumed the shear stress components that result from vis-
cous effects to be negligibly small and the normal stress components to be equal
to the negative of the pressure; this is precisely what we did in Fig. 3.16 when
deriving Bernoulli’s equation. If these stress components are introduced back
into Eqgs. 5.3.2 and 5.3.3 there results, for this frictionless flow,

Du_ _ %P
P Dt o PEx
Do op
== 5.3.7
P Dy oy T PBy (5:3.7)
Dw_ _ %
P Dt e P8z

The scalar equations above can then be written as the vector equation

D = = - op, dp, Ip “)
= (ui + vj + =—|—i+—j+—k|- 3.
p t(ul vj + wk) (axl ay] 8zk pg (5.3.8)
In vector form, we have the well-known Euler’s equation
DV
Y — _vp — 5.3.9
Py P =g (5.3.9)

If we assume a constant-density, steady flow, Eq. 5.3.9 can be integrated along a
streamline to yield Bernoulli’s equation, a result that does not surprise us since
the same assumptions were imposed when deriving Bernoulli’s equation in
Chapter 3; this will be illustrated in Example 5.6.

With the differential momentum equations in the form of Eqgs. 5.3.7, we have
added three additional equations to the continuity equation to give four equa-
tions and four unknowns, u, v, w, and p. With the appropriate boundary and initial
conditions, a solution, yielding the velocity and pressure fields for this inviscid,
incompressible flow, would be possible.

KEY CONCEPT We often
assume shear stress
components to be negligibly
small.

Euler’s equation: The three
differential equations that
result from applying Newton’s
second law and neglecting
viscous effects.
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Example 5.5

A velocity field is proposed to be

10y 10x
EFoE P TEeg vl

(a) Is this a possible incompressible flow? (b) If so, find the pressure gradient Vp
assuming a frictionless air flow with the z-axis vertical. Use p = 1.23 kg/m°>.

Solution
(a) The continuity equation (5.2.9) is used to determine if the velocity field is possible.
For this incompressible flow we have

Substituting in the velocity components, we have

i( 10y ) i( 10x )= —10y2x)  —10x(2y) 1
ox \x? + y? ay \ x%+y? & +y)? (2 +y?)? P +y

7 [—20xy + 20xy] = 0

The quantity in brackets is obviously zero; hence the velocity field given is a possible
incompressible flow.

(b) The pressure gradient is found using Euler’s equation. In component form we
have the following:

0
Du _

P "D ox *

. x2+y2 (x2+y2)2 x2+y2 (x +y)
_ 123«
(o +y?)?

0
Do ap
== =

th ay ﬂgy‘

0 0

0,
.’.—p=—p[ug-i-vﬁ—i-wa _,'_6}
ay ax ay z t

3 123[ 10y (& +y)(=10) + 10x(2x) ) 20xy ]
TR+ (o +y?)? 2+ y? (x + y?)?
123y
@)
0 d
D P
S -
pﬁ 9z P8z
0,
£ = pg. = 123 kg/m® X (=9.81) m/s® = —12.07 N/m®
opy op, dp- 123 3 2 2 3
=i+ —j+—k = (x + yj) - 12. :
Thus  Vp Pl ay_] P o+ (xi + yj) — 12.07k N/m
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Example 5.6

Assume a steady, constant-density flow and integrate Euler’s equation along a stream-
line in a plane flow.

V=73

A
n

Streamline

k
i) T @
/ g5 = sin 0
g (lA()Y =sin 6
Fig. ES.6

Solution
First, let us express the substantial derivative in streamline coordinates. Since the veloc-
ity vector is tangent to the streamline, we can write

V=Vs

where § is the unit vector tangent to the streamline and V is the magnitude of the veloc-
ity, as shown in Fig. ES.6. The substantial derivative is then, for this plane flow,

~ 0
: av §
DV _ Vv ( S)+%nﬂ:aV Vs y 298
on

+V
Dt ot as Jat as as

The quantity 9$/ds results from the change of the unit vector §; the unit vector cannot
change magnitude (it must always have a magnitude of 1), it can only change direction.
Hence the derivative 9$/ds is in a direction normal to the streamline and does not enter
the streamwise component equation. For a steady flow aV/dt = 0. Consequently, in the
streamwise direction, Euler’s equation (5.3.9) takes the form

av_ oz

as Js Pg a8

recognizing that the component of k along the streamline can be expressed as (k); =
dz/ds (see the sketch above). Note that we use partial derivatives in this equation since
velocity and pressure also vary with the normal coordinate.

The equation above can be written, assuming constant density so that dp/ds = 0, as

a( Vv
—(p—+p+ =0
s (P ) p sz)
Integrating along the streamline results in

2

pV? + p + pgz = const.
or
v:.p

—— + — + gz = const.
2 p

This is, of course, Bernoulli’s equation. We have integrated along a streamline assum-
ing constant density, steady flow, negligible viscous effects, and an inertial reference
frame, so it is to be expected that Bernoulli’s equation will emerge.
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Newtonian fluids:  Fluids that
possess a linear relationship
between stress and the velocity
gradients.

Isotropic fluid: A fluid
whose properties are
independent of direction at a
given position.

Homogeneous fluid: A fluid
whose properties are
independent of position.

5.3.3 Navier-Stokes Equations

Many fluids exhibit a linear relationship between the stress components and the
velocity gradients. Such fluids are called Newtonian fluids and include common
fluids such as water, oil, and air. If in addition to linearity, we require that the fluid
be isotropic,* it is possible to relate the stress components and the velocity gra-
dients using only two fluid properties, the viscosity w and the second coefficient
of viscosity A. The stress—velocity gradient relations, often referred to as the con-
stitutive equations,’ are stated as follows:

ou u Jv
=—p+2u—+AV-V =mu—+—
Oxx P 123 ox Txy M( ay ax)
Jv u Jw
=—-p+2u—+AV-V ez = <—+—) 5.3.10
Tuy = =P T 2M o0 e = Moo ( )
Jw Ju | Jdw
=—-p+2u—+AV-V = (—+—)
Ozz 14 1% 0z Tyz M 0z ('fy

For most gases, and for monatomic gases exactly, the second coefficient of vis-
cosity is related to the viscosity by

A= —%M (53.11)

a condition that is known as Stokes’s hypothesis. With this relationship the nega-
tive average of the three normal stresses is equal to the pressure; that is,

1
—g(a'xx + o0y, t0,)=p (5.3.12)

Using Egs. 5.3.10, this can be shown to always be true for a liquid in which
V-V = 0, and with Stokes’s hypothesis it is also true for a gas.

If we substitute the constitutive equations into the differential momentum
equations (5.3.2) and (5.3.3), there results, using Stokes’s hypothesis,

9 2 2 22
por = e emrulGr T S A (T 0 )
PDr T Tox ox ay 0z 39x\dx dy 0z
0 "2, 2 -
p R0 i—p+pgy+M(?—Z+a—Z+—>+ﬁi(d—”+ﬂ+d—w) (5.3.13)
PDe ay ax ay az> 3 ay dy 0z
9 2 2 2 i
p 28 Py gk T8 Dy Ty BD (e B )
Pr 0z ax Ay az 3az\ax dy Iz

where we have assumed a homogeneous fluid, that is, fluid properties (e.g., the
viscosity) are independent of position.

For an incompressible flow the continuity equation allows the equations
above to be reduced to

“The condition of isotropy exists if the fluid properties are independent of direction. Polymers are examples of
anisotropic fluids.

Details of the development of the constitutive equations can be found in any textbook on the subject of continuum
mechanics.
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Du ap (azu o*u 62u>
e 1 L L L
p Dt ox PEx T M T3 > 9
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De_ (P Sy )
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These are the Navier—Stokes equations, named after Louis M. H. Navier
(1785-1836) and George Stokes (1819-1903); with these three differential equa-
tions and the differential continuity equation we have four equations and four
unknowns, u, v, w, and p. The viscosity and density are fluid properties that are
assumed to be known. With the appropriate boundary and initial conditions the
equations can hopefully be solved. Several relatively simple geometries allow for
analytical solutions; some of the solutions are presented in Chapter 7. Numerical
solutions have also been determined for many flows of interest; computational
methods are presented in Chapter 14. Because the equations are nonlinear par-
tial differential equations (the acceleration terms cause the equations to be non-
linear as observed in Egs. 3.2.9), we cannot be assured that the solution we find
will actually be realized in the laboratory; that is, the solutions are not unique. For
example, a laminar flow and a turbulent flow may have the identical initial and
boundary conditions, yet the two flows (the two solutions) are very different.

The Navier-Stokes equations have not been solved for a turbulent flow. All
turbulent flows are unsteady and three-dimensional and hence the time-
derivative terms must be retained. This requires an initial condition on all
dependent variables; i.e., u, v, w, and p must be known at all points in the flow
field at ¢ = 0. Such information would be extremely difficult, if not impossible, to
obtain. To avoid this situation, time-averaged quantities are introduced for tur-
bulent flows. This subject will be studied in a later chapter.

We can express the Navier-Stokes equations in vector form by multiplying
Egs. 5.3.14 by i, j, and k, respectively, and adding. We recognize that

Duz, Dos, Dwy DV
Dt Dt Dt Dt
ap~ Opa~ Op~
P s Ly (53.15)
0x ay a9z
VZui + V?0j + VZwk = V2V
where we have introduced the Laplacian
S A i
ax? r’)y2 az*
Combining the above, the Navier-Stokes equations (5.3.14) take the vector form

(5.3.16)

p% = —Vp + pg + pVV (53.17)

Navier-Stokes equations:

The three differential equations
that result from applying
Newton’s second law to an
incompressible, isotropic,
homogeneous fluid.
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