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a b s t r a c t

A procedure for attenuating the control law of a vessel dynamic positioning system, based on the
observer backstepping methodology, is proposed. The motivation is the appearance of an undesirable
on–off behavior on the signal sent to the actuators when their saturation is considered and the control
law is dependent on estimated state variables. Two gain matrices associated with the error variables are
introduced to achieve the desired attenuation. Stability is proven through Lyapunov stability analysis.
Numerical simulations confirm the effectiveness of the proposed controller to render the control law
compatible with the limitations of the actuators.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic Positioning Systems (DPS) are intended to control the
horizontal motions of a vessel by exclusive means of propellers and
thrusters (Fossen, 1994). Increasing operational range and perfor-
mance requirements have stimulated the research community to
improve on control strategies, especially to cope with challenges
such as the nonlinearity of the multivariable mathematical model,
stochastic perturbations, constraints on the mechanical systems
(e.g., saturation of the actuators) and accurate estimation of state
variables. Vessel motions are assumed to be composed of low- and
wave-frequency motions. Thus, position and heading measured
signals have to be filtered before they are used as an input for the
controllers, since the wave-frequency component of motions is not
intended to be compensated by the actuators. Early versions of DPSs
adopted a notch filter to separate the low-frequency components
from the total motion, while PID controllers were used to calculate
the control loads assuming surge, sway and yaw motions indepen-
dent from each other (Fossen, 2011). Later Balchen, Jenssen, and
Saelid (1976) proposed applying a Kalman Filter (KF) to estimate the
low-frequency motions of the vessel, using optimal control theory
to calculate the control loads. This approach was extended and
improved upon by Balchen, Jenssen, and Saelid (1980), Saelid,
Jenssen, and Balchen (1983), Grimble, Patton, and Wise (1980),
Fung and Grimble (1983) and Sorensen, Sagatun, and Fossen (1996).
The advantage of the KF technique lies in the reduction of the phase
lag induced by the filtering process (as compared to conventional
low-pass or notch filters), in the possibility of implementing sensor

fusion, in performing optimal estimations of the position and
heading of the vessel based on sensor signals, and in the estimation
of the environmental loads acting on the vessel. However, an
important drawback is the need to linearize the vessel's equations
of motions around a set of constant yaw angles, which imposes a
time-consuming procedure for tuning of parameters and precludes
assurance of global stability for the system (Fossen & Strand, 1999a;
Tannuri & Pesce, 2002).

Nonlinear controllers have been considered for DPS to over-
come linearization problems. Grovlen and Fossen (1996) proposed
an approach with a nonlinear observer and the backstepping
methodology. Fossen and Grovlen (1998) improved this idea by
treating the problem in vector form, but without consideration of
either filtering of wave-frequency motions or environmental loads
estimation. Those works assume a stable sway–yaw dynamics
condition that is removed by Robertsson and Johansson (1998). A
passive nonlinear observer for both the low-frequency motions of
the vessel and the environmental loads was developed by Fossen
and Strand (1999a). Passivity is attained by convenient tuning of
the observer gains based on a notch filter effect introduced in the
mathematical model, and the observer has proven to be globally
exponentially stable. Aarset, Strand, and Fossen (1998) then
proposed a nonlinear controller for a DPS comprising the passive
nonlinear observer and the backstepping methodology with addi-
tional integral action, but without considering the actuators
dynamics. Fossen and Berge (1997) included actuator dynamics
in the controller based on backstepping for tracking of marine
vessels, since the bandwidths of both the actuators and vessel
dynamics were close to each other. However, the controller is fed
with uncorrupted position and heading signals.

An alternative nonlinear strategy for DPS was presented by
Tannuri, Donha, and Pesce (2001, 2010), who proposed a controller
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based on the Sliding Mode Control (SMC) theory. This approach
showed to be robust in addressing the variations in loading and
environmental conditions, as well as modeling errors. Additionally,
the tuning of the SMC control parameters is simple and intuitive.
However, an approach ensuring global stability for a system
comprising both the controller and a state observer has yet to be
presented.

Backstepping methodology involves the attainment of global
stability by defining an error variable and a corresponding stabiliz-
ing function of each sub-system in association with a Lyapunov
function in a systematic manner to achieve the control law. The
approach also allows the introduction of additional nonlinearities
into the control laws for compensation of undesirable ones (Fossen
& Strand, 1999b; Khalil, 2002; Krstic, Kanellakopoulos, & Kokotovic,
1995; Marques, 2003). In DPS applications, however, the controller
may induce an undesirable high-amplitude oscillatory signal. This
behavior is due to the lack of a gain matrix multiplying some of the
error variables that in turn may be corrupted with a parcel of wave-
frequency components “leaked” from the observer estimates—an
expected scenario under real situations. This aspect was observed
by Zakartchouk and Morishita (2009) during the experimental
evaluation of a DPS in which the controller was based on the work
by Aarset et al. (1998). Preliminary analysis indicated that the
reason for this behavior was the saturation of the actuators. To
overcome this problem, the introduction of a gain matrix was
suggested to lower the values of the deviation of the estimated
positions from their desired values (an error variable) in the control
loop, but no formal proof of stability was presented.

In order to achieve a more realistic DPS control law, the thrust
allocation among the actuators and their saturation should be
considered. Direct inclusion of such effects (specially saturation) in
the control laws is a rather difficult task. In many cases, once the
control law signals are defined, the thrust allocation is performed,
and the saturation is subsequently imposed on the signal for each
actuator. Alternatively, the thrust allocation and the corresponding
saturation can be treated as an optimization problem (Johansen,
Fossen, & Tondel, 2005). A proposal to consider the actuator
saturation in a controller based on backstepping methodology is
presented by Bateman, Hull, and Lin (2009), although neither
wave-frequency motion filtering nor thrust allocation is addressed.
For additional details on this subject, see Fossen (2011) and
Sordalen (1997).

The main object of this paper is to propose a controller based
on the observer backstepping methodology for a DPS in which
both a nonlinear observer for wave-frequency motions and the
actuator dynamics are included in the plant model. Besides, the
controller allows a convenient tuning of the gains for the control
signal to be compatible with the limitation of the actuators. In this
sense, a slight modification in the controller based on observer
backstepping for a DPS introduced by Aarset et al. (1998) is
proposed and as a result two new gain matrices associated with
error variables are included in the control structure. These
matrices replace the identity gain matrices of the controller based
on the conventional backstepping methodology.

The saturation of the actuators is not included in the control
structure, but it is cascaded with the controller. A formulation
based on a pseudo-inverse matrix is applied for dealing with the
over-actuated system. The stability of the observer–controller set
is proven using Lyapunov stability analysis. The assessment of the
controller performance is carried out by means of dynamic
simulations that consider a realistic model for the vessel dynamics
and environmental loads rather than the simplified plant model
considered in the design of the controller.

The text is organized as follows: Section 2 briefly presents a
mathematical model of the plant for controller design purposes. In
Section 3 the modified formulation for the controller based on

observer backstepping is proposed. Next, stability is proven using
Lyapunov stability analysis, and the rationale for the inclusion of
two new gain matrices is presented. Section 4 discusses the results
of the simulations, and conclusions are drawn in Section 5.

2. Mathematical model

Under assumption of small motions and considering the ship as
a slender body with port/starboard symmetry, its horizontal and
vertical motions may be decoupled from each other so that only
the surge, sway and yaw motions—those to be controlled by the
DPS—are considered in the mathematical model (Lewis, 1989;
Sorensen & Strand, 2000). The vessel responses to the environ-
mental and actuator loads are then calculated through a set of
equations of motions derived in two different coordinate systems,
as shown in Fig. 1. The first, OXYZ, is an Earth-fixed frame that can
be considered as inertial for the present problem. The other frame
(GXGYGZG) is a body-fixed one, whose axes coincide with the ship's
principal axes of inertia. Both systems are assumed to be parallel
to the water surface, and the direction of current, wind and waves
are defined according to their orientation related to the OX-axis. As
a DPS is exclusively intended to control low-frequency motions,
only those loads due to current and the slowly varying compo-
nents of wind and waves are to be considered in the models for
both the controller and the observer, together with those induced
by the actuators. A mathematical model suitable for the design
of the controller based on observer backstepping is presented
below. A more complete mathematical model for the dynamics
of the vessel considered in the simulation is briefly described
in Appendix A.

2.1. Low-frequency motions

The three degrees-of-freedom mathematical model for the
vessel low-frequency motions consists of state-space representa-
tions of a position vector η¼ ½X Y ψ �T and a velocity vector
ν¼ ½u v r�T , with X, Y and ψ being the coordinates for the vessel
position and heading in the inertial frame and u, v, r the surge,
sway and yaw velocities in the body-fixed frame respectively. For
the purpose of designing the observer–controller model the
environmental loads are assumed as slowly varying first-order
Markov processes. The actuator dynamics are modeled through
first-order differential equations. Thus, the state equations of the
system are (Fossen, 1994)

_η ¼ JðηÞν ð1Þ

M _νþDν¼ Bf pþJT ðηÞb ð2Þ

_b ¼ �T �1
b bþθn ð3Þ

_f p ¼ T �1
p ðf d�f pÞ ð4Þ

Fig. 1. Definition of the earth-fixed and body-fixed frames.
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where

JðηÞ ¼
cos ðψ Þ � sin ðψ Þ 0
sin ðψ Þ cos ðψ Þ 0

0 0 1

2
64

3
75 ð5Þ

MAR3�3 is the inertia matrix including the added inertia; DAR3�3

is a matrix of linear damping coefficients; f PARm is the actual
thrust of the m actuator vector; BAR3�m is the matrix that
describes the configuration of actuators (for details see Fossen,
2011; Tannuri & Morishita, 2006); bAR3 represents the slowly-
varying loads due to wind, current and second-order wave forces
(related to the inertial coordinate system); TbAR3�3 is a diagonal
matrix of positive time constants; nAR3 is a vector of zero-mean
Gaussian white noise; θAR3�3 is a diagonal matrix scaling the
amplitude of n; TpARm�m is a time constant diagonal matrix and
f dARm is the commanded thrust, i.e., the signal sent to the
actuators and it is obtained from the saturation function as shown
below. Let f cARm be the thrust control law determined by the
controller. The function that represents the saturation of the
actuators can be represented as

f d ¼ 1
2 f maxþ f min�jf max� f cjþjf c� f minj
� � ð6Þ

where f maxARm and f minARm are the vectors with maximum and
minimum saturation values for m actuators, respectively. Notice
that f d ¼ f c within the linear range of Eq. (6).

2.2. Wave-frequency motions

The wave-frequency motions of the vessel are induced essen-
tially by the first-order wave loads and are calculated by time-
domain realization of the response spectrum for each degree of
freedom (see Appendix A for details). To filter out those motions
from the measured position and heading signals a transfer func-
tion for each degree of freedom fed by white noise is chosen in
such a way that the spectrum of its output coincides with the
response spectrum of the vessel. A reasonable transfer function is

GjðsÞ ¼
σjs

s2þ2ζjω0jsþω2
0j

; j¼ 1;2;6 ð7Þ

where ω0j, ζj and σj are respectively the dominating wave
frequency motion, the relative damping ratio, and a parameter
associated with the response amplitude spectrum for each degree
of freedom. j¼1,2,6 denote surge, sway and yaw directions,
respectively. The corresponding time domain model is given by

_ξ ¼ΩξþΣwξ ð8Þ

ηWF ¼Γξ ð9Þ
where

Ω¼
03x3 I3x3
Ω21 Ω22

" #
; Σ¼

03x3

Σ2

" #
; Γ¼ ½03x3 I3x3�

Ω21 ¼ �diagfω2
01; ω2

02; ω2
06g

Ω22 ¼ �diagf2ζ1ω01; 2ζ2ω02; 2ζ6ω06g

Σ2 ¼ diagfσ1; σ2; σ6g
ξAR6 is an internal variable vector and wξAR3 is a vector of zero-
mean Gaussian white noise.

2.3. Measurement equation

In order to complete the mathematical model it is necessary to
relate the low-frequency motions, the wave-frequency amplitudes
of the motions and the measurement noises of the position and

heading sensors. These signals can be related through the mea-
surement equation as

y¼ ηþηWF þw ð10Þ
where yAR3 is the measured signal vector and wAR3 is the zero-
mean Gaussian white measurement noise.

3. The observer backstepping controller

The backstepping controller for a DPS requires low-frequency
signals of the position and velocity, and external load vectors. As
those variables are not available online an observer has to be
implemented in the feedback loop, so that the controller makes
use of the estimates for calculating the control law.

3.1. Nonlinear state estimator

In this work the passive nonlinear observer proposed by Fossen
and Strand (1999a) is adopted. The nonlinear observer for Eqs. (1)–(3),
(8)–(10) is

_̂
ξ ¼Ωξ̂þK1 ~y ð11Þ

_̂η ¼ JðyÞν̂þK2 ~y ð12Þ

_̂b ¼ �T �1
b b̂þK3 ~y ð13Þ

_̂ν ¼M�1 �Dν̂þBf pþJT ðyÞb̂þ JT ðyÞK4 ~y
h i

ð14Þ

ŷ ¼ η̂þΓξ̂ ð15Þ
where ~y ¼ y� ŷ is the estimation error; K1AR6x3, K2AR3x3,
K3AR3x3 and K4AR3x3 are the observer gain matrices. All assump-
tions and tuning procedures for assuring asymptotic convergence of
the errors to zero are shown in Fossen and Strand (1999a).

3.2. Backstepping controller design

The observer backstepping controller structure is based on the
work by Aarset et al. (1998), without the integral term but
enhanced with the inclusion of the actuator dynamics. As it would
be rather awkward to invert the saturation function (Eq. (6)) it was
decided not to directly incorporate it into the controller algorithm,
although it is considered in the plant model used for the simula-
tions. Instead, the compatibility between the magnitude of the
control law and the actuators capability is achieved by introducing
two gain matrices associated with the error variables as shown
below. A tracking function is considered in the controller structure
by defining the variable e as

e¼ η̂�ηd ð16Þ
where ηd is a smooth reference trajectory. Time differentiation of
Eq. (16) yields

_e ¼ _̂η� _ηd ð17Þ
The observer backstepping methodology consists of estimating η̂,
ν̂ and b̂ through Eqs. (11)–(15), while the controller is defined by
taking into account three subsystems, the dynamics of which are
described by Eqs. (17), (14) and (4) as shown below:

Step 1: Let an error variable z1 be defined as

z1 ¼ e¼ η̂�ηd ð18Þ
Time differentiation of z1 and insertion of Eq. (12) into it results in

_z1 ¼ JðyÞν̂þK2 ~y� _ηd ð19Þ
The term JðyÞν̂ is a good choice for virtual control of z1 dynamics.
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Next, to obtain the stabilizing function α1 the following Lyapunov
function candidate is considered:

V1 ¼ 1
2 z

T
1KDKPz1 ð20Þ

where KP and KDAR3x3 are strictly positive diagonal gain
matrices. These matrices are the design control gains to be used
in the next steps. Taking the time derivative of Eq. (20) along the
trajectory z1, inserting Eq. (19) and substituting the virtual control
with the stabilizing function yield

_V 1 ¼ zT1KDKPðα1þK2 ~y� _ηdÞ ð21Þ
Next, to stabilize Eq. (19) the function α1 is defined as

α1 ¼ �C1z1�D1z1þ _ηd ð22Þ
where C1 and D1 are strictly positive diagonal gain matrices. The
choice for splitting the gain matrix was proposed by Fossen and
Grovlen (1998) to emphasize that the first component intends to
stabilize the deterministic terms of the dynamics of z1, while the
latter tries to compensate the term involving the estimation error.
For this purpose, and to ease the proof of stability for the observer
backstepping controller, the elements of D1 are calculated based
on the matrix associated with the estimation error ~y:

D1 ¼ diag d1k
T
1k1; d2k

T
2k2; d3k

T
3k3

n o
ð23Þ

where ½k1 k2 k3� ¼KT
2 and di; i¼ 1;2;3, are positive design

constants.
Step 2: The second error variable z2 is defined as the deviation

of the virtual control JðyÞν̂ from its desired value α1:

z2 ¼ JðyÞν̂�α1 ð24Þ
With this new term, the expression for _z1 becomes

_z1 ¼ �C1z1�D1z1þz2þK2 ~y ð25Þ
Inserting Eqs. (12), (14) and (22) into the time derivative of Eq. (24)
yields (see Aarset et al., 1998 for details)

_z2 ¼ JðyÞM�1Bf pþΨþΩ1 ~yþΩ2 ~νþΩ3
~ξ ð26Þ

where

Ψ¼ JðyÞSðρ̂Þν̂� JðyÞM�1Dν̂
þ JðyÞM�1JT ðyÞb̂�ðC1þD1Þ2z1
þðC1þD1Þz2� €ηd ð27Þ

Ω1 ¼ JðyÞM�1JT ðyÞK4þðC1þD1ÞK2

Ω2 ¼ � JðyÞSðν̂ÞL; Ω3 ¼ �JðyÞSðν̂ÞN

ρ¼ ½0 0 rþ _ψWF �T

S is a skew-symmetrical matrix defined as

SðθÞ ¼ S

θ1

θ2

θ3

0
B@

1
CA¼

0 �θ3 θ2

θ3 0 �θ1

�θ2 θ1 0

2
64

3
75

L¼
0 0 0
0 0 0
0 0 1

2
64

3
75; N ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

2
64

3
75

~ν ¼ ν� ν̂; ~ξ ¼ ξ� ξ̂

Eq. (26) suggests that the term JðyÞM�1Bf p is a good choice for
the virtual control of z2 dynamics. An expression for its stabilizing
function α2 is found by defining the following Lyapunov function
candidate:

V2 ¼ V1þ1
2 z

T
2KDz2 ð28Þ

Time differentiation of V2 along the trajectories z1 and z2 with the

insertion of Eqs. (25) and (26) and α2 results in the following
equation:

_V 2 ¼ zT2KDðα2þΨþΩ1 ~yþΩ2 ~νþΩ3
~ξÞþzT1KPz2þ _V 1 ð29Þ

Eq. (29) suggests that the stabilizing function should be defined as

α2 ¼ �C2z2�D2z2�Ψ�KPz1 ð30Þ
where C2 and D2 are strictly positive diagonal gain matrices. Again,
the adoption of two matrices emphasizes the different roles of
their elements. In particular, matrix D2 is calculated based on the
matrices associated with estimation errors (see Eq. (26)):

D2 ¼ diag d4 ∑
i ¼ 1;4;7

ωT
i ωi; d5 ∑

i ¼ 2;5;8
ωT

i ωi; d6 ∑
i ¼ 3;6;9

ωT
i ωi

( )
ð31Þ

The vectors ωi are obtained as follows:

½ω1 ω2 ω3� ¼ΩT
1 ð32Þ

½ω4 ω5 ω6� ¼ΩT
2 ð33Þ

½ω7 ω8 ω9� ¼ΩT
3 ð34Þ

di; i¼ 4;5;6, are positive constants.
Step 3: The control law is now found by introducing the

actuator dynamics as modeled by Eq. (4). For this purpose a third
error variable z3 is defined as the difference between the virtual
control term JðyÞM�1Bf p and its desired value α2, i.e.,

z3 ¼ JðyÞM�1Bf p�α2 ð35Þ
With the definition of this deviation term, _z2 can be rewritten as

_z2 ¼ �C2z2�D2z2þz3
�KPz1þΩ1 ~yþΩ2 ~νþΩ3

~ξ ð36Þ
Time differentiation of Eq. (35) gives

_z3 ¼ _J ðyÞM�1Bf pþ JðyÞM�1B _f p� _α2 ð37Þ
The term _α2 can be determined inserting Eqs. (13), (14) and (27) in
the time derivative of Eq. (30). In this work, the time derivative of
matrix D2 is considered as null. This assumption is reasonable
since the entries of D2 are less than 1 and they are dominated by
sin ðψ Þ and/or cos ðψ Þ raised to the second or fourth powers. Its
time derivative can be considered null because yaw is a very slow
motion (Fossen & Berge, 1997). After some mathematical work it
can be expressed as

_α2 ¼Θ1z1þΘ2z2�Θ3z3� _Ψ0þΓ1M
�1Bf p

� �
�Δ1 ~y�Δ2 ~ν�Δ3

~ξ ð38Þ
where

Θ1 ¼Θ3KP� ðC1þD1Þ2�KP

h i
ðC1þD1Þ ð39Þ

Θ2 ¼Θ3ðC2þD2ÞþðC1þD1Þ2�KP ð40Þ

Θ3 ¼ ðC1þD1ÞþðC2þD2Þ ð41Þ

_Ψ0 ¼Γ1ν̂þΓ2M
�1 Dν̂þ JT ðyÞb̂

h i
þΓ3b̂� €ηd

Γ1 ¼ _J ðyÞ �M�1DþSðρ̂Þ
h i

þ JðyÞ _Sðρ̂Þ

Γ2 ¼ JðyÞ �M�1DþSðρ̂Þ
h i

Γ3 ¼ _J ðyÞM�1JT ðyÞþ JðyÞM�1 _J
T ðyÞ

�JðyÞM�1JT ðyÞT �1
b

Δ1 ¼Θ3Ω1�M�1JT ðyÞK4þ JðyÞM�1JT ðyÞK3
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� ðC1þD1Þ2�KP

h i
K2

Δ2 ¼Θ3Ω2; Δ3 ¼Θ3Ω3

The terms Γ1 and Γ3 require _J ðyÞ. To calculate this value, the
following assumptions are adopted: (a) yð3Þ ¼ψþψWFþdð3Þ �ψ
because the magnitude of the wave-induced heading ðψWF Þ is less
than 11 during normal operation of the vessel and the measure-
ment noise dð3Þ is negligible compared to ψWF ; (b) the low-
frequency yaw motion estimate obtained from the observer is
taken into account. This approach is quite reasonable because the
yaw motion is adequately estimated by the observer from the
measured signal (see Fossen & Strand, 1999a for details of above
assumptions). Thus _J ðyÞ ¼ JðyÞSð½0 0 ν̂ð3Þ�T Þ. Inserting Eq. (38) into
Eq. (37) and taking into account Eq. (4) with f d ¼ f c result in

_z3 ¼Θ4f cþðΘ5�Θ4Þf p�Θ1z1�Θ2z2

þΘ3z3þ _Ψ0þΔ1 ~yþΔ2 ~νþΔ3
~ξ ð42Þ

where

Θ4 ¼ JðyÞM�1BT �1
p

Θ5 ¼ _J ðyÞM�1BþΓ2M
�1B ð43Þ

Next, in an attempt to find the control law f c the following
Lyapunov function candidate can be defined:

V3 ¼ V2þ1
2 z

T
3z3 ð44Þ

Taking the time differentiation of Eq. (44) along the trajectories z1,
z2 and z3 and considering Eqs. (25), (36), (42) yield

_V 3 ¼ zT3½Θ4f cþðΘ5�Θ4Þf p�Θ1z1

þðKD�Θ2z2þΘ3z3þ _Ψ0

þΔ1 ~yþΔ2 ~νþΔ3
~ξ �þ _V 2 ð45Þ

Finally, Eq. (45) suggests that the control law can be calculated as

f c ¼ ðI�Θþ
4 Θ5Þf pþΘþ

4 ½Θ1z1þðΘ2�KDÞz2
�ðC3D3þΘ3Þz3� _Ψ0� ð46Þ

Θþ
4 ¼ΘT

4ðΘ4ΘT
4Þ�1 ð47Þ

whereΘþ
4 is the pseudo-inverse ofΘ4 used to cope with the over-

actuated system (Fossen, 1994), and C3 and D3 are diagonal
positive definite matrices. The latter is defined in a similar manner
as for D2, i.e.,

D3 ¼ diag d7 ∑
i ¼ 10;13;16

ωT
i ωi;

(

d8 ∑
i ¼ 11;14;17

ωT
i ωi; d9 ∑

i ¼ 12;15;18
ωT

i ωi

)
ð48Þ

where the vectors ωi are defined as

½ω10 ω11 ω12� ¼ΔT
1 ð49Þ

½ω13 ω14 ω15� ¼ΔT
2 ð50Þ

½ω15 ω16 ω17� ¼ΔT
3 ð51Þ

Inserting Eq. (46) into Eq. (42) yields the last error dynamics, i.e.,

_z3 ¼ �C3z3�D3z3�KDz2þΔ1 ~yþΔ2 ~νþΔ3
~ξ ð52Þ

In principle, the observer and the controller (see Eqs. (14)
and (46)) require f p, that is, the real thrust developed by the
actuators. These values are very difficult to be measured online for
utilization in the controller. Alternatively, the thrust calculated
from Eq. (4) is assumed as the real thrust of the actuators.

3.3. Stability analysis for the observer backstepping controller

3.3.1. Error dynamics and equilibrium point
The stability analysis of the closed-loop system with observer

backstepping controller is carried out through the assessment of
the error dynamics equations for both the controller and the
observer. These equations can be expressed concisely by defining
z¼ ½zT1 zT2 zT3�T and taking into account Eqs. (11)–(15), (25), (36)
and (52):

_z ¼ �Czz�DzzþEzþW1 ~yþW2 ~νþW3
~ξ ð53Þ

_~ν ¼M�1 �D ~ν� JT ðyÞ ~z0
h i

ð54Þ

_~x0 ¼ A0 ~x0þB0JðyÞ ~ν ð55Þ

~z0 ¼ C0 ~x0 ð56Þ
where ~x0 ¼ ~ξ

T
~ηT ~b

T
� �T

; ~b ¼ b� b̂

Cz ¼ diagfC1; C2; C3g ð57Þ

Dz ¼ diagfD1; D2; D3g ð58Þ

E¼
0 I 0

�KP 0 I
0 �KD 0

2
64

3
75 ð59Þ

W1 ¼ KT
2 ΩT

1 ΔT
1

h iT
ð60Þ

W2 ¼ 0 ΩT
2 ΔT

2

h iT
ð61Þ

W3 ¼ 0T
3x6 ΩT

3 ΔT
3

h iT
ð62Þ

A0 ¼
Ω�K1Γ �K1 0
�K2Γ �K2 0
�K3Γ �K3 �T �1

b

2
64

3
75

B0 ¼ ½0 I 0�T ; C0 ¼ ½K4Γ K4 �I�
From Eqs. (53)–(55) it immediately comes that the origin

½zT ~νT ~xT
0 �T ¼ 024x1 is an equilibrium point for the closed-loop

observer backstepping system.

3.3.2. Stability analysis
For the proof of the stability two key assumptions adopted by

Fossen and Strand (1999a) are pointed out here:

A.1 M ¼MT 40;
A.2 ðDþDT Þ40.

A Lyapunov function candidate that copes with both the observer
and the controller error dynamics is

V ¼ 1
2 z

TRzþ ~νTM ~νþ ~xT
0P ~x0 ð63Þ

where

R¼
KPKD 0 0

0 KD 0
0 0 I

2
64

3
75 ð64Þ

PAR12x12; P ¼ PT 40

Next, taking the time derivative of V along trajectories of z, ~ν and
~x0 results in:

_V ¼ zT ð�RCzz�RDzzþRW1 ~yþRW2 ~ν
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þRW3
~ξÞ� ~νTQ 1 ~ν� ~xT

0Q 2 ~x0 ð65Þ
where

DT þD¼Q 140

PA0þAT
0P ¼ �Q 2o0

Note that zTREz¼ 0 because RE is skew-symmetric. From Eq. (65)
it is not easy to immediately establish a conclusion concerning the
sign of _V because there are no obvious square terms. The following
terms are then added to _V :

1
4 ½ ~y

TG1 ~y� ~yTG1 ~y � ¼ 0 ð66Þ

1
4 ½ ~ν

TG2 ~ν� ~νTG2 ~ν� ¼ 0 ð67Þ

1
4 ½ ~ξ

T
G3

~ξ� ~ξ
T
G3

~ξ� ¼ 0 ð68Þ
where

Gi ¼ giI; i¼ 1;2;3 ð69Þ

g1 ¼
1
4

∑
3

i ¼ 1

KDði; iÞKPði; iÞ
di

þKDði; iÞ
diþ3

þ 1
diþ6

� �

g2 ¼ g3 ¼
1
4

∑
3

i ¼ 1

1
diþ3

þK �1
D ði; iÞ
diþ6

" #

Then, inserting Eqs. (66)–(68) into Eq. (65) and relating ~y and ~ξ to
~x0 as ~y ¼ Cy ~x0 and ~ξ ¼ Cξ ~x0 it becomes

_V ¼ �zTRCzzþzT �RDzzþRW1 ~yþRW2 ~νþRW3
~ξ

� �
�1

4
~yTG1 ~yþ ~νTG2 ~νþ ~ξ

T
G3

~ξ
� 	

� ~xT
0 Q 2�1

4 C
T
yG1Cy�1

4 C
T
ξG3Cξ

� �
~x0

� ~νT Q 1�1
4G2

� �
~ν ð70Þ

In Eq. (70) the matrix RCz is positive definite and the addition of
the second and third terms results in a negative semidefinite
function, namely:

λ¼ zT �RDzzþRW1 ~yþRW2 ~νþRW3
~ξ

� �
�1

4
~yTG1 ~yþ ~νTG2 ~νþ ~ξ

T
G3

~ξ
� 	

r0 ð71Þ

as proven in Appendix B. Now, if the matrices Q 1 and Q 2 are
chosen as

Q 1�1
4G240 ð72Þ

Q 2�1
4 C

T
yG1Cy�1

4 C
T
ξG3Cξ

� �
40 ð73Þ

it can be concluded that

_V r�zTRCzz

� ~xT
0 Q 2�1

4 C
T
yG1Cy�1

4 C
T
ξG3Cξ

� �
~x0

� ~νT Q 1�1
4G2

� �
~νo0; 8 z; ~v ; ~x0a0 ð74Þ

Hence, the observer backstepping system (Eqs. (53)–(55)) is
Globally Exponentially Stable (GES) if assumptions A.1 and A.2
hold and if the matrices Q 1 and Q 2 satisfy Eqs. (72) and (73)
(Fossen, 2011; Khalil, 2002). Notice that the controller based on
observer backstepping methodology assures stability by assuming
an unrestricted magnitude for the control law.

3.4. System constraints and the role of matrices KP and KD

In general, dynamic positioning systems are not designed
to counteract all possible combinations of external forces and

moment, and their actuators have limited power. The first practical
consequence is that the stability of the closed-loop system is
restricted to a basin of attraction for a given origin. The determina-
tion of this basin demands an intense numerical task that is beyond
the purpose of this paper. The second possible consequence is an
occasional incompatibility between the magnitude of the control law
defined by Eq. (46) and the capability of the actuators. In this
equation, matrices Θþ

4 and Θ5 cannot be tuned since they depend
essentially on the plant parameters (see Eqs. (47) and (43)). Further-
more, the former matrix works as a gain for all terms inside the
bracket. The remaining parameters associated with the error vari-
ables, namely θ1, θ2�KD and C3þD3þθ3, are the design control
parameters (see Eqs. (39), (40) and (41)). Now, let us suppose that the
entries of matrix Θþ

4 are such that the design control parameters
have absolute values much smaller than 1, so that the magnitude of
the control law is compatible with the limitation of actuators.
Recalling that all matrices are diagonal, these conditions can be
expressed as

Condition 1

jΘ1ði; iÞj ¼ j½CD1ði; iÞþCD2ði; iÞ�KPði; iÞ
�½CD2

1ði; iÞ�KPði; iÞ�CD1ði; iÞj≪1 ð75Þ
Condition 2

jΘ2ði; iÞ�KDði; iÞj ¼ j½CD1ði; iÞþCD2ði; iÞ�CD2ði; iÞ
þCD2

1ði; iÞ�KPði; iÞ�KDði; iÞj≪1 ð76Þ
Condition 3

0oCD3ði; iÞþΘ3ði; iÞ ¼ CD1ði; iÞþCD2ði; iÞ
þCD3ði; iÞ≪1 ð77Þ

where CDi ¼ C iþDi for i¼ 1;2;3 Condition 3 imposes that all
entries in matrices C i and Di must be much smaller than 1. It is
useful to analyze the consequences of this condition for the
controller based on the conventional backstepping methodology
in which KP ¼KD ¼ I. In this case Condition 2 is immediately
invalidated because ½CD1ði; iÞþCD2ði; iÞ�CD2ði; iÞþ½CD1ði; iÞ�2 � 2 can-
not be satisfied. Besides, θ1 � 2CD1ði; iÞþCD2ði; iÞ�½CD1ði; iÞ�2 can at
times fail to satisfy Condition 1. Therefore, the controller based on
the conventional backstepping methodology may lead to an
incompatibility between the control parameters for some control
specifications. This drawback can, however, be overcome by
inserting the matrices KP and KD proposed in this paper.

4. Simulation results and discussion

The controller performance is evaluated here through numerical
simulations of low-speed maneuvres with a typical DP-shuttle tanker
equipped with five actuators—one main propeller, two bow thrusters
and two stern thrusters. The vessel main dimensions and the actuator
properties are shown in Tables 1 and 2, respectively. A realistic model
was adopted for representing the vessel dynamics (Appendix A). The
values for matrices M, B and Tp are indicated in Appendix C, together
with the environmental conditions adopted in the simulations.

Smooth variation of the references for position, velocity and
acceleration is required by the controller. These signals are gener-
ated by applying a step change to the following fourth-order
transfer function:

HðsÞ ¼ 1
ð25sþ1Þ2

0:022

ðs2þ0:0404sþ0:022Þ
ð78Þ

The transfer function of Eq. (78) is employed for each degree of
freedom of the vessel, and the amplitude of the step function
corresponds to the vessel's final desired position. The simulation
begins with the initial setpoint vector ½0 m;0 m;01� constant for
100 s, and then the ship is demanded to move to ½20 m; �10 m;151�,
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as indicated in Fig. 2. Notice that these maneuvres check the perfor-
mance of the observer and the controller simultaneously for set point
changes and for the alteration in the relative environmental loads
due to the change in the vessel heading.

The combination of the vessel's parameters indicated in
Appendix C with heading angle ψ ¼ 0 results in the order of
magnitude of some elements of Θþ

4 � 1011. Also, numerical
analyses have shown that z1 � 10�1, z2 � 10�1 and z3 � 10�2,
leading to f P � 107 kN, which is not compatible with the actuators
capacity as indicated in Table 2. Thus, the use of the controller
based on the modified observer backstepping algorithm is ade-
quate. However, it is worthwhile initially to analyze the perfor-
mance of the controller based on conventional backstepping
methodology by tuning KP ¼KD ¼ I, while cascading the satura-
tion function of the actuators. The values for matrix C and for
coefficients di are shown in Table 3, and the corresponding
coefficients associated with vectors z1, z2 and z3 are indicated in
Table 4. Notice that the entries of matrices Θ1 and Θ2�KD do not
comply with Conditions 1 and 2.

Fig. 3 shows the reference ηdð1Þ and the vessel motion in the X
direction. It may be said that the proposed observer backstepping
controller operates properly in both the steady-state and the
transient conditions since the curves are in acceptable agreement
along all of their extents. However, the inappropriate tuning of the
control parameters leads to awkward behavior for both the control
law and the commanded thrust as depicted in Fig. 4. It should be
remarked that the plotted values of the commanded thrust are
multiplied by 10. The on–off-like signal (Astrom & Hagglund, 1995)
is caused by the oscillatory control signal that periodically exceeds
the saturation values of the actuators. The outline of the control
law is due to the combination of inappropriate control parameters
and the unavoidable oscillation of the estimated values η̂, ν̂ and b̂
that are sensitive to the estimation error and therefore affect error
variables—recall that the measured signal is corrupted with wave-
frequency motions. The results for the Y direction and the heading
present similar patterns to those depicted in Figs. 3 and 4 and are
thus omitted.

Now, the gain matrices KP ¼ diagf0:01; 0:01; 0:01g and
KD ¼ diagf0:002; 0:002; 0:002g are considered together with the
design control parameters indicated in Table 3, leading to the
coefficients associated with the variable errors shown in Table 5
that indicate compliance with Conditions 1–3. The evolution of the
ship position and heading is shown in Fig. 5. The control law
operates as expected because the vessel follows a smooth refer-
ence trajectory during the transient and steady-state conditions.

Table 2
Actuator thrust ranges and positions.

Actuators Maximum thrust Position (from CG)

Main propeller 1200 kN/�550 kN �129.0 m
Stern thruster 1 180 kN/�180 kN �125.0 m
Stern thruster 2 180 kN/�180 kN �120.0 m
Bow thruster 1 260 kN/�260 kN 120.0 m
Bow thruster 2 260 kN/�260 kN 125.0 m

Fig. 2. Maneuvres for simulations.

Table 3
Control parameters.

C1 diagf0:02; 0:02; 0:02g
C2 diagf10�5 ; 10�5; 10�5g
C3 diagf10�3 ; 10�3; 10�3g
di i¼ 1;2;3 d1 ¼ 0:2; d2 ¼ 0:2; d3 ¼ 0:2
di i¼ 4;5;6 d4 ¼ 0:02; d5 ¼ 0:01; d6 ¼ 0:002
di i¼ 7;8;9 d7 ¼ 0:1; d8 ¼ 0:01; d9 ¼ 0:01

Table 4
Coefficients of vectors z1, z2 and z3 for KP ¼KD ¼ I.

Θ1 diagf0:273; 0:250; 0:250g
Θ2�KD diagf�1:980; �1:984; �1:984g
C3þD3þΘ3 diagf0:199; 0:132; 0:132g

Fig. 3. Position of the vessel along X-axis—the zoom displays the difference
between the reference and actual position.

Fig. 4. Control law and commanded thrust for the main propeller.

Table 1
Vessel particulars.

Total length (m) 272.5
Length between perp. (m) 258.0
Beam (m) 46.0
Draft (m) 17.5
Total displacement (kN) 178.0�107
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The most important results, however, are those shown in Fig. 6,
which depicts the control law and the commanded thrust. Com-
parison with Fig. 4 reveals a dramatic difference as the unsuitable
oscillation for both curves is no longer present. In fact, some
oscillation still persists due to the position and heading estimation
errors, but with magnitude of approximately 101 kN in steady-
state condition, which can be deemed acceptable for practical
purposes. Regarding the transient condition, Fig. 6 reveals that the
stern thrusters become saturated, but not enough to cause either
loss of stability or oscillation in the control law. It is important to
recall here that the main goal of the proposed approach is not to
eliminate occasional needs for the actuators to operate in the
saturated range, but rather to reduce the oscillatory behavior of
the control law provoked by the estimation error in association
with the saturation of the actuators. Therefore, the presented
results indicate the effectiveness of inserting the new gain
matrices KP and KD in the control loop, within the context of
the backstepping methodology.

This subsection is concluded by demonstrating the advantage
of including the actuator dynamics in the control loop. For this
purpose, the performance of the proposed controller and that of
an observer backstepping controller without the inclusion of the
actuator dynamics are compared. The latter is based on Eq. (30)
and only the gain matrix KP is available to lower the control signal
magnitude (see Zakartchouk & Morishita, 2009). By considering
the actuator dynamics as an inherent part of the plant model, the
same maneuvres shown previously were considered here, and the
results for the surge motion (which is assumed to be typical) are
depicted in Fig. 7. This figure reveals that it is worthwhile to
implement the controller with actuator dynamics because the
control signals are less demanding and smoother than those
defined by the controller without the actuator dynamics. The time
lag between the control law and the real thrust caused by the
actuator dynamics tends to retard the vessel motions, and the
controller without inclusion of actuator dynamics tends to com-
pensate for it by magnifying its output. This is an expected result
since the proposed controller is based on a more accurate plant
model that includes the actuator dynamics, whose bandwidth is
close to the bandwidth of the vessel dynamics.

5. Conclusions

Controllers based on conventional observer backstepping for
DPS may generate a control signal incompatible with the actuators
capability, when the error variables corrupted with remnant wave-
frequency signals due to non-perfect state estimation are ampli-
fied by control gains exclusively determined by the system para-
meters. The proposed improvement consists in inserting two new
gain matrices associated with the error variables, in order to
attenuate the oscillations in the control signal. Numerical simula-
tions with a realistic plant model confirm the efficacy of the
solution here introduced, as the undesirable on–off-like control
signals vanish when the proposed modification is included. In
addition, the simulation results also indicate the advantage of
including the actuator dynamics in the control law as the signal is
smoothed even in the absence of the wave-frequency motions.
However, the inclusion of the actuator dynamics in the control
algorithm requires the tuning of a time constant set for first-order
differential equations. Occasional mismatch between the “real
time constant” and the controller time constant does not affect
the stability of the closed-loop control system, but can degrade the
performance of the controller. Therefore, for a practical scenario, a

Table 5
Coefficients of vectors z1, z2 and z3 for
KPaI;KDaI.

Θ1 diagf0:135; 0:526; 0:525g10�3

Θ2�KD diagf0:71; 0:39; 0:39g10�3

Θ3 diagf0:138; 0:126; 0:126g

Fig. 5. Position and heading of the vessel.

Fig. 6. Control law and commanded thrust for each actuator.

Fig. 7. Control laws for surge with and without inclusion of the actuator dynamics.
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preliminary study to estimate the real time lag of the actuators is
suggested before tuning the controller time constant.

Stability of the closed-loop system with the improved control-
ler is assured through Lyapunov stability analysis. Global expo-
nential stability is attained if saturation of the actuators is ignored;
otherwise, exponential stability is obtained for some region of
attraction.

The implementation of the new controller is simple and some
criteria that define the range of appropriate values of the new
control parameters were presented. However, the augmentation of
the control parameters may be considered as a drawback, since it
demands the tuning of new parameters. An optimization approach
could be considered in future works, instead of the trial and error
procedure adopted here. Another desirable improvement would
be the inclusion of the actuators limitation in the control law itself.
This, however, is not a simple task because of the difficulty in
inverting the saturation equation. The proposed observer back-
stepping controller was developed for a specific mechanical
system, viz. a dynamic positioning system for a vessel. However,
the methodology can be useful for any system in which the
filtering of undesirable high-frequency motion components is
based on a state estimator, and where power limitation of the
actuators is an issue.

Appendix A. Mathematical model for the dynamic simulation

A.1. Low-frequency motions

The low-frequency motions model for the vessel is composed
of Eq. (1) and the following kinematic equation:

M _νþ½CRBðνÞþCAðνÞ�ν�MA _νc

þCAðνÞνc�CAðνcÞνr
¼ Bf Pþ f e ðA:1Þ

where

νr ¼ ν�νc

νc ¼ ½U cos ðψ c�ψ Þ U sin ðψ c�ψ Þ 0�T

f e ¼ ½Fx Fy N�T

MA is the added mass matrix of the vessel; CRB is the rigid-body
Coriolis and centripetal matrix; CA is the hydrodynamic Coriolis
and centripetal matrix; U is the current speed; ψc is the direction
of the current with respect to the OX-axis; FX, FY and N represent
the total external forces and moment in the surge, sway and yaw
directions, respectively. The entries of the vector f e are forces and
moment due to the action of the current, wind and waves. In this
work the forces and moment due to the current are determined
through the model proposed by Simos, Tannuri, Pesce, and Aranha
(2001). The wind forces and moment are calculated employing
aerodynamic drag equations with coefficients presented in OCIMF
(1994). See Fossen (1994) for alternative models. The wind forces
and moment are determined considering the relative wind speed
and its relative angle of incidence on the vessel. The low-frequency
motions due to the waves are caused by the so-called slow and
mean-drift forces (Aranha, 1996; Aranha & Fernandes, 1995).

Wave-frequency motions: The wave-frequency motions of the
vessel are in essence due to the first-order wave loads and can be
included in the simulation mathematical model by generating a
time series from the wave frequency amplitude spectrum. The
spectrum for each degree of freedom is given by (Fossen, 2011)

SWF ðω;ψ rwÞ ¼ ∣RAOðω;ψ rwÞ∣2Sðω; T0;HsÞ ðA:2Þ

ψ rw ¼ψ�ψw

where RAO is the ship Response Amplitude Operator which is the
transfer function that represents the response of the vessel to an
incident regular wave of unit amplitude, and ψw is the wave
direction related to the OX-axis. The RAO should be calculated for a
set of wave directions, and then the vector ηWFAR3 with the
amplitude of the wave-frequency motions can be generated from
the spectrum defined by Eq. (A.2) (Fossen, 1994).

Appendix B. Proof of Eq. (71)

The proof is based on Fossen and Grovlen (1998). Recalling Eqs.
(58), (60)–(62) and (64), Eq. (71) can be rewritten as

λ¼ zT1ð�KDKPD1z1þKDKPK2 ~yÞ
þzT2ð�KDD2z2þKDΩ1 ~yþKDΩ2 ~νþKDΩ3

~ξÞ
þzT3ð�D3z3þΔ1 ~yþΔ2 ~νþΔ3

~ξÞ
�1

4 ð ~y
TG1 ~yþ ~νTG2 ~νþ ~ξ

T
G3

~ξÞ ðB:1Þ
Now, considering Eqs. (23), (31), (32)–(34), (48) and (49)–(51)

in (B.1) yields

λ¼ � ∑
3

i ¼ 1
diKPði; iÞKDði; iÞ kiz1ðiÞ�

1
2di

~y
� 	T

kiz1ðiÞ�
1
2di

~y
� 	"

þdiþ3KDði; iÞ ωiz2ðiÞ�
1

2diþ3
~y

� 	T

ωiz2ðiÞ�
1

2diþ3
~y

� 	

þdiþ3KDði; iÞ ωiþ3z2ðiÞ�
1

2diþ3
~ν

� 	T

ωiþ3z2ðiÞ�
1

2diþ3
~ν

� 	

þdiþ3KDði; iÞ ωiþ6z2ðiÞ�
1

2diþ3

~ξ
� 	T

ωiþ6z2ðiÞ�
1

2diþ3

~ξ
� 	

þdiþ6 ωiþ9z3ðiÞ�
1

2diþ6
~y

� 	T

ωiþ9z3ðiÞ�
1

2diþ6
~y

� 	

þdiþ6 ωiþ12z3ðiÞ�
1

2diþ6
~ν

� 	T

ωiþ12z3ðiÞ�
1

2diþ6
~ν

� 	

þdiþ6 ωiþ15z3ðiÞ�
1

2diþ6

~ξ
� 	T

ωiþ15z3ðiÞ�
1

2diþ6

~ξ
� 	#

ðB:2Þ

where ½zið1Þ zið2Þ zið3Þ�T ¼ zi for i¼1,2,3
Because all quadratic terms in Eq. (B.2) are less than or equal to

zero, Eq. (71) is negative semidefinite.

Appendix C. Simulation data

The following data were used in this paper:

MRB ¼ diagf1:74� 108; 1:74� 108; 1:08� 1012g

MA ¼
1:1� 107 0 0

0 1:5� 108 3:8� 107

0 3:7� 107 5:4� 107

2
64

3
75

Tp ¼ diagf10s; 5s; 5sg

B¼
1 0 0 0 0
0 1 1 1 1
0 �125 �120 120 125

2
64

3
75

K1 ¼

�1:98 0 0
0 �1:98 0
0 0 �1:98

1:26 0 0
0 1:19 0
0 0 �1:19

2
666666664

3
777777775
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K2 ¼ diagf0:768; 0:728; 0:828g

K3 ¼ diagf10�4; 10�4; 1g109

K4 ¼ 100K3

Tb ¼ diagf1000; 1000; 1000g
Environmental data

Direction Velocity

Current 1801 0.5 m/s
Wind 1651 10.0 m/s
Waves 1651 Tp ¼ 9 s; Hs ¼ 2:5 m
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