
Nonlinear Parameter Estimation: 
a Case Study Comparison 

The literature abounds with the application of optimization methods for estimat- 
ing model parameters in equation systems. The utility of these methods is frequently 
demonstrated on pathological examples using simulated data generated from a 
known model with a random error component and a known statistical distribution. 
Unfortunately, parameter estimation problems encountered in practice do not have 
this advantage. The true model is frequently not known. In fact, one is faced with 
choosing among various candidate models, all of which may be wrong. Moreover, the 
error structure is generally unknown and must be estimated from the data. Finally, a 
great deal of mathematical expertise is required to transform the model and select 
meaningful starting guesses before parameter estimation can be successful. 

In order to demonstrate the difficulties of parameter estimation in the industrial 
environment and the limitations of existing methods, a parameter estimation prob- 
lem formulated by the Dow Chemical Company is presented and solved. This test 
problem consists of a stiff differentiallalgebraic (DAE) model that describes complex 
kinetics and requires the estimation of nine parameters from batch reactor data. Here 
the model was inadequate to describe the data, the error structure was not specified 
and the starting guesses led to a nontrivial optimization problem. 

The Dow parameter estimation problem was distributed in 1981 to 165 researchers 
as a followup to the 1980 IWCAPD conference. Of those researchers, eleven agreed to 
apply their methodologies and expertise to this problem. However, only five accept- 
able solutions were finally submitted. Here we present and compare these results. 
Each solution was obtained using different strategies. In most cases the form of the 
model was also changed to accommodate the algorithms used and to ease the solution 
procedure. Therefore, while this case study does not present a direct numerical com- 
parison of algorithms, it does offer guidelines and insight towards the solution of diffi- 
cult parameter estimation problems. 

SCOPE 

Parameter estimation arises in fitting models containing several 
unknown parameters to experimental data through adjustment 
of these parameters. Model formulation is not a unique process; 
many different formulations may be used to fit the data and opti- 
mize model parameters. Of particular concern are formulations 
that are sufficiently accurate to represent physical or chemical 
phenomena and also are amenable to reasonably efficient com- 
puter solutions. Here we consider a parameter-estimation prob- 
lem formulated by the Dow Chemical Company in order that 
current parameter estimation methods can be compared on an in- 
dustrial kinetic parameter estimation problem with real data. 

The model consists of nonlinear differential and algebraic 
equations and is stiff over a wide range of parameter values. Thus 
one must choose a reliable model solver before parameter estima- 
tion can begin. Several methods for solving stiff ODE and DAE 
systems are available (see, e.g., Carnahan and Wakes, 1981). 
Most of those used in this case study are based on Gear’s method. 

After a model is proposed and solution techniques are chosen, 
an objective function that determines the goodness of fit must be 
selected. From maximum likelihood analysis, several alternative 
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objective function forms can be chosen, depending on our as- 
sumptions of the error structure of the data. These can range from 
simple least-squares functions to fairly complex nonlinear func- 
tions that incorporate general unknown covariance of the mea- 
surements and heteroscedastic ermrs (see e.g., Bard, 1974). 

The final step in parameter estimation is to optimize the model 
parameters and any unknown statistical parameters in the objec- 
tive function. The optimization problem formed by the model 
and the objective function generally requires repeated and expen- 
sive solution of the ODE or DAE system. An efficient algorithm 
should minimize the number of model and function evaluations 
and still converge easily to the solution. Generally, these al- 
gorithms require gradient information and some,approximation 
to the second derivative matrix. For simple and weighted least- 
squares objective functions, the Gauss-Newton and Levenberg- 
Marquardt algorithms provide the second derivative information 
quite easily. Otherwise, quasi-Newton updating algorithms such 
as BFGS (Gill et al., 1981) can also be applied. 

Five researchers have submitted solutions to the parameter- 
estimation problem described below. After the strategies that 
were used are outlined, the solutions are compared in terms of 
accuracy and efficiency. 
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CONCLUSIONS AND SIGNIFICANCE 

A parameter-estimation problem formulated by the Dow 
Chemical Co. to study a batch reactor system was solved by five 
independent mearchers. After pmenting the differentiallalge- 
braic equation (DAE) model and a suggested form for the objec- 
tive function, six solution strategies are described and presented. 
All of these solutions used implicit ODE or DAE solvers; four in- 
vestigators used variations of Gear's method. Except for an unsuc- 
cessful solution presented for illustration, only Gauss-Newton- 
type methods and successive quadratic minimization were used 
for optimization. 
Based on the results, it is clear that the most important consid- 

eration for parameter estimation is formulation of a simple, yet 
realistic process model. Guidelines for this should include the fol- 
lowing points for more efficient solution: 

1. Eliminate all dependent equations in the proposed model. 
This leads to a model that is more efficiently handled by the ODE 
solver. 

2. Eliminate as many unn-ry model parameters as p&- 
ble. This leads to a smaller and better behaved optimization prob- 
lem. 

3. If the error structure is not known, use an objective function 
based on maximum likelihood that allows direct application of 
Gauss-Newton-type methods. 
4. Determine an initial set of parameter estimates through 

some physical insight into the model parameters. This not only 
leads to a closer starting point but also avoids any u n n v  
stiffness problems due to starting points far from the optimum. 

All of the solutions required careful attention by the researchers 
to several computational difficulties. None of the investigators 
was able to solve the problem automatically in one go, regardless 
of the sophistication of the software. Judging from the very wide 
exposure the problem received, it appears that discovery and im- 
provement of parameter-estimation algorithms remains a very 
necessary and fruitful area for research and development. 

Finally, the solutions presented here do not offer a direct a m -  
parison among model solving and optimization algorithms, be- 
cause they relied on different problem formulations. Instead, this 
study illustrates the importance of model formulation and insight 
in tackling difficult parameter-estimation problems as well as the 
limitations of current methods. 

PROBLEM DESCRIPTION 

The parameter estimation problem is based on a kinetic model 
of an isothermal batch reactor system. The reactions occur in an 
anhydrous, homogeneous, liquid phase catalyzed by a completely 
dissociated species. The reacting species have been disguised for 
proprietary reasons, The desired reaction is given by: HA + 2BM - AB + MBMH where AB is the desired product. 

The reaction is initiated by adding the catalyst QM to a batch 
reactor containing the two miscible reactants with reactant BM 
in excess. The catalyst QM is initially assumed to be 100 % dissoci- 
ated to Q+ and M -  ions. The following mechanism is proposed to 
describe the reaction: 

Slow Kinetic Reactions 
M -  + BM-k_Ik l -7MBM- 

A -  + BM ks=%4BM- 

M -  + A B C k - - 3  )3=ABM- 

Rapid Acid-Base Reactions 
MBMHeKi*MBM- + H' 

H A ~ K ~ = A -  + H' 
H A B M e K s e A B M -  + H i  

In order to devise a model to account for these reactions, it is 
first necessary to distinguish between the overall concentration of 
a species and the concentration of its neutral form. Overall con- 
centrations are defined for three components based on neutral 
and ionic species. 

[MBMH] = [(MBMH),] + [MBM-I 

[HA1 = [(HA),] + [A-I 
[HABMI = [(HABM),] + [ABM-I 

By assuming the rapid acid-base reactions are at equilibrium, 
where [ ] denote concentration of the species in gmol/kg. 

the equilibrium constants K,,K2,K3 can be defined as follows: 

[ABM- ][If'] 
[(HABM)NI 

K ,  = 

The anionic species may then be represented by: 

KJMBMH] [MBM-]  5 

(KI + [H'I) 

Material balance equations for the three reactants in the slow 
kinetic reactions yield: 

- k J M - ] [ A B ]  + kkJABM-I (d) 

-- drBM1 - k , [ M - ] [ B M ]  
dt 

+ k-,[MBM-l - k,[A-l[BMl (e) 

d[ABl = -k , [M-J[AB]  + k-JABM-] 
at 

From stoichiometry, rate expressions can also be written for 
the total species: 

d[MBMH1 dt - k J M - ] [ B M ]  - k- , [MBM-] (g) 

' I H A 1  = k,[A-][BM] 
dt  
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+ k , [ M - ] [ A B ]  - k-JABM-1 (i) 

An electroneutrality constraint gives the hydrogen ion con- 
centration [ H + ]  as: 

[H' ]  + [Q'] = [ M - ]  + [ M B M - ]  + [A-] + [ A B M - ]  (j) 
The measured values came from actual kinetic data obtained 

from three isothermal runs in a batch reactor. The temperatures 
were set at 40,67, and 100 O C .  The data p m n t e d  for parameter 
estimation represent a pretreatment of the actual data. Four com- 
ponent concentration vs. time profiles are presented, but only 
three species HA, HABM, and AB were actually measured. These 
three measurements were normalized so that: 

[HA]  + [HABM] + [AB]  = initial [ H A ]  

Normalization adjustments resulted in concentration changes of 
less than ten percent, A fourth species, [BM], was derived from: 

[BW = initial [HABMJ - 2[AB] 
However, this relationship is only true if [AB] - [MBMH],  an 
unmeasured species. From the model, this relation holds at long 
times. In all of the runs, the initial catalyst concentration was 
0.0131 gmollkg. The data sets are given in Appendix A. 

Although many data are present, they are insufficient to esti- 
mate all of the parameters present in the proposed model and a 
few assumptions were made. First, it was determined from other 
data that the equilibrium constants did not vary with tempera- 
ture over the interval 40-100°C. Also, based on the similarities of 
the reacting species, we assume: 

k, = k, 
k-, = 112 k-, 

Based on these last two assumptions, three rate constants, kl, kz, 
k - I  must be estimated. Each of these can be fitted with ad- 
justable model parameters, assuming an Arrhenius temperature 
dependence. That is: 

kL = aI exp(-E,/RT) 
kl = exp( - E J R T )  

.h = a2 exp( - E,/RT) 

where R is the gas constant, T is the reaction temperature in 
Kelvins, and the parameters, a, E ,  represent the preexponential 
factor and activation energy, respectively, for the appropriate 
rate constant. 

The model can therefore be expressed mathematically as six 
differential equations and four algebraic equations. The letter la- 
bels for the following equations refer to the corresponding kinetic 
and equilibrium expressions derived above. 

The nine parameters form the vector, 0, given by: 0 = [al, 
E l , ( w 2 , E 2 , a - 1 , E - l , K ~ , ~ 2 , ~ ~ ]  and the predicted concentrations form 
the vector, y ,  given by: y = [ H A , B M , H A B M , A B , M B M H , M - ,  

The model initial conditions and the initial parameter esti- 
mates are given in Appendix A. 
As a follow-up to the 1980 FOCAPD conference, the above 

problem was distributed to its 165 participants in 1981. Eleven of 
these researchers agreed to tackle this problem and five groups 
submitted acceptable solutions. Before describing these solutions 
and the methodologies behind them, we briefly summarize the 
algorithms that were used. We classify these in terms of solving 
the DAE model, choosing an appropriate objective function from 
maximum likelihood, and optimizing for the parameters. 

H +  ,A-,ABM-,MBM-1. 

SOLVING THE DAE MODEL 

Numerous methods have been developed for the solution of ini- 
tial value ordinary differential equations. Also, thorough analyses 
of these methods have led to a fairly complete classification ac- 
cording to stability, accuracy and performance. As a result of 
these comparisons, the most commonly used ODE IV methods 
are: 

1) Explicit Runge-Kutta and linear multistep methods for 

2) Semi-implicit Runge-Kutta and the Gear methods for stiff 
nonstiff systems, and 

problems. 

Runge-Kutta Methods 

Given a differential model of the form: 

the Runge-Kutta (R-K) techniques of integration use formulas 
defined by: 

i- 1 

with 

wheren = step, counter 
h = stepsize 
T - order of Runge-Kutta method 

The coefficients aii,bi,ci are determined by matching the above se- 
ries with a Taylor series expansion of desired order. 

When ail = 0 for j ,  1 a the qi can be calculated in order and the 
R-K method is called explicit. When ai, = 0 for j > i, and aij # 0 
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for j = i, the method is called semi-implicit. Finally, when aij # 0 
for j > i, the method is termed implicit. While implicit R-K 
methods have a drawback in that the qi must be.solved iterative- 
ly, semi-implicit methods can be linearized and sohed with only 
one iteration per step. Numerous methods exploit this strategy 
(see, e.g., Carnahan and Wilkes, 1981). Chan et al., 1978). Proko- 
pakis and Seider (1981), and Michelsen (1976) give accounts of 
semi-implicit Runge-Kutta schemes. 

Linear Multistep Methods 

ential equations have the following form: 
Linear multistep methods for numerical integration of differ- 

j -1  j -0  

with coefficients, a,, and bni, determined by postulating the solu- 
tion as an interpolating polynomial. 

Gear (1971) proposea a family of formulas that are "nearly" A- 
stable. Hence, formulas of order Y are obtained with 11 = r and l2 
= 0, i.e.: 

y n  = C a n j ~ n - - r  + h b n o f n  (13) 
j =  1 

These formulas, called backward difference formulas, are imple- 
mented in the popular Gear, Episode, and LSODE (Byrne, 1981) 
software packages. The desirable stability property they have, 
which has been termed stiffly stable, allows the numerical al- 
gorithm to track the model components accurately with larger 
step sizes after the transient or stiff region has passed. A discussion 
of backward difference formulas can be found in Carnahan and 
Wilkes (1981). 

Systems of DifferentiallAlgebraic Equations (DAE) 

ferential equations of the form: 
Models composed of nonlinear algebraic and stiff ordinary dif- 

d Y 4  = 0 
where y = vector of state variables 

yn = subvector of state variables to be solved 
from differential equations. 

0 = vector of adjustable parameters 

often occur in chemically reacting systems as well as in other fields 
such as circuit analysis or transient flowsheet simulation. Note 
that the system is coupled, with variables from the algebraic 
equations needed to compute the state variables yo and vice versa. 

Gear (1971) stated that for stiff equations, a backward differ- 
ence formula should be used to discretize the differential equa- 
tions. The algebraic equations could then be combined with the 
discretized equations and the resulting algebraic system could be 
solved by Newton's method. The discretized ODES have the form 
of Eq. 13: 

4 

y. - Can,Yn-i - hb*,d" = 0 (15) 
j -  I 

The Jacobian of this equation, needed in the Newton-Raphson 

The combined system of algebraic and differential equations 
iteration, is given by: I - hbnoJ(yn), where J = afn/aYn. 

can be written in the general form: 

EY' = F(Y,B,t) (16) 
where F = combined f and g equations 

y' = derivatives of y 

e = vector of adjustable model parameters 
E = matrix partitioned as [I/OIT so 

that Eqs. 14 and 16 are equivalent 
For DAE systems the analog of Eq. 15 has the Jacobian: 

aF E - 
aY 

Petzold (1982) has shown that solving DAE systems may lead to 
far more difficulties than solving a standard ODE model. From a 
practical standpoint, enforcing convergence by reducing the step 
size leads to an ill-conditioned Jacobian because E is singular for 
DAE systems. 

Moreover, using linear, nonhomogeneous systems as an exam- 
ple, Petzold describes a number of problems with error estimates, 
termination criteria, and convergence failures when discontinui- 
ties in the forcing function are present. She points out that DAE 
systems can have many similarities to stiff systems and, in certain 
cases, have errors that do not vanish as the step size goes to zero. 
While the example problem described in this paper does not fall 
into this problem class, Petzold advises extreme caution in solving 
nonlinear DAE systems. Many of her suggestions for dealing with 
the above problems have been incorporated into her code, 
DASSI,, which is described later. 

MAXIMUM LIKELIHOOD METHOD 

The choice of the objective function used in parameter estima- 
tion should incorporate the specific error structure of the experi- 
mental data if the best fit of the data is to be achieved. The likeli- 
hood function provides a general formulation for the oojective 
function by means of which many types of error relationships can 
be represented. 

To apply the likelihood function assume a relationship of the 
form: 

Z", = + €"I 

where z,,, = measured value for component 1 
Y,,~(B) = computed value of comoonent j 

from model in uth experiment 
0 = vector of adjustable model parameters 

Here, the measured variables, z,  have experimental errors associ- 
ated with their values. The form of these experimental errors is 
given by a covariance matrix; the diagonal elements of the matrix 
represent the independent variances of the measured variables 
and off-diagonal terms represent estimates of correlated or de- 
pendent error relationships. 

If it is assumed that the measured variables, z ,  have a Gaussian 
probability distribution, p ( z ) ,  with mean q ,  and covariance V,  ex- 
p d  asN(v,V), then: 

p ( z )  = ( ~ T ) - " / ~ ( V )  det-li2(V) exp[-l/2(z - t ~ ) ~ V - ' ( z  - q ) ]  
(17) 

for a single experiment in which m variables are measured with a 
covariance V between these measured variables. The experimen- 
tal error vector, eu. defined as the difference, E ( z  - t~ ) ,  thus has 
the normal distribution, N(0 ,  Vu). If n experiments are carried 
out, in each of which m variables are measured with covariance 
V, between the variables in experiment u,  but with no correlation 
between measured variables in the different experiments, then: 

Euj = residual error, assuming the model is correct 
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If one assumes that the proposed model is correct and that the 
parameters e are not far from the optimal parameters, the resid- 
ual vector, t,, can be substituted into Eq. 18 as an adequate repre- 
sentation of the measurement errors. This leads to the likelihood 
function: 

n / \ 

The maximum likelihood method seeks those values of the adjust- 
able model parameters 6' for which the probability of obtaining 
values is maximized. 

To solve our parameter estimation problem, the following error 
structure for the measured values was assumed in the Dow prob- 
lem statement. 

Observation errors at different time points t,, are uncorre- 
lated 

The errors at t, are normally distributed with zero mean and 
a covariance matrix, V, 

It is assumed the measured variables are independent so that 
the covariance matrix is diagonal 

It is assumed the error is heteroscedastic and the diagonal ele 
ment of V, corresponding to component j ,  uui, is a power transfor- 
mation depending on the magnitude of the expected value of zuj. 
Here, the model prediction, yu,, for time t, and component 1 1s 
substituted for the expected value. 

where u; = variance coefficient for component j 
yi = 0, absolute error constant throughout experiment 
yi = 2, relative error constant throughout experiment 

Substituting this diagonal covariance matrix into the likelihood 
function yields: 

u - l j - 1  

where n = total number of measurements for a component 
m = number of measured components 

yt,j = model prediction which is a functin of 0 

Note that the knowledge of the error structure of the data is in- 
strumental in the derivation of the final model and objective 
function equations. For some functions the unknown statistical 
parameters are not present, and in other instances they can be re- 
moved by simple transformation at the optimum. In this particu- 
lar problem, the likelihood function is to be maximized for the 0, 
o, and y parameters. At this maximum, 

aiog L -=  

Using this relation results in solving explicitly for Wi: 

u = l  y ..' 
UI 

where cuj is the model error, zUj - yuj. Substituting Eq. 22 into Eq. 
21 yields: 

log L = -nm/2[log(27r) + 11 

n m  

u = l j - l  

This objective function was suggested by Reilly et al. (1977). In 
this case study, several participants modified this objective func- 
tion even further. If we assume that the errors in each experiment 
are Gaussian and distributed with the same diagonal covariance 
matrix but are not heteroscedastic, then all yj's are set to zero and 
Eq. 23 simply becomes: 

log L(0) = mn/2[log(nl27r) - 11 
m n  

a - 1  u-1  

Thus, one must maximize Eq. 24 for parameters 8 and estimate 
v, from Eq. 22 using the optimal parameters, 0 (Note that by max- 
imizing log L the residuals should be smaller than the actual er- 
rors, since the parameters 0 were chosen to make the residuals as 
small as possible. Because of this, some bias is introduced. Assum- 
ing a general unknown covariance matrix leads to an expression 
similar to Eq. 24 (Bard, 1974, p. 66). 

Finally, if we assume that each measured value has Gaussian 
errors with the same known variance, then the likelihood func- 
tion reduces to a simple residual sum of squares which can be 
minimized to fit the observed data, i.e.: 

u = l  

where E, = residual vector for uth experiment 

It should be noted that the above derivations apply only to ex- 
perimental runs with no missing data. This is not true in the ex- 
ample considered here and different approaches for missing en- 
tries were used in the solutions described below. Analyses of this 
problem can also be found in Bard (1974) and Stewart and Soren- 
sen (1981). 

OPTIMIZATION ALGORITHMS FOR PARAMETER ESTIMATION 

A number of gradient-based algorithms have been developed 
which exploit least-squares structure and significantly reduce the 
computation necessary to find the optimal parameters. The im- 
portant steps of these algorithms are the calculation of a search di- 
rection and determination of the step length to take along this di- 
rection. The iteration step for the optimization variables, 0, can 
be expressed as: 

where 6 - step length 
H = Hessian matrix of the objective function or its 

g = gradient of objective function 
approximation 

One can approximate Hessian information by exploiting the 
form of the objective function. In particular, Gauss-Newton and 
Marquardt methods take advantage of the structure of several 
functions derived from maximum likelihood. For example, the 
simple least-squares function is given by: 

U = l  

or 
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where yu = vector of model predictions, yai, at time u 
z, = vector of measured values at time u 

with the gradient represented by: 

or 

g(9) = -&.'$ 
U = l  

and the Hessian obtained by: 

with 

Note that the first term in the Hessian formulation contains the 
residual vector, e,. Assuming that the residual is small, the Hes- 
sian can be approximated only by the first derivatives contained 
in the second term of the Hessian. Using this Hessian to find a 
search direction, s,, leads to the Gauss-Newton metbod: 

n n Z J ~ J  S, - - CJ'e 
u-  1 u - 1  

However, problems can occur when solving the least squares 
problem if the matrix, J ,  does not have full rank. 

The Levenberg-Marquardt method proposes a nonnegative 
addition to the Gauss-Newton Hessian approximation to insure a 
positive definite Hessian and a descent search direction. The al- 
ternative Hessian is proposed as: 

and the search direction is chosen to satisfy: 

/ n  \ n 

The choice of p is crucial in order to insure a descent direction. 
Bard (1974) summarizes Marquardt's original algorithm for the 
selection of p. 

Another way of insuring descent directions with Gauss-New- 
ton type methods is through rotational discrimination (Fariss and 
Law, 1979), Here the H matrix undergoes a spectral decomposi- 
tion to: 

H = R A R '  
where A is a diagonal matrix. Defining a new coordinate 
transformation: 

s - R T s  
g = R r g  

leads to each element of s given by: 
Si = - y.g 

u, = A,-' if X > <, or 

vi = 0, otherwise 

I !  

Here {is a small positive tolerance. Other methods for handling 
nondescent directions after spectral decomposition are given in 
Bard (1974). 

Finally, several quasi-Newton methods are available for uncon- 
strained minimization (see Gill et al., 1981). These methods as- 
sume nothing about the structure of the objective function, but 
instead approximate second derivatives from past changes to the 
gradient vector. While these methods ensure positive definiteness 
of H, they may become unstable if the problem is ill-conditioned. 
These methods were only tried in the attempted solution and 
yielded unfavorable results. 

Computing the Gradient 

In parameter estimation, gradient calculations needed in the 
optimization algorithm usually make up the most expensive step. 
Here, the adjustable model parameters, 8, do not appear explic- 
itly in the least-squares or likelihood function. Thus, the calcula- 
tion of the gradients of the objective function with respect to the 
model parameters cannot be calculated analytically if the model 
predictions, y, are not solved explicitly from the model. Two alter- 
native approaches are available to calculate the gradients. 

The first alternative is to use either forward or central differ- 
ence formulas. In either case, the choice of the finite-difference 
perturbation size is important. Its value must be chosen to mini- 
mize the effects of truncation error and computation error. Trun- 
cation error is due to the neglected higher-order terms in the Tay- 
lor series expansion and is proportional to the perturbation size 
for the forward difference formula, and perturbation size 
squared for the central difference formula. The computation er- 
ror is due to errors in computing the function values used in the 
gradient approximation. This type of error is proportional to the 
inverse of the perturbation size for both finite-difference formu- 
las. Therefore, it is important that the finite-difference interval be 
kept small to control the truncation errors, but not too small to 
lead to roundoff errors. Since forward differences require half the 
number of function evaluations needed for central difference ap- 
proximations, the former are more efficient but less accurate. For 
instance, forward differences should not be used if the change in 
perturbed function values is small for a given step size, since com- 
putation errors will overshadow the gradient calculation. Thus, 
as the magnitude of the gradient approaches zero at the solution 
of an unconstrained problem, a switch to central differences may 
be required. 

The second alternative for gradient calculation is through sen- 
sitivity analysis. Here, one needs to obtain dy/d8, where the val- 
ues, y, are the model predictions used in the objective function. 
We differentiate both sides of Eq. 16 with respect to 8, and using 
the chain rule we have: 

Interchanging the order of differentiation yields: 

In order to obtain c3yyl8 one must solve the DAE model together 
with the set of simultaneous differential and algebraic equations 
given by Eq. 25, with the quantities aFylaB and d F / h  determined 
by simple differentiation. Equations 25 are called sensitivity equa- 
tions and the values %/a% are called sensitivity coefficients. Bard 
(1974) illustrates the use of these equations to calculate the gradient 
for a nonlinear differential equation model. 

SOLUTIONS OF PARAMETER-ESTIMATION PROBLEM 

Five research groups provided solutions to the parameter-esti- 
mation problem formulated in the first section. All of the solu- 
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tions were obtained by reformulating the model or the parame- 
ters. In three cases, different initial parameter estimates were 
used for the optimization. Needless to say, these modifications 
preclude a straightforward comparison of the model solution and 
optimization algorithms. However, some conclusions can be 
drawn from this study and much can be gained from the prob- 
lem-solving techniques used for this parameter estimation prob- 
lem. 

The investigators are listed with their affiliations in Table 1. A 
summary of results is given in Table 2. However, since only three 
solutions r e g r d  on all four measurements, only these could be 
compared with a common objective function. Instead, a transfor- 
mation of the final parameter vectors for each solution is given in 
Table 3. The explanation for this transformation will be d i s c d  
after describing the solutions. Due to the different nature of each 
solution, the most straightforward comparison can be made sim- 
ply by plotting the model, solved with each set of final parameter 
values, against the three data sets. However, for the sake of brevity 
we have chosen to present only the first (and largest) data set in 
Figures 2 through 8, with a plot of the model with initial parame- 
ter estimates in Figure 1. It should be cautioned that systematic 
errors may be observed in the fits of this data set due to the need to 
compensate for opposing errors in the other sets. Hence, while 
Figures 2 through 8 give a qualitative comparison of the five 
solutions, they may not be totally objective. 

Finally, the optimal parameter values and their confidence in- 
tervals are listed in Appendix B. Due to the different nature of the 
solutions and for the sake of brevity, we refrain from reporting 
and interpreting final covariance matrices on a consistent basis. 
Instead we describe the characteristics of the solutions and model 
more qualitatively. More specific details about each solution are 
available on request from the first author. 

Attempted Solution 

To provide a measure of the difficulty of this problem, a solu- 
tion was attempted by the second author using the model, objec- 
tive function, and starting point stated above. The intention of 
this exercise was to see how easily the problem could be solved 
with available software and no “coaxing” on the researcher’s part. 
A brief account of the computational difficulties encountered is 
given below. 

The original model consists of a DAE system with six ODE’s 
and four algebraic equations and is stiff for the initial set of pa- 
rameters. Very few numerical integration packages have the 
built-in capability of solving DAE’s simultaneously. One of these 
is the DASSL software package developed at the Sandia National 
Laboratory in Livermore, California. This code uses the stable 
Gear backward difference corrector formulas to convert the dif- 
ferential equations to algebraic equations. The algebraic and dif- 
ferential equation variables are then solved using a modified 
Newton method. With this approach, convergence problems can 
occur in solvingthe model for certain choices of the model param- 
eters picked by the optimization scheme. It was observed, how- 
ever, that convergence failures occurred less often if tighter toler- 
ances are imposed for each step of the DAE solver. 

Two optimization strategies, a modified Complex (MC) rou- 
tine (Box, 1965) and a quasi-Newton (QN) gradient-based strat- 
egy were chosen for parameter adjustment. Both algorithms han- 
dle parameter bounds easily but do not take advantage of the 
structure of the objective function. 

The two different optimization techniques required different 
model tolerances to handle the limitations of the model solving 
routine. With the MC routine, convergence problems could be 
handled by defining a constraint function that was violated 
whenever the model failed to converge. This prevented the Com- 
plex algorithm from using an incorrect value of the objective 
function but required the algorithm to choose more points. Be- 
cause the model convergence problems could not be eliminated 
completely by tightening the error tolerance, a loose error toler- 
ance was used to evaluate more points for a fixed CPU time. For 
the gradient-based algorithm, however, it was essential for the 
model to converge as often as possible. Thus, tight relative and 
absolute error tolerances were used in order to compute gradients 
and search directions. If model convergence failure occurred dur- 
ing a forward difference perturbation then the gradient with re- 
spect to the perturbed variable was set to zero. This heuristic 
helped to avoid grossly inaccurate search directions as a result of 
failed gradient calculations. 

Before beginning, a few minor changes were made in the for- 
mulation of the objective function. To prevent the second term in 
Eq. 21 from getting too large, the lower bound for the value of the 
model prediction, yur, was set to 1.0 x Also, since the ex- 
perimental values of component BM are derived and the other 

TABLE 1. SUMMARY OF SUBMITTED SOLUTIONS- 

Na of No. of 
Components Parameters Final Model 

Investigator Objective Function Regressed Optimized Formulation 
(1) M. Caracotsios, W. E. Stewart 

& J .  Sorensen, University of 
Wisconsin, Madison, WI 

and Resins, Indian Orchard, 
MA 

(3) B. S. Ahn, Korean Advanced 
Institute of Science and 
Technology, Seoul, Korea 

(4) R. Klaus, T. Rimensberger 
& D. W. T. Rippin, 
Eidgenoessische Technixhe 
Hochwhule, Zurich, 
Switzerland 

Unknown General V, Unknown 7, 

Unknown Diagonal Vii Unknown yi 

2 

(2) R. H. Fariss, Monsanto Plastics 4 

Unknown Diagonal V,l,rt = 1 

Unknown Diagonal Vtt,r, = 0 

(5) B. Sarup, M.  Michelsen & Unit Matrix V, 
J. Villadsen, Danmarks (Least Squares) 
Tekniske Hojskole, 
Lyngby, Denmark 

3 

12 6 ODEs 
4 Algebraic Eqs. 

17 3 ODE’s 
4 Algebraic Eqs. 

8 

3 ODE’s 

4 ODE’s 

3 ODEs 

‘See Amendix B for initial and final Darameter estimates of each investieator 
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TABLE 2. SUMMARY OF O~IM~ZATION RESULTS 

Participants (Refer to Table 1) 

~ 

Optimization 
algorithm 

Final objective 
function value 

Equivalent 
value, Eq. 23 

No. of 
iterations 

No. of function 
evaluations 

CPU time, min 

Computer 
system 

Quadratic 
Min. 
- 1,009.9 

19 

38’ 

21.53 

Rot. 
Discrim. 
753.84 

753.84 

24 

577 

38.35 

(3) (4) (5) (*) 

(MC) 
Marq. Marq. Marq. QN 

561.72 362.80 0.233 - 199.9 

561.72 656.94 - 199.9 

17 47 20 55 

104 144 20** 637 

14.30 

( -  295.0) 

(- 295.0) 
- 

(115) 

(290) 
0.17 459.0 .** 

(55.27) 

VAX IBM Cyber CDC IBM DEC-20 
11/780 3081 174/18 6500 3033 

‘Attempted solution (Damiano). 
**Sensitivity equations evaluated once per iteration. 

*** Not reported due to excessive I /O at execution. 

three measurements were normalized, only two of the four “ex- 
perimental’’ components, H A  and HABM, were used. Logarith- 
mic transformations of the kinetic parameters were made for ma- 
nipulation by the optimization algorithms. Finally, the 
heteroscedasticity parameters, yi, were held constant at 1 .O 
throughout the optimization runs. 

The results of the optimizations using M C  and QN are dis- 
played in Figures 2 and 3, respectively. As mentioned above, 
much tighter model tolerances were chosen for QN, with the 
result that it required much more computational effort than MC. 
Both algorithms terminated far from the optimum after exhaust- 
ing too much CPU time. The DAE solver had failure rates of 28 
and 12 % for MC and QN, respectively. A summary of the results 
is given in Table 2. 

First Solution 

The first group of investigators also used DASSL to solve the 
DAE model. To avoid the convergence problems discussed above, 
after some trial runs the error tolerances were adjusted automati- 
cally over the course of the optimization. Also, sensitivity equa- 
tions given by Eq. 25 were used to calculate the gradient of the ob- 
jective function with respect to all of the model and statistical 
parameters. 

Several modifications were made to the maximum likelihood 
objective function. First, because of the data dependencies men- 
tioned above, at most two observations were used (HABM and 
AB) from each time point t,. This number was reduced to one 
whenever a concentration was missing; [AB] was chosen 

TABLE 3. SUMMARY OF OPTIMAL SOLUTION VECTORS 

Participants 

Transformed 

k, (342) 1.88 1.84 1.94 2.04 2.21 
kz (342). 2.73 2.89 2.38 2.68 2.78 

E , ( X  10-7 18.74 18.48 18.84 18.26 17.84 
E,(X lop3) 18.88 19.07 17.87 18.41 18.85 
E ~ ( X  low3) 25.67 26.05 25.15 21.90 25.20 

K1/K3 1.44 1.44 1.42 1.44 1.43 
k-,(342)K31Kz 9.84 10.92 8.52 9.98 10.14 

Parameters (1) (2) (3) (4) (5) 

for deletion when [HA] was missing. Secondly, the diagonal 
variance in Eq. 20 was replaced by a full covariance matrix 
with elements: Vuij = ~ , , ~ ~ y , ~ Y i / z y ~ ~ Y i / e .  Here court is normally equal 
to the parameter wij, but is replaced by 6, if either yui or yuj is 
missing. This generalizes the objective function to: 

u-1;- l j -I  

n m  

u - 1  u - l i = l  

where 8,{ = eU{/yui%/z. The model parameters were transformed 
as follows: 

log k1 = p ,  - (1IT - 1/Tb)p, 
log k2 = p2 - (1/T - 1/Tb)ps 

log(kl/k-l) = - p 3 / T b  - (1/T - 1/Tb)Po 
lo@,) - - p 4 I T b  

log(&) = -p51Tb 

Tb - 342.15 K 
This transformation was chosen to prevent the parameters 

from varying over large orders of magnitude and to reduce the in- 
tercorrelation of the parameters in the rate constants. Finally, the 
elements of the measurement covariance matrix were added as re- 
gression parameters. 

The successive quadratic minimization algorithm described in 
Stewart and Sorensen (1981) was applied here. This approach is a 
generalization of the Gauss-Newton method that allows for miss- 
ing data, linear constraints on the parameters, and general un- 
known covariance. Solution of this problem pnxeeded in two 
stages. After determining that the HABM and AB measurements 
were probably not independent, the problem was formulated 
without heteroscedasticity. After 15 iterations with Marquardt’s 
method, the problem converged but the normal equations were 
ill-conditioned. Closer inspection of the Hessian showed that pa- 
rameters p ,  and p ,  could not be estimated simultaneously. 

The second stage proceeded from this solution with the “he- 
teroscedastic” objective function given above and p ,  fixed. Con- 
vergence with successive quadratic minimization was obtained 
after four additional iterations and the objective was found to be 

log(K3) = -pelT, 
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independent of pg as well. The parameter Y H A B M  converged to its 
lower bound of zero, while the final YAB was 0.19 f 0.12. Figure 4 
shows how this solution fits the experimental data. 

Second Solution 

Results from the second solution are shown in Figure 5 .  Here 
the DAE model was transformed by noting that three of the six 
ODEs are dependent and can be reduced to algebraic equations. 
The revised model consisted of Eqs. 1 ,4 ,  and 6, with predictions 
for yz, y3, and ys calculated by material balances using yl, y4, and 
ye. Problems were observed in the numerical integration scheme 
with ye becoming negative. To eliminate these problems, Eqs. 1 
and 6 were divided by y1 and y,, respectively. This left the left 
hand sides of Eqs. 1 and 6 as d(1og yl)/dt and d(1og y,)/dt, respec- 
tively. To avoid additional problems with log yl, Eq. 1 was further 
modified to force the derivative d(1og yl)/dt to zero smoothly for 
small values of yl. The differential equations were first integrated 
using the Harwell stiff integrating package, DCOlAD, which 
uses Gear's backward difference formulas. Then for fixed values 
of y1 to ye, the original algebraic equations were solved using y, 
and Eq. 7 as a tear set and subsequently solving for yw, y9, and yl0. 
Here, a tight tolerance was required for the algebraic system to 
avoid numerical problems with the integration scheme. Also, the 
model parameters were transformed to: 

The log ko parameters were calculated relative to a base tem- 
perature of 67OC, according to the transformation: 

T - 67 
T + 273 log k = log ko  + ( E  I0.67558)- 

This participant opted for the above transformation because a 
values tend to vary over orders of magnitude and their interaction 
with the activation energy leads to an ill-conditioned problem. In 
addition, the objective function, Eq. 21 was modified by replac- 
ing the model prediction yui, by 112 (zUi + yJ. Since a diagonal 
covariance matrix was assumed, missing data were handled sim- 
ply by using partial summations in the objective function. The ro- 
tational discrimination technique of Faris and Law (1979) was 
used for optimization. Gradients were calculated using a central 
difference formula requiring twice as many function evaluations 
as gradient values. Finally, this investigator also optimized the 
statistical parameters y and o and noted that the solution is not 
unique because two linear combinations of the model parameters 
can be identified. More will be said later about dependency in the 
model parameters. 

The solution was found by executing six passes of the optimiza- 
tion algorithm. In each pass a subset of the kinetic and statistical 
parameten were allowed to vary, with all parameters varying in 
the last pass as the optimum is approached. The solution was thus 
found by careful monitoring and appropriate intervention by the 
investigator over the course of the convergence history. No confi- 
dence intervals were reported by this investigator because he felt 
the assumed error structure was inappropriate for this problem. 
This is confirmed by his results in Appendix B. Here V,, is about 
the same value as the other variances but the parameters y, and up 
that determine it are drastically different. 

Third Solution 

The third investigator reduced the DAE model to three inde- 
pendent ODEs that provide values for yl, y3, and y5. The IMSL 
routine DGEAR was used to integrate the ODE'S and Eq. 23 was 
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changed so that the variance was proportional to the measured 
value raised to a power, rather than the value of the model predic- 
tion. This substitution set the last term and the denominator of 
the second term in Eq. 23 equal to a constant, which allowed him 
to optimize a simpler objective function, and st i l l  provide a value 
for the original objective function. The heteroscedasticity param- 
eters, y, were set to unity for the optimization runs and the Leven- 
berg-Marquardt routine from the IMSL library was used to opti- 
mize the objective function. Gradients were calculated by finite 
difference as described in the IMSL manual. A partial summa- 
tion was used in the objective function to account for the missing 
data. 

Moreover, the starting point was altered by changing the initial 
valueof &from lo-” to 10-l5. Evenso, theproblem required 104 
function evaluations before it converged. Figure 6 displays the so- 
lution found by this investigator. 

Fourth Solution 

This participant reduced the six ODE’s and four algebraic 
equations to four ODES by substituting for the equilibrium rela- 
tionships and dependent state variables. The model was solved us- 
ing a semiimplicit third-order Runge-Kutta method by Michelsen 
(1976). The optimization routine was developed by Klaus and 
Rippin (1979). It contains a modified Marquardt algorithm with 
revisions by Fletcher (1971), a gradient projection technique for 
handling bounds, and several strategies for treating numerical 
difficulties. All gradients were calculated by finite difference. Ze- 
roes were substituted for missing data in calculating the objective 
function. 

Some problems were encountered in the integration step with 
initial values of the parameter estimates, but these were resolved 

by changing the initial estimate of K2 from 1.0 x lo-” to 
1.0 x 10-l7. An optimal solution could not be reported with the 
original objective function. However, this investigator reported 
good results using an unknown diagonal covariance matrix with- 
out heteroscedasticity. The objective function takes the general 
form given by the second term in Eq. 24. The best results reprt-  
ed by this investigator are shown in Table 2 and Figure 7. 

Fifth Solution 

These participants elected to reduce the system of ODE’s to 
only three by writing total mass balances. Further, using the three 
equilibrium relations and assuming almost undissociated species 
and weak acids, they reduced the DAE model to three coupled 
ODES. These researchers refrained from using the likelihood 
function based on Eq. 20, stating that the dependencies in the 
data do not make this choice suitable. Instead, they used a simple 
least-squares function and excluded the derived BM measure- 
ments from the analysis; a partial summation of this function was 
used to account for the missing data. Sensitivity equations were 
formulated and solved simultaneously with the model equations 
to compute the gradients of the residuals with respect to the 
model parameters. The IMSL library subroutine, DGEAR, was 
used for this task, after modification to handle the sensitivity 
equations. The Harwell library routine (VBOIAD), based on 
the Levenberg-Marquardt method, was used to minimize the 
least-squares problem. Also, the rate constant parameters were re- 
formulated using a transformation similar to that used in the sec- 
ond solution. Log k , O  and (E,/RT,,) (T,&? = 340 K) were the ad- 
justable kinetic parameters and the parameters log (K,IK3) and 
log (K3/K2)  were given starting guesses of zero. More will be said 

Figure 6. Model with optimal parameter estimates from solution (3). 
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about this transformation in the following sections. Results for 
this solution are presented in Figure 8. 

SUITABILITY OF THE KINETIC MODEL 

From the solutions described above, a number of observations 
can be made about the kinetic model and how it should be treated 
for parameter estimation. With their solutions, several investiga- 
tors submitted very detailed analyses about the suitability of the 
model. A summary of their comments along with a few other 
points is given below. 

First, it is readily seen from the kinetic mechanism that [HA] is 
predicted by the model to vanish at steady state. The [HA] mea- 
surements, however, level off at about 3 - 4 x gmollkg. 
Thus the errors at long times will be biased by the model and ren- 
der the error assumptions invalid. The second investigator at- 
tempted to remedy this situation by making the second reaction 
reversible and introducing new parameters for k - z .  His solution to 
the modified model yielded an improved maximum likelihood 
optimum and led to final [HA] of about gmolikg. He also 
found the modified model much easier to solve. Clearly the addi- 
tion of the reverse step helps to remedy the model deficiency, al- 
though this step is not apparent from prior knowledge of this reac- 
tion. 

Second, several investigators noted dependencies among the ki- 
netic parameters. This not only leads to nonunique optimal solu- 
tions but also yields an H matrix that becomes singular. Conse- 
quently, one also encounters convergence problems. Through 
analysis of the Hessian matrix after spectral decomposition, the 
second investigator noted a “two-dimensional dependency” 
among the parameters k-,, K , ,  Kz, and K3. In Table 3 we present 

2 

5 

I 

0 5  

3 

values for K1/K3,  ko-1K3/K2 and the remaining parameters for the 
five solutions. Although the original optimal parameter values 
vary a great deal for these solutions (see Appendix B), the trans- 
formed parameters in Table 3 are very similar. 

The model can also be reduced to deal with a smaller parame- 
ter set through physical arguments. The fifth investigator per- 
formed part of this reduction by assuming that the small equilib- 
rium constants would lead to [ H + ]  = 0. This immediately 
eliminates the equilibrium relations and reduces the model to 
eight parameters and three ODE’S. After solving the regression 
problem, this assumption was also consistent with the results. 

Finally, we note that three species were measured as experi- 
mental data and normalized to meet a mass balance constraint. 
The fourth component was derived from a relation on [BW that 
generally does not hold. Consequently, these data dependencies 
and the model deficiency mentioned above clearly violate the as- 
sumed-error structure for which the maximum likelihood func- 
tion was derived. 

The first and fourth investigators observed that these measure- 
ments were not independent even if only two components were 
used in the objective function. Thus the unknown diagonal covar- 
iance assumption covariance should be replaced with an un- 
known general covariance, as was done by the first investigator. 

A l q  while the justification for the heteroscedasticity assump- 
tion is weak, the complexity of the objective function greatly in- 
creases. This becomes especially serious when [HA] goes to zero 
and the objective function becomes unbounded. Thus, during the 
optimization, y1 is forced to zero regardless of the actual error 
structure. To avoid this problem, the second and third investiga- 
tors substituted either zuIyj or 1/2(2,, + yuj)yi for yujyi in the 
objective function. The first investigators used [max( yuj)]7j 
in their calculations. 

Figure 7. Model with optimal parameter estimates from solution (4). 
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Figure 8. Model with optimal parameter estimates from solution (5). 

GUIDELINES FOR PARAMETER ESTIMATION 

The following conclusions serve as guidelines for tackling dy- 
namic parameter-estimation problems. 

First, we need to consider transformation of kinetic parame- 
ters. Here, the parameters should be relatively uncorrelated and 
scaled so that they do not vary over many orders of magnitude. All 
but the third and fourth investigators used log transformations of 
the equilibrium constants and kinetic parameters centered about 
a mean base temperature. This helps to improve the condition- 
ing, and hence the convergence of the problem. 

Second, a number of problems can also be avoided by trans- 
forming the model. For the original model, DASSL was used to 
solve the DAE system. Here, numerous difficulties were encoun- 
tered especially for stiff sets of parameter values. For the at- 
tempted solution these led to frequent convergence failures and 
poor performance. Most investigators reduced the model to a sys- 
tem of ODE’S. This led to fewer convergence problems and more 
efficient solutions. 

Finally, the last three investigators used different starting 
guesses in solving this problem. The only explanation for this was 
offered by the fifth investigators who noted that, with the initial 
guesses in the Dow problem statement, complete conversion of 
H A  to HABM occurs before any A B  is formed. This is easily seen 
in Figure 1. To obtain lower, more reasonable peak values of 
HABM, a starting guess of K,IK, = 1 and K J K ,  = 1 was se- 
lected. 

The use of different starting points suggests a more general ap- 
proach that appears in all of the solutions. Investigators one and 
two used multiple restarts to converge from the original starting 
point. Moreover, their preliminary runs dealt with simpler opti- 
mization problems which may have given better progress than 
Eq. 23. Although it was not necessary for obtaining a solution, 

the first investigators began with a likelihood function without 
heteroscedasticity, while the second kept the statistical parame- 
ters constant until he was close to the solution. This suggests that 
an interactive approach and a great deal of experience may still be 
required to solve difficult parameter-estimation problems. Also, 
from the above solutions it appears that efficient and user- 
friendly software is not yet available that automatically handles 
all of the difficulties encountered. 
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NOTATION 

a ,,,, b,,, b,, c, - coefficients in ODE solver 
E 
E, = activation energies 
e,, 
f 
F 
g 
h 
H = Hessian matrix 

= partitioned matrix in DAE system 

= experimental error vector for experiment u 
= righthand side of ODE system 
= righthand side of DAE system 
= algebraic equations; also gradient vector 
= step size for ODE solver 
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iteration counter 
equilibrium constants 
rate constants 
maximum likelihood function 
number of measured variables 
number of experiments 
transformed parameter vector 
function values in ODE solver 
eigenvector matrix for rotational discrimination 
search direction for 0 
temperature 
time at which experiment u was taken 
covariance matrix 
model prediction 
measured variables 

preexponential factor in rate constants 
heteroscedasticity parameters 
step length 
residual vector for experiment u 
tolerance for rotational discrimination 
parameter vector 
mean of measured variables 
eigenvalues of H 
Levenberg-Marquardt parameter 
transformed search direction 
variance coefficient for heteroscedasticity 
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APPENDIX A EXPERIMENTAL DATA AND INITIAL CONDITIONS 

The initial parameter estimates are: 

( Y ~  = 2.0 x 1013 
E l  3 2.0 x 104 
(Y2 = 2.0 x 1013 
Ez = 2.0 x 104 - 4.3 x 1015 
E _ ,  = 2.0 x 104 
K ,  = 1.0 x 10-17 
Kz = 1.0 x lo-” 

= 1.0 x 10-17 
y] = 1.0 
yz = 1.0 
7 3  = 1.0 
y4 = 1.0 

The initial model conditions in addition to those given in the 
data sets are: 

Y5 - 0  
ye = 0.0131 
y7 
Ys = Y7 

= 1/21 - Kz + [K,2 + 4K2y1(0)]0,5} 
Y9 = 0 
YlO - 0 
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TABLE Al.  RUN 1 CONCENTRATION vs. T w  DATA AT 40OC TABLE A2. RUN 2 CONCENTRATION VS. TIME DATA at 67OC (cont'd) 

Concentration (gmollkg) Concentration (gmol/kg) 
Time h HA BM HABM AB Timeh HA EM HABM AB 

0.00 
0.08 
0.58 
1.58 
2.75 

3.75 
4.75 
5.75 
8.75 

13.05 

21.75 
28.75 
46.25 
52.25 
76.25 

106.25 
124.25 
147.25 
172.25 
196.25 

219.75 
240.25 
274.25 
292.25 
316.25 

340.75 
364.25 
386.75 
412.25 
442.75 

460.75 
483.75 
507.25 
553.75 
580.75 

651.25 
673.25 
842.75 

1.7066 
1.6960 
1.6826 
1.6596 
1.6305 

1.6143 
1.5892 
1.5673 
1.5133 
1.4075 

1.2308 
1.0931 
0.7268 
0.5773 
0.2065 

0.0650 
0.0391 
0.0244 
0.0145 
0.0083 

0.0074 
0.0050 
0.0047 
0.0042 
0.0015 

0.0017 
- 
- 
- 
- 

- 
- 
- 
- 

0.0046 
- 
- 
- 

8.3200 
8.3065 
8.2954 
8.2730 
8.2437 

8.2277 
8.2026 
8.1781 
8.1265 
8.0167 

7.8440 
7.6977 
7.3134 
7.1495 
6.6123 

6.2309 
6.1220 
6.0084 
5.9193 
5.8556 

5.8037 
5.7680 
5.7222 
5.7021 
5.6722 

5.6593 
5.6351 
5.6176 
5.6131 
5.5991 

5.5939 
5.5905 
5.5736 
5.5558 
5.5631 

5.5472 
5.5516 
5.5465 

O.oo00 
0.0077 
0.0234 
0.0470 
0.0763 

0.0923 
0.1174 
0.1371 
0.1935 
0.2949 

0.4760 
0.6047 
0.9530 
1.0881 
1,2929 

1.1941 
1.1370 
1.0528 
0.9835 
0.9326 

0.8821 
0.8492 
0.8064 
0.7869 
0.7628 

0.7495 
0.7263 
0.7112 
0.7063 
0.6927 

0.6871 
0.6837 
0.6672 
0.6494 
0.6467 

0.6408 
0.6452 
0.6397 

0.0000 
0.0029 
0.0oO6 
- 

- 

- 
- 

0.0024 

0.0042 

0.0088 
0.0268 
0.0412 
0.2074 

0.4475 
0.5305 
0.6294 
0.7086 
0.7659 

0.8171 
0.8514 
0.8957 
0.9155 
0.9425 

0.9556 
0.9793 
0.9956 
1.0003 
1.0141 

1.0195 
1.0229 
1.0396 
1.0574 
1.0551 

1.0660 
1.0616 
1.0669 

- 

- 

TABLE A2. RUN 2 CONCENTRATION vs. T ~ M E  DATA AT 67OC 

Concentration (gmollkg) 

Time h HA BM HABM AB 

0.00 
0.08 
1.08 
2.33 
3.33 

4.33 
5.33 

12.83 
23.33 
27.83 

30.83 
51.67 
83.33 
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1.6497 8.2262 
1.6400 8.2158 
1.4068 7.9826 
1.0895 7.6584 
0.8389 7.3861 

0.6485 7.1231 
0.4604 6.8643 
0.1068 6.0636 
0.0322 5.7212 
0.0171 5.6208 

0.0298 5.6680 
0.0049 5.5139 
0.0030 5.4859 

January, 1986 

0.0104 
0.0186 
0.2522 
0.5656 
0.7915 

0.9097 
1.0267 
0.9332 
0.7396 
0.6690 

0.6916 
0.5877 
0.5627 

0.0017 
0.0028 
0.0026 
0.0095 
0.0312 

0.1036 
0.1745 
0.6216 
0.8896 
0.9751 

0.9402 
1.0692 
1.0957 

93.33 
102.42 

124.83 
148.08 
171.83 
197.33 
228.33 

270.33 
293.33 

0.0022 
0.0022 

0.0026 
0.0012 
0.0036 
0.0027 
0.0024 

0.0026 
0.0032 

5.4796 
5.4799 

5.4792 
5.4790 
5.4857 
5.4843 
5.4862 

5.4858 
5.5069 

0.5580 
0.5587 

0.5572 
0.5602 
0.5617 
0.5617 
0.5646 

0.5638 
0.5441 

1.1012 
1.1007 

1.1018 
1.1004 
1.0963 
1.0970 
1.0946 

1.0952 
1.0945 

TABLE A3. RUN 3 CONCENTFIATION vs. TIME DAIX AT lOOOC 

Time h 

0.00 
0.08 
0.42 
0.75 
1.17 

1.50 
2.00 
2.50 
3.00 
3.50 

4.00 
4.50 
5.00 
5.50 
6.50 

7.00 
7.50 
S.00 
8.50 
9.00 

9.50 
10.00 
10.50 
11.00 
11.50 

12.50 
13.50 
14.50 
16.50 
21.75 

29.50 
53.00 

Concentration (gmollkg) 

HA BM HABM A B  

1.5608 8.3546 0.0082 0.0086 
1.5316 8.3325 0.0445 0.0015 
0.7016 7.3364 0.7088 0.1674 
0.3763 6.7519 0.7745 0.4268 
0.2229 6.3849 0.7147 0.6402 

0.1793 6.2899 0.7065 0.6918 
0.1336 6.1287 0.6363 0.8075 
0.0894 5.9985 0.5953 0.8931 
0.0752 5.9541 0.5785 0.9237 
0.0626 5.9186 0.5686 0.9464 

0.0518 5.8818 0.5542 0.9720 
0.0598 5.8878 0.5434 0.9744 
0.0320 5.8285 0.5397 1.0059 
0.0228 5.8086 0.5382 1.0166 
0.0225 5.8048 0.5354 1.0199 

0.0180 
0.0155 
0.0135 
0.0118 
0.0110 

0.0096 
0.0085 
0.0081 
0.0200 
0.0183 

0.0060 
0.0192 
0.0059 
0.0115 
0.0059 

0.0049 
0.0039 

5.7944 
5.7870 
5.7833 
5.7775 
5.7774 

5.7735 
5.7706 
5.7704 
5.7912 
5.7875 

5.7644 
5.7874 
5.7641 
5.7680 
5.7596 

5.7515 
5.7468 

0.5336 
0.5320 
0.5315 
0.5295 
0.5302 

0.5303 
0.5288 
0.5294 
0.5268 
0.5261 

0.5276 
0.5246 
0.5271 
0.5202 
0.5234 

0.5173 
0.5138 

1.0260 
1.0305 
1.0326 
1.0365 
1.0362 

1.0381 
1.0403 
1.0401 
1.0310 
1.0332 

1.0440 
1.0340 
1.0444 
1.0459 
1.0485 

1.0556 
1.0597 
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APPENDIX B: INITIAL AND FINAL PARAMETER ESTIMATES 
WITH 95% CONFIDENCE INTERVALS 

TABLE B4. INVESTIGATOR (4), RIPPIN, ESTIMATES 

Parameter Initial Estimate Final Estimate 

TABLE B1. INVESTIGATOR (l), CARACOTSIOS, STEWART, AND SORENSEN, 
&mm 

_____ 

Parameter Initial Estimate Final Estimate 

Pl 
Pz 
P3 
P4 
P5 

Pe 
P7 

P9 
PlO 

Pll 
PlZ 

PH 

PI3 
P14 

1.1938 
1.1938 

1,837.0 
13,393.0 
8,666.0 

13,393.0 
10,070.0 
10,070.0 

0 

* 
t 

* 

0.7965 f 0.0615 
1.1658 f 0.0558 
12,392 f 50 
19,885 f 10 
8,200'* 

20,000** 
9,493 f 211 
9,457 f 233 

-3,230 f 579 
(1.08 f 0.32)010-~ 

(-2.39 f 1.95)*10-' 
(5.72 f 2.06)*10-4 

O m *  
0.190 f 0.118 

'Not specified. 
**95% confidenceintervals arenotestimated. 

TABLE B2. INVESTIGATOR (2), FARISS, Esnmm 

Parameter Initial Estimate Final Estimate 

ff1 2.0 x 1013 1.3708 x 1012 
El 2.0 x 104 1.8476 x lo4 

2.0 x 1013 5.2282 x 1012 ffZ 
2.0 x 104 1.9075 x 104 Ez 

ff-1 4.3 x 1015 1.6215 x 1W 

2.0 x 104 2.6046 x 104 E-1 
Kl 1.0 x 10-17 2.575 x 10-16 
KZ 1.0 x 10-11 4.876 x 10-14 
K3 1.0 x 10-17 1.7884 x 10-18 
Y1 1.0 0.8149 

YZ 1.0 7.2271 

Y4 1.0 0.1352 
W1 0.065 0.06393 
WZ 0.143 4.792.10-3 

0 3  0.057 0.03105 
w4 0.0525 0.02473 

Y3 1.0 -0.2972 

'95% confidence intervals not reported. 

f f l  

f f Z  

f f - 1  

El 

EZ 

E-1 
Kl 
KZ 
K3 

2.0 x 1013 
2.0 x 104 
2.0 x 1013 
2.0 x 104 
4.3 x 1015 
2.0 x 104 
1.0 x 10-17 
L O  x 10-17 
1.0 x 10-17 

~~ 

(1.0955 * 0.00186)*1012 
(1.8255 k 0.00036)*104 
(1.8165 * 0.00515)*101* 
(1.8412 * 0.00024)*104 
(2.8397 & 0.00897)*1016 
(2.1901 * 0.00076)*104 
(1.2263 f 0.00266)*10-18 
(2.0404 * 0.0132)*10-17 
(8.4829 k 0.0196)*10-19 

TABLE B5. INVESTIGATOR (5), SARUP, MICHELSEN, AND VILLADSEN, 
ESTIMATES 

Parameter Initial Estimate 

In lq 1.022 
El 20,000 
ln k? 1.022 
EZ 20,000 

E-I 20,000 
1n(K1/K3) 0 
1n(K3/KZ) 0 

In b-, 6.393 

To - 340K 

Final Estimate 

0.78 f 0.164 
17,837 f 1000 

1.01 f 0.033 
18,850 f 222.3 

5.0 f 0.82 
25,210 f 553.9 
0.3570 f 0.0181 
-2.700 f 0.5 

TABLE B6. THIS STUDY, DAMIANO, MC ESTIMATES 

Parameter Initial Estimate Final Estimate 

f f l  2.0 x 1013 1.8745 x 1013 
El 2.0 x 104 1.960 x 104 
ff2 2.0 x 1013 1.8911 x 1013 
Ez 2.0 x 104 2.0046 x 104 
f f - I  4.3 x 1015 3.8003 x 1015 

Kl 1.0 x 10-17 1.0296 x 10-17 
KZ 1.0 x 10-11 1.3969 x 10-11 
K3 1.0 x 10-17 6.3845 x IO-IW 

E-I 2.0 x 104 2.0110 x 104 

'95% confidence intervals not estimated. 

TABLE B7. THIS STUDY, DAMUNO, ON ESTIMATES 

TABLE B3. INVESTIGATOR (3). AHN. ESTIMATES Parameter Initial Estimate Final Estimate 
~ ~ ~~~ 

Parameter Initial Estimate Final Estimate 

lml 
El 
lna, 
Ez 
l m  - 

E-1 
lnK, 
lnK, 
lnK3 

30.627 

30.627 

35.997 

-39.144 
-34.388 
- 39.144 

2.0.104 

2.0.104 

2.0.104 

28.533 f 1.264 
(1.8835 f 0.0943)*104 
27.313 f 0.391 
(1.7875 f 0.0254).104 
44.594 f 10.173 

(2.5150 f 0.0473)*104 
-38.667 f 5.822 
-33.779 f 9.166 
-39.019 f 5.821 

2.0 x 1013 
2.0 x 104 
2.0 x 1013 
2.0 x 104 
4.3 x 10'5 

2.0 x 104 
1.0 x 10-17 

1.0 x 10-17 

1.0 x 10-11 

'95% confidence intervals not estimated. 

7.8961 x 10'3 
1.7486 x 104 
7.1852 x 1011 
1.7958 x 104 
5.1796 x 1015 

2.2052 x 104 
1.1944 x 10-17 
1.9016 x 10-11 
7.8221 x 10-18 
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