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Pressão (Teoria Cinética dos Gases)

• O número de moléculas é muito
grande, mas a separação é
grande comparado com o tamanho das 
moléculas 
• Moléculas movem aleatoriamente, 
todavia a distribuição das velocidades é 
constante 
• Moléculas colidem entre si e nas 
paredes (como bolas de sinuca), 
nenhuma outra força é considerada 
• Moléculas obedecem a lei de Newton 
para o movimento 

Pilares da Teoria Cinética dos Gases
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probability distribution function

fraction of gas ⇥ 81.67�
most probable speed �red⇥ ⇥ 336.2 m⇤s
average speed �orange⇥ ⇥ 379.3 m⇤s
root mean square speed ⇥ 411.7 m⇤s

Distribuição de Maxwell
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Pressão (Teoria Cinética dos Gases)

P = nRT

R = 8.31 J/mol-K

T é a temperatura em K

n = N/V , N é o número total de moléculas

R = NAkB , NA é o número Avogadro, 6.02⇥ 10

23

kB é a constante de Boltzmann, 1.381⇥ 10

�23
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Pressão (Corpo)

Até agora falamos de 
pressão absoluta, no 

corpo o mais 
comum é utilizar 
pressão relativa a 

pressão atmosférica

406 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

For mercury ρ is 13.6 g/cm3. For water ρ = 1.00 g/cm3 at 4◦C. The density
of whole blood is a bit higher, 1.06 g/cm3 at 37◦C. The units of pressure are
presented in Table 2.6.

So far we have been discussing absolute pressure, Pabs, which is the total
force per unit area. In discussions concerning the body it is very common to
cite the gauge pressure, Pgauge, which is the pressure relative to a standard,
which is usually atmospheric pressure, and so Pgauge = Pabs − 1 atm. This
is helpful because it is the difference in pressure that is the net force that
acts on a unit area. In discussing blood pressure and the pressure of air in
the lungs, it is assumed that the term pressure P refers to the gauge pressure
relative to the local atmospheric pressure. During breathing in (which is called
inspiration), the pressure in the lungs is lower than that outside the body and
so the internal (gauge) pressure is <0. Table 7.1 gives typical pressures in the
body.

Table 7.1. Typical (gauge) pressures in the body (in mmHg). (Using data from
[345])

arterial blood pressure
maximum (systolic) 100–140
minimum (diastolic) 60–90

capillary blood pressure
arterial end 30
venous end 10

venous blood pressure
typical 3–7
great veins <1

middle ear pressure
typical <1
eardrum rupture threshold 120

eye pressure
humors 20 (12–23)
glaucoma threshold range ∼21–30

cerebrospinal fluid pressure
in brain – lying down 5–12

gastrointestinal 10–12

skeleton
long leg bones, standing ∼7,600 (10 atm.)

urinary bladder pressure
voiding pressure 15–30 (20–40 cmH2O)
momentary, up to 120 (150 cmH2O)

intrathoracic
between lung and chest wall −10[Physics of the Human Body - Herman]
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Pressão (Corpo)

7.1 Characteristic Pressures in the Body 407

Fig. 7.1. Manometer

7.1.2 Measuring Pressure

One way of directly measuring pressure is with a manometer (Fig. 7.1). The
measured pressure is that corresponding to the height of the fluid column plus
the reference pressure, so

P = Pref + ρgh. (7.1)

The most common way to measure blood pressure is with a sphygmo-
manometer (sfig-muh-ma-nah’-mee-ter), which consists of a cuff, a squeeze
bulb, and a meter that measures the pressure in the cuff (Fig. 7.2). The cuff
is the balloon-like jacket placed about the upper arm above the elbow; this

Fig. 7.2. Measuring blood pressure with a sphygmomanometer, listening to
Korotkoff sounds (of varying levels during the turbulent flow shown in A–C). (Lis-
tening to sounds is called auscultation). (From [364])
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Fig. 7.3. Variation of blood pressure with time, for blood leaving the left heart for
the systemic system, with the systolic and diastolic pressures shown

encircles the brachial artery. The cup of a stethoscope is placed on the lower
arm, just below the elbow, to listen for the flow of blood. With no pressure in
the cuff, there is normal blood flow and sounds are heard through the stetho-
scope. Gurgling sounds are heard after the cuff is pressurized with the squeeze
bulb and then depressurized by releasing this pressure with a release valve in
this bulb.

To understand when these sounds occur and their significance, we need
to understand how the pressure in the main arteries varies with time. (This
will be detailed in Chap. 8.) In every heart beat cycle (roughly 1/s), the blood
pressure in the major arteries, such as the brachial artery, varies between
the systolic pressure (∼120 mmHg) and the diastolic pressure (∼80 mmHg),
as is depicted in Fig. 7.3. (The units of these cited gauge pressures are in
mmHg – see (7.1) and Chap. 2.) When the pressure in the cuff exceeds the
systolic pressure, there is no blood flow to the lower arm and consequently
there are no sounds. When the pressure in the cuff is lowered with the release
bulb to just below the systolic pressure, there is intermittent flow. During
the part of the cycle when the arterial blood pressure is lower than the cuff
pressure there is no flow; when it is greater, there is flow. This intermittent flow
is turbulent and produces gurgling sounds. These sounds, the Korotkoff or K
sounds, are heard by the stethoscope. As the cuff pressure is lowered further,
the K sounds get louder and then lower, and are heard until the cuff pressure
decreases to the diastolic pressure. Blood flow is not interrupted when the cuff
pressure is less than the diastolic pressure and the K sounds cease because
the blood flow is no longer turbulent. Therefore, the onset and end of the K
sounds, respectively, denote the systolic and diastolic blood pressures. (This
auscultatory method of Korotkoff was introduced by Russian army physician
Korotkoff [362] who discovered a century ago that sound can be heard distally
from a partially occluded limb [349].)

7.2 Basic Physics of Pressure and Flow of Fluids

In this section we overview the basics of fluids. Some of this will be a review
for most. Some of the more advanced results are derived, while others are
merely presented. These basics will be used in subsequent chapters.
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Lei de Laplace
A pressão, P, de um vaso sangüíneo excede a pressão 
externa por:  

�P = P � P
ext

essa diferença de pressão deve ser suportada pelas 
paredes dos vasos. Quanto maior o vaso, maior a 
tensão nas paredes.
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Lei de Laplace

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Energia Livre de Helmholtz

O que determina a direção espontânea das mudanças?

Tendência a minimizar a energia, U
Tendência a maximizar a entropia, S

Essas duas tendências podem ser resumidas
matematicamente:

Energia livre de Helmholtz

H = U � T S (1)

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Tensão Superficial

Superficie livre

(I)

(S)

Liquido

Trabalho é necessário
para mover moléculas
para a superfície

(Gás) Moléculas estão distantes
(liquido) Moléculas estão perto
devido força de Van Der Waals

Superfície
Moléculas são atraídas apenas para
dentro e para os lados

tendência de contração da
superfície
superfície se comporta como
uma membrana esticada
tendência de minimizar a área
superficial

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Surfactantes...

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Lei de Laplace para vasos e alvéolos

Vasos de raio maiores, necessitam de tensões maiores para
suportar uma mesma pressão interna.

r

T

P

T

T

P

T

r

Para vasos cilíndricos:

(2rh)P = (2h)T ⇥ T = Pr (2)

Para vasos esféricos:

(�r2)P = (2�r)T ⇥ T = Pr/2 (3)

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Tensão das paredes

Definição de Pressão Energia Interna de Gases Tensão Superficial Tensão em Vasos e alvéolos

Tensão das paredes
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Fluidos em Movimento

• laminar ou turbulento. O numero de 
Reynolds, Re, é um variável adimensional 
que divide esses dois regimes.
• compressivo (gases) ou incompressivo 
(liquidos)
• viscoso ou não viscoso (superfluidos)
• rotacional (vortices) ou irrotacional
• constante ou pulsátil

5 atributos, o 
Fluxo pode ser: Reynolds: Razão entre as forças 

inerciais e as viscosas  

7.2 Basic Physics of Pressure and Flow of Fluids 411

Table 7.2. Surface tension (γ) for several liquids. (Using data from [351, 358, 363])

liquid T (◦C) γ (10−4 N/m)

water 0 7.56
20 7.28
60 6.62
100 5.89

whole blood 20 5.5–6.1
blood plasma 20 5.0–5.6
lung surfactant 20 0.1
cerebrospinal fluid 20 6.0–6.3
saliva 20 1.5–2.1
benzene 20 2.89
mercury 20 46.4

This is the Law of Laplace for a sphere. We will use it in Chap. 9. (It is derived
in more detail in Problem 7.12.)

For a spheroid with different radii of curvature, R1 and R2, (7.4) and (7.9)
generalize to

∆P =
T

R1
+

T

R2
. (7.10)

For a cylinder, R1 = R and R2 = ∞ and this reduces to (7.4). For a sphere,
R1 = R and R2 = R and it reduces to (7.9).

Our force balance arguments have made a direct connection between this
tension, or really surface tension, and its units of force/length. Surface tension
also has the same units as energy/area. This is reasonable because it is also the
energy “cost” of making a unit area of a surface (or interface). Representative
values of surface tension are given in Table 7.2.

7.2.2 Fluids in Motion

There are five attributes of the flow of fluids:

1. Flow can be laminar/streamline/steady or turbulent/unsteady. In laminar
flow, a particle in the flow moves in a smooth manner along well-defined
streamlines. In contrast, the motion is very random locally in turbulent
flow. The Reynolds number Re is a dimensionless figure of merit that
crudely divides the regimes of laminar and turbulent flow. It is the ratio
between inertial force (ρu2/2; ρu2 is used here) and viscous force (ρηu/d)
per unit volume on the fluid, where ρ is the fluid density, u is the average
speed of flow, d is the tube diameter, and η is the fluid coefficient of
viscosity or the dynamic or absolute viscosity, which is defined later. This
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Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar
flow at low Re, (b) short bursts of turbulence for Re above the critical value, and
(c) fully turbulent flow with random motion of the dye streak for higher Re. (From
[346]. Used with permission of Oxford University Press)

gives

Re =
ρu2

ρηu/d
=

ρud

η
=

ud

υ
, (7.11)

where υ = η/ρ is the coefficient of kinematic viscosity.
Although this dividing line is not hard and fast, generally, flow in a rigid
tube with Re < 2,000 is laminar and that with Re > 2,000 is turbulent.
This dividing region is often cited as being between 1,200–2,500, and in
the higher range for smoother-walled tubes. Figure 7.5 shows flow in the
laminar and turbulent regimes, and in the transition region between them.

2. Flow can be compressible or incompressible. Gases, such as air, are very
compressible. Liquids are less compressible, and are often approximated
as being incompressible.

3. Flow can be viscous or nonviscous. Fluids (other than superfluids) always
have some viscosity, but in some cases it can be ignored totally, or first
ignored and then considered as a perturbation.

4. Flow can be rotational or irrotational. In the cases we will consider there
is no local rotation (such as vortices), so the flow will be irrotational.

5. Flow can be steady (constant in time) or pulsatile (with pulsing changes).
Blood flow in the body is pulsatile, but is commonly treated as being
in steady state in simple models. We will use both steady and pulsatile
models in Chap. 8.
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Geralmente, para um fluido 
em um tubo, Re<2000 o fluxo 

é laminar e para Re>2000 
turbulento
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Fluidos em Movimento412 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar
flow at low Re, (b) short bursts of turbulence for Re above the critical value, and
(c) fully turbulent flow with random motion of the dye streak for higher Re. (From
[346]. Used with permission of Oxford University Press)

gives

Re =
ρu2

ρηu/d
=

ρud

η
=

ud

υ
, (7.11)

where υ = η/ρ is the coefficient of kinematic viscosity.
Although this dividing line is not hard and fast, generally, flow in a rigid
tube with Re < 2,000 is laminar and that with Re > 2,000 is turbulent.
This dividing region is often cited as being between 1,200–2,500, and in
the higher range for smoother-walled tubes. Figure 7.5 shows flow in the
laminar and turbulent regimes, and in the transition region between them.

2. Flow can be compressible or incompressible. Gases, such as air, are very
compressible. Liquids are less compressible, and are often approximated
as being incompressible.

3. Flow can be viscous or nonviscous. Fluids (other than superfluids) always
have some viscosity, but in some cases it can be ignored totally, or first
ignored and then considered as a perturbation.

4. Flow can be rotational or irrotational. In the cases we will consider there
is no local rotation (such as vortices), so the flow will be irrotational.

5. Flow can be steady (constant in time) or pulsatile (with pulsing changes).
Blood flow in the body is pulsatile, but is commonly treated as being
in steady state in simple models. We will use both steady and pulsatile
models in Chap. 8.

412 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar
flow at low Re, (b) short bursts of turbulence for Re above the critical value, and
(c) fully turbulent flow with random motion of the dye streak for higher Re. (From
[346]. Used with permission of Oxford University Press)

gives

Re =
ρu2

ρηu/d
=

ρud

η
=

ud

υ
, (7.11)

where υ = η/ρ is the coefficient of kinematic viscosity.
Although this dividing line is not hard and fast, generally, flow in a rigid
tube with Re < 2,000 is laminar and that with Re > 2,000 is turbulent.
This dividing region is often cited as being between 1,200–2,500, and in
the higher range for smoother-walled tubes. Figure 7.5 shows flow in the
laminar and turbulent regimes, and in the transition region between them.

2. Flow can be compressible or incompressible. Gases, such as air, are very
compressible. Liquids are less compressible, and are often approximated
as being incompressible.

3. Flow can be viscous or nonviscous. Fluids (other than superfluids) always
have some viscosity, but in some cases it can be ignored totally, or first
ignored and then considered as a perturbation.

4. Flow can be rotational or irrotational. In the cases we will consider there
is no local rotation (such as vortices), so the flow will be irrotational.

5. Flow can be steady (constant in time) or pulsatile (with pulsing changes).
Blood flow in the body is pulsatile, but is commonly treated as being
in steady state in simple models. We will use both steady and pulsatile
models in Chap. 8.

Monday, June 3, 13



Lei da Continuidade
7.2 Basic Physics of Pressure and Flow of Fluids 413

Fig. 7.6. Continuity of flow when the tube cross-sectional area changes

7.2.3 Equation of Continuity

The equation of continuity is a statement of the conservation of mass during
flow. As seen in Fig. 7.6, when a fluid of a given mass density ρ moves with
average speed u in a tube of cross-sectional area A, the product ρAu is constant
(i.e., it is conserved). Because the speed is a longitudinal distance per unit
time, Au is the volume flow per unit time (because A × distance = volume).
Consequently, ρAu is the mass per unit time. In steady state, the same mass
flows into a volume and leaves it. For the regions marked 1 and 2 in Fig. 7.6,
this means that

ρ1A1u1 = ρ2A2u2. (7.12)

If the fluid is incompressible, the density in ρ1A1u1 = ρ2A2u2 does not
change with pressure and is the same everywhere. With ρ1 = ρ2, we follow the
volume or volumetric flow rate Q, which is now a constant. This means Q1 =
A1u1 and Q2 = A2u2, and so the continuity equation becomes Q = Q1 = Q2

with

Q = A1u1 = A2u2. (7.13)

7.2.4 Bernoulli’s Equation

Bernoulli’s Principle (or equation) relates the average flow speed u, pressure
P , and height y of an incompressible, nonviscous fluid in laminar, irrotational
flow (Fig. 7.7). At any two points

P1 +
1
2
ρu2

1 + ρgy1 = P2 +
1
2
ρu2

2 + ρgy2. (7.14)

The densities ρ1 = ρ2 = ρ for this incompressible fluid. (Bernoulli’s equation
actually applies to any two points along a streamline.)

There are three special cases of Bernoulli flow. (1) For static fluids (u = 0),
and Bernoulli equation’s reduces to P1 + ρgy1 = P2 + ρgy2. (2) It reduces to
Torricelli’s theorem when P1 = P2, namely ρu2

1/2 + ρgy1 = ρu2
2/2 + ρgy2.
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Área x Distância = Volume, consequentemente Au é o fluxo de 
volume por unidade de tempo e o fluxo de massa por unidade de 

tempo pode ser escrita como: 

Para o fluxo: 
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Principio de Bernoulli

414 7 Fluid Pressure, Fluid Flow in the Body, and Motion in Fluids

Fig. 7.7. For irrotational and nonviscous flow, the pressure, flow speed, and height
are related by Bernoulli’s equation along any streamline

(3) It reduces to the Venturi flow regime when y1 = y2 (Fig. 7.8), so
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Because the continuity of flow in such a Venturi tube is A1u1 = A2u2
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With A2 < A1, we see that u2 > u1 and P2 < P1. This shows that the flow
becomes faster and the pressure becomes lower in clogged blood vessels.

Fig. 7.8. Flow in a tube when the tube cross-sectional area changes. This is a
Venturi tube, for which pressure and flow speed are related by Bernoulli’s equation
in the limit of constant height
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With A2 < A1, we see that u2 > u1 and P2 < P1. This shows that the flow
becomes faster and the pressure becomes lower in clogged blood vessels.

Fig. 7.8. Flow in a tube when the tube cross-sectional area changes. This is a
Venturi tube, for which pressure and flow speed are related by Bernoulli’s equation
in the limit of constant height

A Equação de Bernoulli relaciona a média da velocidade do fluxo 
u, pressão P, e altura y para um fluido incompreensível, não 
viscoso, laminar e irrotacional.  Em qualquer dois pontos:  
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Fig. 7.6. Continuity of flow when the tube cross-sectional area changes

7.2.3 Equation of Continuity

The equation of continuity is a statement of the conservation of mass during
flow. As seen in Fig. 7.6, when a fluid of a given mass density ρ moves with
average speed u in a tube of cross-sectional area A, the product ρAu is constant
(i.e., it is conserved). Because the speed is a longitudinal distance per unit
time, Au is the volume flow per unit time (because A × distance = volume).
Consequently, ρAu is the mass per unit time. In steady state, the same mass
flows into a volume and leaves it. For the regions marked 1 and 2 in Fig. 7.6,
this means that

ρ1A1u1 = ρ2A2u2. (7.12)

If the fluid is incompressible, the density in ρ1A1u1 = ρ2A2u2 does not
change with pressure and is the same everywhere. With ρ1 = ρ2, we follow the
volume or volumetric flow rate Q, which is now a constant. This means Q1 =
A1u1 and Q2 = A2u2, and so the continuity equation becomes Q = Q1 = Q2

with

Q = A1u1 = A2u2. (7.13)

7.2.4 Bernoulli’s Equation

Bernoulli’s Principle (or equation) relates the average flow speed u, pressure
P , and height y of an incompressible, nonviscous fluid in laminar, irrotational
flow (Fig. 7.7). At any two points
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The densities ρ1 = ρ2 = ρ for this incompressible fluid. (Bernoulli’s equation
actually applies to any two points along a streamline.)

There are three special cases of Bernoulli flow. (1) For static fluids (u = 0),
and Bernoulli equation’s reduces to P1 + ρgy1 = P2 + ρgy2. (2) It reduces to
Torricelli’s theorem when P1 = P2, namely ρu2

1/2 + ρgy1 = ρu2
2/2 + ρgy2.

Existem 3 casos especiais: (1) quando o  fluxo 
u = 0; (2) quando a pressão             , 

reduzindo ao teorema de Torricelli; e (3) 
quando altura             , reduzindo o problema 

para um fluxo de Venturi

P1 = P2

y1 = y2
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Interação entre os parâmetros de fluxo

Pressão P, volume V, e taxa de fluxo Q estão 
relacionadas nos fluxos nos vasos ou nas vias aéreas.  

7.2 Basic Physics of Pressure and Flow of Fluids 415

7.2.5 Interactions among the Flow Parameters

Pressure P , volume V , and flow rate Q are all interrelated in flow through
vessels, be it blood flow in the circulatory system or air flow in breathing.
Resistance Rflow is the pressure difference ∆P needed to cause a given flow
rate Q

Rflow =
∆P

Q
. (7.19)

Compliance Cflow is the change in volume caused by a change in pressure in
a vessel

Cflow =
∆V

∆P
. (7.20)

Occasionally, the inertance Lflow is also defined. It is the change in pressure
caused by a change in flow rate

Lflow =
∆P

∆Q
. (7.21)

See Appendix D for an analog to electrical circuits.

7.2.6 Viscous Flow and Poiseuille’s Law

Bernoulli’s equation would predict that the pressure does not change during
flow if the tube cross-section and height do not change. This is true for an
ideal, nonviscous fluid. Viscosity is the friction during flow. It is always present
and causes the pressure to drop during flow.

The coefficient of (dynamic or absolute) viscosity η is formally defined in
(7.22), which gives the tangential or shear force F required to move a fluid
layer of area A at a constant speed v, in the x direction, when that layer is a
distance y from a stationary plate (Fig. 7.9) [350, 354]

F = η
A

y
v. (7.22)

Fig. 7.9. Viscous fluid flow, with a linear gradient of fluid speed with position
between a fixed and moving plate. This is shown for Newtonian flow
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Análogos800 Appendix D Similar Model Systems

Fig. D.1. Model symbols are shown for (a) mechanical, (b) fluid flow, (c) electrical,
and (d) acoustic models, along with the parameters and common units for each. The
mechanical model is for linear (rectilinear) motion. Analogous parameters exists for
the rotational mechanical model, such as for a pendulum. Viscosity is also important
in mechanical models. Also see Table D.1 below. (Based on [609] and [610])

The other models are described similarly, simply by changing the parameters.
Equation D.1 also be written as the second-order differential equation

V = L
d2q

dt2
+ R

dq

dt
+

q

C
, (D.2)

as in (C.30) and (C.34).
The general solution for an oscillating voltage V (t) = V0 exp (iωt) is

I(t) =
V0 exp (iωt)

R + iωL + 1/(iωC)
=

V (t)
Z

, (D.3)

Fig. D.2. Equivalent (a) mechanical, (b) electrical, and (c) acoustic models. (Based
on [609] and [610])
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Análogos
802 Appendix D Similar Model Systems

Table D.1. Analog of blood flow and electrical circuits (with units)

blood circulation parameter electrical parameter

volume, Vflow (m3) charge, q (C, coulomb)
blood flow rate, Q (m3/s) current, I (A, ampere)
pressure, ∆P (N/m2) voltage, Velect (V, volt)
vascular resistance, Rflow (N-s/m5) resistance, Relect (Ω, ohm)
inertance, Lflow (kg/m4) inductance, Lelect (H, henry)
compliance, Cflow (m5/N-s) capacitance, Celect (F, farad)

D.1 Distributed vs. Lumped Models: Electrical Analogs
of Blood Flow (Advanced Topic)

So far we have discussed lumped parameter models in this appendix. In (8.2)
and (8.11) flow was analyzed with the vessel as a “lumped” parameter. We
have also examined cases in this text in which the parameters are distributed
per unit length, such as flow resistance per unit length for volumetric flow
along an artery in Chap. 8 ((8.14) and (8.25)) and electrical resistance per
unit length for current flow along an axon in Chap. 12 ((12.60) and (12.67)).
These are “distributed” or “transmission-line” models.

A discretized version of the distributed electrical model is shown in
Fig. 12.17. Let us say that each repeated section has (very short) length ∆x.
The changes in electrical voltage (the driving force) and current (the response)
(Table D.1) along this length of an electrical cable are described by [376]

Velect(x + ∆x) − Velect(x) =
∂Velect

∂x
∆x = Lelect

∂I

∂t
+ IRelect (D.8)

I(x + ∆x) − I(x) =
∂I

∂x
∆x = Celect

∂Velect

∂t
+

Velect

Relect
. (D.9)

Velect and I are functions of x and t. The resistance, inductance, and capac-
itance are those for this length ∆x, and can also vary with x. These equa-
tions can be obtained using Kirchhoff’s Laws (the 2nd and 1st laws, respec-
tively). They were derived and then combined in the discussion of electrical
signals along nerves in Chapter 12 (Fig. 12.17) to give the telegraph equa-
tions. Part of the first equation is Ohm’s Law: ∆Velect = (∂Velect/∂x)∆x =
IRelect.

The analogous equations for blood flow along a vessel of length ∆x are:

P (x + ∆x) − P (x) =
∂P

∂x
∆x = Lflow

∂Q

∂t
+ QRflow (D.10)

Q(x + ∆x) − Q(x) =
∂Q

∂x
∆x = Cflow

∂P

∂t
+

P

Rflow
(D.11)
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Fluidos Viscosos

A Equação de Bernoulli prevê que a pressão não muda durante o 
fluxo se a área da seção transversal e a altura não mudar

7.2 Basic Physics of Pressure and Flow of Fluids 413

Fig. 7.6. Continuity of flow when the tube cross-sectional area changes

7.2.3 Equation of Continuity

The equation of continuity is a statement of the conservation of mass during
flow. As seen in Fig. 7.6, when a fluid of a given mass density ρ moves with
average speed u in a tube of cross-sectional area A, the product ρAu is constant
(i.e., it is conserved). Because the speed is a longitudinal distance per unit
time, Au is the volume flow per unit time (because A × distance = volume).
Consequently, ρAu is the mass per unit time. In steady state, the same mass
flows into a volume and leaves it. For the regions marked 1 and 2 in Fig. 7.6,
this means that

ρ1A1u1 = ρ2A2u2. (7.12)

If the fluid is incompressible, the density in ρ1A1u1 = ρ2A2u2 does not
change with pressure and is the same everywhere. With ρ1 = ρ2, we follow the
volume or volumetric flow rate Q, which is now a constant. This means Q1 =
A1u1 and Q2 = A2u2, and so the continuity equation becomes Q = Q1 = Q2

with

Q = A1u1 = A2u2. (7.13)

7.2.4 Bernoulli’s Equation

Bernoulli’s Principle (or equation) relates the average flow speed u, pressure
P , and height y of an incompressible, nonviscous fluid in laminar, irrotational
flow (Fig. 7.7). At any two points

P1 +
1
2
ρu2

1 + ρgy1 = P2 +
1
2
ρu2

2 + ρgy2. (7.14)

The densities ρ1 = ρ2 = ρ for this incompressible fluid. (Bernoulli’s equation
actually applies to any two points along a streamline.)

There are three special cases of Bernoulli flow. (1) For static fluids (u = 0),
and Bernoulli equation’s reduces to P1 + ρgy1 = P2 + ρgy2. (2) It reduces to
Torricelli’s theorem when P1 = P2, namely ρu2

1/2 + ρgy1 = ρu2
2/2 + ρgy2.
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Isso é verdade para um fluido ideal não viscoso.

• Viscosidade é o atrito/fricção durante o 
fluxo. 
• Viscosidade causa uma queda na pressão 
durante o fluxo.
• O coeficiente de viscosidade  η , surge 
como uma constante de proporcionalidade 
entre a força tangencial (shear force) 
necessária para mover uma camada de fluido 
de área A, a uma velocidade constante v, na 
direção x, quando a camada está a uma 
distância y de uma outra placa estacionária    
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7.2.5 Interactions among the Flow Parameters

Pressure P , volume V , and flow rate Q are all interrelated in flow through
vessels, be it blood flow in the circulatory system or air flow in breathing.
Resistance Rflow is the pressure difference ∆P needed to cause a given flow
rate Q

Rflow =
∆P

Q
. (7.19)

Compliance Cflow is the change in volume caused by a change in pressure in
a vessel

Cflow =
∆V

∆P
. (7.20)

Occasionally, the inertance Lflow is also defined. It is the change in pressure
caused by a change in flow rate

Lflow =
∆P

∆Q
. (7.21)

See Appendix D for an analog to electrical circuits.

7.2.6 Viscous Flow and Poiseuille’s Law

Bernoulli’s equation would predict that the pressure does not change during
flow if the tube cross-section and height do not change. This is true for an
ideal, nonviscous fluid. Viscosity is the friction during flow. It is always present
and causes the pressure to drop during flow.

The coefficient of (dynamic or absolute) viscosity η is formally defined in
(7.22), which gives the tangential or shear force F required to move a fluid
layer of area A at a constant speed v, in the x direction, when that layer is a
distance y from a stationary plate (Fig. 7.9) [350, 354]

F = η
A

y
v. (7.22)

Fig. 7.9. Viscous fluid flow, with a linear gradient of fluid speed with position
between a fixed and moving plate. This is shown for Newtonian flow
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This equation is also written as

τ = η
dv

dy
, (7.23)

where τ = F/A is the shear stress, as in (4.5) and Figs. 4.10 and 4.11, and
dv/dy is called the shear rate. (Check that the units of the shear rate are
those that a rate should have, 1/s.) Fluids that are characterized by (7.22)
and (7.23) are called “Newtonian fluids” and are said to undergo “Newtonian
flow.”

The SI units of η are (N/m2)s, which is equal to kg/m-s and Pa-s; this
is called a Poiseuille (PI), but this unit is not often used. More commonly
used than this last unit is the poise (P) which is 10× smaller. It is a natural
unit in the CGS units system with 1 poise = 1 g/cm-s = 0.1 (N/m2)s =
0.1 kg/m-s = 0.1 Pa-s. Also common is the centipoise (cP), with 1 cP =
0.01 poise = 0.001 Pa-s, because the viscosity of water at 20◦C is almost equal
to 1 cP (and is actually 1.002 cP). We will usually use the units of Pa-s. Also,
this viscosity coefficient is often called η by physicists (and is used as such
here), whereas it is often called µ by biomedical engineers. It is also related to,
but different from the viscosity damping constant for the dashpot c in (4.48).

Because of this drag, there must be a pressure difference (gradient) to
maintain fluid flow in a tube. The relation between this pressure drop and
the volumetric flow rate Q is given by Poiseuille’s Law (or Hagen-Poiseuille’s
Law)

Q =
πR4

8ηL
(P1 − P2), (7.24)

where R is the radius of the tube and L is its length (Fig. 7.10). This relation
can be viewed as the flow rate for a given pressure drop. Alternatively, it can
be viewed as the pressure drop when there is a flow Q in the tube

P1 − P2 = ∆P =
8ηL

πR4
Q. (7.25)

We will use this expression in Chap. 8 to determine the pressure drops in blood
vessels during circulation. It is derived later as an advanced topic.

Equation (7.25) is formally analogous to Ohm’s Law for resistors, V =
IRelect (or in a manner more parallel to this equation, V = RelectI), where
V is the voltage or potential difference across the resistor and is the driving
term (which is analogous to ∆P ), Relect is the electrical resistance (analogous
to the resistance of flow 8ηL/πR4 here, which we will call Rflow), and I is the
electrical current, which is the flow resulting from the driving term (analogous
to the volumetric flow Q here).

Consider a tube with cross-sectional area A. The net force on the fluid in
it is (∆P )A. If this force moves the fluid a distance L, the work done on it is
FL = (∆P )AL. If this volume AL is moved in a given time, the work needed
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the cross-sectional area. This is done by multiplying v(r) by the area element
2πrdr (the circumference × the differential in r) and integrating r from 0 to
R, which gives

Q =
∫ R

0

∆P

4ηL

(
R2 − r2

)
2πrdr (7.37)

Q =
∫ R

0

π∆P

2ηL

(
rR2 − r3

)
dr =

π∆P

2ηL

(
R4

2
− R4

4

)
=

πR4∆P

8ηL
. (7.38)

This is Poiseuille’s Law ∆P =
(
8ηL/πR4

)
Q ((7.24) and (7.25)). Because Q

is also equal to the area × the average speed, this average speed is

u =
πR4∆P/8ηL

πR2
=

R2∆P

8ηL
(7.39)

and

v(r) = 2u
(

1 − r2

R2

)
. (7.40)

This is depicted in the rightmost profile shown in Fig. 7.11.
Many fluids are non-Newtonian fluids (Fig. 7.12), which means they are

not characterized by (7.22) and (7.23), but by other relations. We assumed
earlier that a fluid could generate no shear stress at any shear or strain
rate; this is a frictionless or nonviscous fluid, which is unrealistic except
for superfluids. (Note that such shear or strain “rates” are really gradi-
ents with respect to the direction normal to flow, i.e., y, and not with re-
spect to time t. However, this terminology is reasonable because they have
the same units as strain rates and because of the scaling argument given
in Problem 7.23.) In some real non-Newtonian fluids, the shear stress is
F/A = η(dv/dy)n, where n could be greater or less than 1, as in Fig. 7.12.
This is sometimes phrased as F/A = η′(dv/dy) where the effective viscos-
ity η′ = η(dv/dy)n−1 depends on the strain rate; as such a Newtonian fluid

Fig. 7.11. Establishment of steady-state Newtonian flow into the parabolic velocity
profile (in the fully developed flow). (From [351], based on [355]. Courtesy of Robert
A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Monday, June 3, 13



Fluidos Viscosos7.2 Basic Physics of Pressure and Flow of Fluids 421

Fig. 7.12. Newtonian and non-Newtonian fluid flow. (From [357])

would have an effective viscosity that is independent of the strain rate. A
dilatant or shear-thickening fluid has an effective viscosity that increases with
increasing stress. A plastic or shear-thinning fluid has an effective viscos-
ity that decreases with increasing stress. A Bingham plastic, such as tooth-
paste, has a finite yield stress even for dv/dy = 0, and above the yield
stress it has a linear relationship with strain rate, F/A = α + η(dv/dy).
The composition of blood makes it a non-Newtonian fluid; this is discussed
in Chap. 8. Consequently, the flow pattern of blood is decidedly nonparabolic
(Fig. 7.13).

Synovial fluid is one example of a non-Newtonian fluid. Figure 7.14 shows
that its coefficient of friction is high at low shear rates and much lower at
high shear rates. Figure 8.11 shows that whole blood is also a non-Newtonian
fluid.

The dependence of flow on pressure drop within the laminar, intermediate,
and turbulent regimes is shown in Fig. 7.15.
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Table 7.3. Coefficient of viscosity η of common materials, in Pa-s (1 poise =
0.1 Pa-s). (Using data from [351, 358, 363])

material T (◦C) η

water 0 1.78 × 10−3

20 1.00 × 10−3

37 0.69 × 10−3

50 0.55 × 10−3

100 0.28 × 10−3

blood plasma 37 1.5 × 10−3

whole blooda 37 ∼4.0 × 10−3

low shear rate, Hct = 45% ∼100 × 10−3

low shear rate, Hct = 90% ∼1,000 × 10−3

high shear rate, Hct = 45% ∼10 × 10−3

low shear rate, Hct = 90% ∼100 × 10−3

cerebrospinal fluid 20 1.02 × 10−3

interstitial fluid 37 1.0–1.1 × 10−3

human tears 37 0.73–0.97 × 10−3

synovial fluidb 20 >0.3
castor oil 20 1
motor oil, SAE 10 20 0.065
motor oil, SAE 50 20 0.54
machine oil, heavy 37 0.13
machine oil, light 37 0.035
ethylene glycol 37 0.011
mercury, liquid 37 1.465 × 10−3

methanol 37 0.47 × 10−3

ketchup 20 50
peanut butter 20 250
glass (anneal) 720–920K 2.5 × 1012

(blowing) ∼1,300 K ∼1 × 106

(furnace) 1,500–1,700 K ∼1 × 102

air 20 1.8 × 10−5

100 2.1 × 10−5

Hct is the hematocrit, which is the volume fraction of red blood cells in blood.
aSee Figs. 8.10 and 8.11.
bSee Fig. 7.14.

stress are

F = ηA
dv

dr
(7.27)

τ = η
dv

dr
. (7.28)

Imagine a series of concentric cylinders within this tube of thickness dr and
length L (centered about the center symmetry axis, Fig. 7.10b), with a pres-
sure drop ∆P along L. The force pushing one of these cylindrical shells forward

Hct - hematocrit é 
a fração de células 

vermelhas no 
sangue
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Fig. 7.13. Velocity flow profile of whole blood is blunted relative to the ideal par-
abolic flow of a Newtonian fluid. (From [351], based on [355]. Courtesy of Robert A.
Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Approach to Steady Flow

The results of Sect. 7.2.6 apply to steady, laminar flow. If a tube bifurcates –
such as in branching arteries, the velocity profile we derived with its boundary
layer at the tube circumference (where the flow velocity decreases to zero),
will not represent the flow distribution immediately after the bifurcation. It
will be valid only after a distance past the bifurcation called the entrance
length, X [346]. Experimentally

X = 0.03d(Re) (7.41)

Fig. 7.14. (a) Synovial fluid is a non-Newtonian fluid, with a coefficient of friction
that decreases with shear rate. (b) Another property of such a non-Newtonian fluid
is that it can create a normal stress that depends on shear rate. (From [361])
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Fig. 7.17. Schematic of how the locations of particles vary at successively later
times, from (a) to (c), as a result of diffusion

The lift coefficient, Clift, varies linearly with this angle of attack. For small
angles, it varies linearly from −0.4 to 1.2 for β varying from −4◦ to 12◦ (for
Re = 1.7 × 106). Of course, Clift = 0 for β = 0◦. For β much larger than 12◦,
the flow separates from the upper edge of the wing and there is stalling of the
lift.

Chapter 3 discussed the lift force on spinning objects, such as thrown base-
balls and such, which is commonly called the Magnus force.

7.3 Diffusion (Advanced Topic)

When the concentration of particles (or molecules) is not uniform, the random
particle thermal motion leads to a net movement (or diffusion) of particles
from regions of higher concentration to regions of lower concentration. The
net effect is to make the concentration more uniform (Fig. 7.17). This diffusion
flow rate increases with the nonuniformity or gradient of the concentration,
which is Fick’s First Law of Diffusion

J = −Ddiff
∂n

∂x
(7.51)

for flow in one-dimension, where J is the flux of particles (particle flow per unit
area per unit time), Ddiff is the diffusion coefficient, and n(x, t) is the concen-
tration of particles. (We must use partial derivatives here because everything
depends on x and t.) The diffusion coefficient depends on the background
medium, and is on the order of ∼10−1 cm2/s in gas, ∼10−5 cm2/s in liquid,
and ∼10−9 cm2/s in solid backgrounds.

During this flow the total number of particles must be conserved. Consider
the cylindrical volume construct in Fig. 7.18, with its axis along the x-axis, and
of length dx and cross-sectional area A. The total number of particles entering
from the left in a unit time dt is J(x)A(dt) and the number leaving from
the right in this same time is J(x + dx)A(dt) $ (J(x) + (∂J/∂x)dx) A(dt).
Therefore the net increase in the number of particles in the cylinder is the
difference −(∂J/∂x)(dx)A(dt). This must be accounted for by the change in
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Fig. 7.20. Diffusion of an injected impulse, such as a dye, in an artery, with the
shown line source initial distribution. The profile of the injection distorts as it adopts
the velocity profile of the flow and it also diffuses. (From [353])

The flow rates in much of the human alimentary (digestive) system are
quite slow (Table 7.4). Propulsive movements in this system are due to peri-
staltic action, with muscular contraction of the contractile ring around the gut
sliding food forward, as diagrammed in Fig. 7.21. When there is a large amount
of food in it, the gut stretches or distends and through sensors and feedback
this stimulates a contractile ring 2–3 cm upstream. Mixing movements in the
gut are caused by these peristaltic actions and by local constrictive contrac-
tions that occur every few cm in the gut and last for several seconds.

Table 7.4. Approximate flow rates and other properties of the human alimentary
system, estimated for a 70 kg male. (Using data from [351])

component length external internal luminal contents contents
(cm) dimension volume area passage speed

or width (cm3) (cm2) time (cm/s)
(cm)

mouth and pharynx 8 2–5 ∼50 ∼80 1–10 s 1–8
esophagus 25 1.3–2.5 ∼100 ∼200 5–20 s 3–5
stomach 12 8 230–1,000 ∼600 2–6 h ∼0.001
small intestine 400 3–6 1,100 ∼3,500 3–5 h 0.03
large intestine ∼150 5.0–7.5 300 ∼2,000 10–20 h 0.004–0.008
rectum 16–20 2.5–3.8 40 ∼100 ∼1 h 0.006
total, average,
or range ∼600 ∼3.5 1,800–2,600 ∼6,500 16–32 h ∼0.01
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444 8 Cardiovascular System

Fig. 8.1. Blood circulation system, and labeled within the heart: the (a) right
atrium, (b) right ventricle, (c) left atrium, (d) left ventricle, (1) right atrioventricular
(tricuspid) valve, (2) pulmonary semilunar valve, (3) aortic semilunar valve, (4) left
atrioventricular (bicuspid, mitral) valve. (From [416])

lungs. These pulmonary capillaries combine into venules (veen’-yools), then
into more major veins, and finally into the pulmonary veins.

In the systemic system (Fig. 8.1), blood enters the left atrium (LA) of
the heart through the pulmonary veins. The blood passes through the left
atrioventricular (or bicuspid or mitral) valve to enter the left ventricle (LV).
Blood is pumped through the aortic semilunar valve to the aorta, which first
branches out into a series of major and then minor arteries (with smaller
diameters, the arterioles), and finally into a series of capillaries in the systems
where gas exchange and diffusion occur. These systemic capillaries combine
into venules, then more major veins, and finally into the superior (from above
the heart) and inferior (from below the heart) vena cavae.

• O fluxo de sangue do coração 
possui dois sistemas distintos: a 
circulação pulmonar (CP) e a 
circulação sistêmica (CS).  
• O fluxo de sangue Q nos dois é o 
mesmo
• Na CP o sangue dispensa CO2 e 
pega O2, na CS ocorre o oposto
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Fig. 8.1. Blood circulation system, and labeled within the heart: the (a) right
atrium, (b) right ventricle, (c) left atrium, (d) left ventricle, (1) right atrioventricular
(tricuspid) valve, (2) pulmonary semilunar valve, (3) aortic semilunar valve, (4) left
atrioventricular (bicuspid, mitral) valve. (From [416])

lungs. These pulmonary capillaries combine into venules (veen’-yools), then
into more major veins, and finally into the pulmonary veins.

In the systemic system (Fig. 8.1), blood enters the left atrium (LA) of
the heart through the pulmonary veins. The blood passes through the left
atrioventricular (or bicuspid or mitral) valve to enter the left ventricle (LV).
Blood is pumped through the aortic semilunar valve to the aorta, which first
branches out into a series of major and then minor arteries (with smaller
diameters, the arterioles), and finally into a series of capillaries in the systems
where gas exchange and diffusion occur. These systemic capillaries combine
into venules, then more major veins, and finally into the superior (from above
the heart) and inferior (from below the heart) vena cavae.
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8.1 Overview of the Circulatory System and Cardiac Cycle 445

Fig. 8.2. Diagram of the heart, with its principle chambers, valves, and vessels.
(From [367])

(A useful mnemonic for the flow of blood in the heart comes from knowing
that the author once lived on Rahlves Drive in Castro Valley, California – a
town approximately 20 miles south of Berkeley. The whole heart cycle starts
with blood flowing into the right atrium (RA) and then getting oxygenated
in the lungs, returning to the heart (H), and then continuing with the blood
leaving the left ventricle (LV) and exiting (E) for the systems (S). Put together
this spells RAHLVES. The most important concept here is that deoxygenated
blood enters the heart through the right atrium (RA) and eventually oxy-
genated blood leaves through the left ventricle (LV) of the heart to be used
by the body for metabolism. For some, it may be easier to remember that
an American Daron Rahlves was the winner of the super-G downhill skiing
competition in the 2001 World Championships.)

The systemic and pulmonary systems have similarities and differences.
They have the same volumetric flow rate Q. (If they were not equal, blood
would have to pile up somewhere.) In the systemic system the blood disposes
of oxygen and receives carbon dioxide, while in the pulmonary system the
blood disposes of carbon dioxide and receives oxygen. Table 8.1 shows that

Table 8.1. Normal resting values of blood pressure, with system volumes

P (mmHg) V (L)

systemic arteries 100 1.0
systemic veins 2 3.5
pulmonary arteries 15 0.1
pulmonary veins 5 0.4
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an American Daron Rahlves was the winner of the super-G downhill skiing
competition in the 2001 World Championships.)

The systemic and pulmonary systems have similarities and differences.
They have the same volumetric flow rate Q. (If they were not equal, blood
would have to pile up somewhere.) In the systemic system the blood disposes
of oxygen and receives carbon dioxide, while in the pulmonary system the
blood disposes of carbon dioxide and receives oxygen. Table 8.1 shows that

Table 8.1. Normal resting values of blood pressure, with system volumes

P (mmHg) V (L)

systemic arteries 100 1.0
systemic veins 2 3.5
pulmonary arteries 15 0.1
pulmonary veins 5 0.4
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Sistema Circulatório
• O sistema circulatório possui estágios 
bastante controlados: 
• O primeiro estágio é a diástole onde as veias 
enchem ambos os átrios do coração, enquanto 
ambos os ventrículos estão relaxados. 
• No segundo estágio, sístole, o músculo 
cardíacos (miocardio) do lado direito e do lado 
esquerdo dos átrios contraem, bombeando 
sangue pelas válvulas atrioventicular  
respectivamente em ambos os ventrículos ao 
mesmo tempo (todavia ~75% do sangue chega 
aos ventrículos antes dessa contração). 
• No primeiro passo da sístole, ambos os 
ventrículos contraem (isovolumetricamente) ao 
mesmo tempo, e no segundo passo eles ejetam 
o sangue na artéria pulmonar e na aorta 
respectivamente.
• A pressão sistolica ocorre nesse segundo 
estágio.
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Fig. 8.2. Diagram of the heart, with its principle chambers, valves, and vessels.
(From [367])
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blood enters the heart through the right atrium (RA) and eventually oxy-
genated blood leaves through the left ventricle (LV) of the heart to be used
by the body for metabolism. For some, it may be easier to remember that
an American Daron Rahlves was the winner of the super-G downhill skiing
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They have the same volumetric flow rate Q. (If they were not equal, blood
would have to pile up somewhere.) In the systemic system the blood disposes
of oxygen and receives carbon dioxide, while in the pulmonary system the
blood disposes of carbon dioxide and receives oxygen. Table 8.1 shows that
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Fig. 8.3. Major arteries in the body. Arteries carry blood away from the heart in
the systemic and pulmonary system. Many come in pairs, such as the right and left
radial arteries. (From [408]. Used with permission)

448 8 Cardiovascular System

Fig. 8.4. Major veins in the body. Only the superficial veins are shown in the left
limbs and only the deep veins are shown in the right limbs. Veins carry blood back
to the heart in the systemic and pulmonary system. Many come in pairs, such as
the right and left radial veins. (From [408]. Used with permission)
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Table 8.2. Approximate quantification of individual vessels in the human circula-
tory system. (Using data from [382])

vessel diameter length wall thickness pressure
(mm) (mm) (µm) (mmHg)

aorta 25.0 400 1,500 100
large arteries 6.5 200 1,000 100
main artery branches 2.4 100 800 95
terminal artery branches 1.2 10 125 90
arterioles 0.1 2 20 60
capillaries 0.008 1 1 30
venules 0.15 2 2 20
terminal venules 1.5 10 40 15
main venous branches 5.0 100 500 15
large veins 14.0 200 800 10
vena cavaa 30.0 400 1,200 5
heart chambers – – – 120

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.

and so on. There is a heart pacemaker at the sinoatrial or sinus node
(see the conducting system in Fig. 8.6), which sends an electrical signal
to the atrial cardiac muscle of both atria for simultaneous atrial contrac-
tion. This electrical signal then travels to the atrioventricular or AV node,

Table 8.3. Approximate quantification of total vessel systems in the human circu-
latory system. (Using data from [382])

vessel number total
length
(mm)

total
surface area

(mm2)

total blood
volume
(mm3)

aorta 1 400 31,400 200,000
large arteries 40 8,000 163,000 260,000
main artery branches 500 50,000 377,000 220,000
terminal artery branches 11,000 110,000 415,000 120,000
arterioles 4,500,000 9,000,000 2,800,000 70,000
capillaries 19,000,000,000 19,000,000,000 298,000,000 375,000
venules 10,000,000 20,000,000 9,400,000 355,000
terminal venules 11,000 110,000 518,000 190,000
main venous branches 500 50,000 785,000 1,590,000
large veins 40 8,000 352,000 1,290,000
vena cavaa 1a 400 37,700 280,000
heart chambers – 450,000

Total ∼19,000 km 312,900,000 5,400,000

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.
aThere are really two vena cavae.
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450 8 Cardiovascular System

Fig. 8.5. The left ventricular and atrial pressures are plotted along with the left
ventricular volume, aortic pressure and flow rate, the electrocardiogram and the
phonocardiogram (which is the signal from heart sounds) in this Wiggers diagram.
The opening and closing times of the aortic semilunar and bicuspid (mitral) valves
are also shown. (Based on [390], [414], and [417])

is delayed there for a time ∆, and then the node sends a signal to the
ventricular cardiac muscle of both ventricles for simultaneous ventricular
contraction.

The electrocardiogram (EKG or ECG) is a measurement of these electrical
signals, and their timing, as measured by probes on the body [379, 386, 401].
Figure 8.6 shows the EKG during one ∼1 s long heart beat (also see Fig. 12.28).
The P wave is due to atrial depolarization (which is atrial contraction). The
QRS complex is due to ventricular depolarization (contraction). The T wave
is due to ventricular repolarization (relaxation). The atrial repolarization (re-
laxation) signal is masked by the larger QRS complex. Depolarization and
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Fisica da Circulação

• O Sangue é um fluido altamente 
não Newtoniano.  

8.2 Physics of the Circulation System 455

Fig. 8.10. Blood viscosity vs. hematocrit. (Based on [390])

7.5 µm and maximum thickness of 2 µm. Their diameter is about the same
as the inner diameter of capillaries, but they can deform and flow in even
smaller tubes. White blood cells are spherical, with a diameter of 7 µm, while
the platelets are much smaller. The blood plasma is 90% water and behaves
like a Newtonian fluid with a viscosity of 0.0012 Pa-s. The blood rheology is
greatly altered by the red blood cells, and not much by the white blood cells
or platelets because they comprise very small fractions of the blood volume.
(Rheology is the study of the deformation and flow of materials, particularly
unusual materials.) The blood viscosity increases with the hematocrit, as seen
in Fig. 8.10.

The effective viscosity of blood decreases as the shear rate increases
(Fig. 8.11). For very slow shear rates, this viscosity is more than 100× that of
water, while at the high shear rates characteristic of flow in larger vessels it
is about 4× that of water, with a value of 0.004–0.005 Pa-s.

The viscosity of some fluids changes even while the strain rate is constant.
Blood is a thixotropic fluid, for which the shear stress decreases while the
strain rate is constant. Still, for our purposes it will be adequate to treat
blood as a Newtonian fluid, even though the velocity flow profile is not the
ideal parabolic form for a Newtonian fluid (Fig. 7.13).

8.2.2 Blood Pressure and Flow in Vessels

Structure of Blood Vessels

Arteries contain inner layers that are 1–2 endothelial (lining) cells thick – along
with elastic issue (composed of collagen and elastic proteins). This innermost
region surrounding the opening – the lumen – is known as the tunica intima.
Next in the wall comes a layer of circular, smooth muscle fibers interspersed
with elastic tissue (the tunica media) and finally connective tissue (the tunica
adventitia) (Fig. 8.12, also see Fig. 8.44). The walls of veins have a thickness
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