Física do Corpo Humano

Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP

Circulação COI

Pressão (Definição)

$$
\begin{aligned}
\text { Pressão } & =\frac{\text { Força }}{\text { Área }} \\
P & =\frac{F}{A} \\
& =\frac{m g}{A} \frac{h}{h} \\
& =\rho g h
\end{aligned}
$$

Pressão (Teoria Cinética dos Gases)

Pilares da Teoria Cinética dos Gases

- O número de moléculas é muito grande, mas a separação é grande comparado com o tamanho das moléculas
- Moléculas movem aleatoriamente, todavia a distribuição das velocidades é constante
- Moléculas colidem entre si e nas paredes (como bolas de sinuca), nenhuma outra força é considerada
- Moléculas obedecem a lei de Newton para o movimento

$$
\begin{array}{|ll|}
\hline \text { fraction of gas }=81.67 \% & \\
\text { most probable speed (red) } & =336.2 \mathrm{~m} / \mathrm{s} \\
\text { average speed (orange) } & =379.3 \mathrm{~m} / \mathrm{s} \\
\text { root mean square speed }= & 411.7 \mathrm{~m} / \mathrm{s} \\
\hline
\end{array}
$$

probability distribution function

Pressão (Teoria Cinética dos Gases)

$R=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
T é a temperatura em K
$P=n R T \quad n=N / V, N$ é o número total de moléculas
$R=N_{A} k_{B}, N_{A}$ é o número Avogadro, 6.02×10^{23}
k_{B} é a constante de Boltzmann, 1.381×10^{-23}

Pressão (Corpo)

Table 7.1. Typical (gauge) pressures in the body (in mmHg). (Using data from [345])

> Até agora falamos de pressão absoluta, no corpo o mais comum é utilizar pressão relativa a pressão atmosférica

arterial blood pressure	
maximum (systolic) minimum (diastolic) capillary blood pressure arterial end venous end venous blood pressure typical great veins middle ear pressure typical eardrum rupture threshold eye pressure humors glaucoma threshold range cerebrospinal fluid pressure in brain - lying down gastrointestinal skeleton long leg bones, standing	$100-140$
urinary bladder pressure	
voiding pressure momentary, up to intrathoracic between lung and chest wall	10

Pressão (Corpo)

Time

Fig. 7.2. Measuring blood pressure with a sphygmomanometer, listening to Korotkoff sounds (of varying levels during the turbulent flow shown in $\mathbf{A}-\mathbf{C}$). (Listening to sounds is called auscultation). (From [364])

Lei de Laplace

A pressão, P, de um vaso sangǘneo excede a pressão externa por:

$$
\Delta P=P-P_{\mathrm{ext}}
$$

essa diferença de pressão deve ser suportada pelas paredes dos vasos. Quanto maior o vaso, maior a tensão nas paredes.

Analogy: to hang a mass on a cable with less sag, you have to put more tension in the cable.

Lei de Laplace

Vasos de raio maiores, necessitam de tensões maiores para suportar uma mesma pressão interna.

Para vasos cilíndricos:

$$
(2 r h) P=(2 h) T \quad \rightarrow \quad T=\operatorname{Pr}
$$

Para vasos esféricos:

$$
\left(\pi r^{2}\right) P=(2 \pi r) T \quad \rightarrow \quad T=\operatorname{Pr} / 2
$$

Lei de Laplace

About half as

much tension
Much less
wall tension

Very little wall tension

Maximum
wall tension
$\mathrm{T}=\mathrm{PR}$

Same pressure in all regions according to Pascal's principle.

Fluidos em Movimento

5 atributos, o Fluxo pode ser:

- laminar ou turbulento. O numero de Reynolds, $R e$, é um variável adimensional que divide esses dois regimes.
- compressivo (gases) ou incompressivo (liquidos)
- viscoso ou não viscoso (superfluidos)
- rotacional (vortices) ou irrotacional
- constante ou pulsátil

Reynolds: Razão entre as forças inerciais e as viscosas

$$
R e=\frac{\rho u^{2}}{\rho \eta u / d}=\frac{\rho u d}{\eta}=\frac{u d}{v}
$$

where $v=\eta / \rho$ is the coefficient of kinematic viscosity.
Geralmente, para um fluido em um tubo, $\mathrm{Re}<2000$ o fluxo é laminar e para $R e>2000$ turbulento

Fluidos em Movimento

(a)

(b)

Fig. 7.5. Motion of a filament of dye in a straight pipe, showing (a) steady, laminar flow at low $R e,(\mathbf{b})$ short bursts of turbulence for $R e$ above the critical value, and (c) fully turbulent flow with random motion of the dye streak for higher $R e$. (From [346]. Used with permission of Oxford University Press)

Lei da Continuidade

Fig. 7.6. Continuity of flow when the tube cross-sectional area changes
Área \times Distância $=$ Volume, consequentemente $A u$ é o fluxo de volume por unidade de tempo e o fluxo de massa por unidade de tempo pode ser escrita como:

$$
\rho_{1} A_{1} u_{1}=\rho_{2} A_{2} u_{2}
$$

Para o fluxo:

$$
Q=A_{1} u_{1}=A_{2} u_{2}
$$

Principio de Bernoulli

A Equação de Bernoulli relaciona a média da velocidade do fluxo u, pressão P, e altura y para um fluido incompreensível, não viscoso, laminar e irrotacional. Em qualquer dois pontos:

$$
P_{1}+\frac{1}{2} \rho u_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho u_{2}^{2}+\rho g y_{2} .
$$

Fig. 7.7. For irrotational and nonviscous flow, the pressure, flow speed, and height are related by Bernoulli's equation along any streamline

Existem 3 casos especiais: (I) quando o fluxo $u=0$; (2) quando a pressão $P_{1}=P_{2}$, reduzindo ao teorema de Torricelli; e (3) quando altura $y_{1}=y_{2}$, reduzindo o problema para um fluxo de Venturi

$$
\begin{array}{r}
P_{1}+\rho g y_{1}=P_{2}+\rho g y_{2} \\
\rho u_{1}^{2} / 2+\rho g y_{1}=\rho u_{2}^{2} / 2+\rho g y_{2} \\
\text { and height } \quad P_{1}+\frac{1}{2} \rho u_{1}^{2}=P_{2}+\frac{1}{2} \rho u_{2}^{2} . \tag{3}
\end{array}
$$

Venturi

Venturi

Interação entre os parâmetros de fluxo

Pressão P, volume V, e taxa de fluxo Q estão relacionadas nos fluxos nos vasos ou nas vias aéreas.

Resistência:

$$
R_{\text {flow }}=\frac{\Delta P}{Q}
$$

Complacência:

$$
C_{\text {flow }}=\frac{\Delta V}{\Delta P} .
$$

Inertância:

$$
L_{\text {flow }}=\frac{\Delta P}{\Delta Q} .
$$

Análogos

Position, volume, Position, $x(m) \quad$ Volume, $V\left(\mathrm{~m}^{3}, \mathrm{~cm}^{3}\right)$ charge

Current flow	Speed, v (m/s)	Volume flow, Q ($\mathrm{m}^{3} / \mathrm{s}, \mathrm{cm}^{3} / \mathrm{s}$)	Current, I (amp)	Volume current, $\mathrm{dX} / \mathrm{dt}$ or $\mathrm{U}\left(\mathrm{m}^{3} / \mathrm{s}\right)$
Driving force	Force, $\mathrm{F}(\mathrm{N})$	Pressure, $\mathrm{P}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	Voltage, V (volt)	Pressure, $\mathrm{P}\left(\mathrm{N} / \mathrm{m}^{2}\right)$
Resistance			-WM	
	Mechanical resistance, $\Gamma_{\text {mech }}$ (or dashpot, c, $\mathrm{N}-\mathrm{s} / \mathrm{m}$, as shown)	Viscosity (in shown dashpot, $\left.\eta, N-s / m^{2}\right)$	Electrical resistance, $\mathrm{R}_{\text {elect }}$ (ohm)	Acoustic resistance, $\mathrm{R}_{\text {acoust }}$ (acoustical ohm $\mathrm{kg} / \mathrm{m}^{4}-\mathrm{s}^{2}$)
Inductance, Mass, Inertance	Mass, M (kg)	Mass, M (kg) (and mass density)	- 000000 Inductance, L (henry)	Inertance, $\mathrm{M}_{\text {acoust }}$ $\left(\mathrm{kg} / \mathrm{m}^{4}\right)$
Capacitance, Compliance	-00000 Compliance, $\mathrm{C}_{\text {mech }}$ (spring, k, N/m)		Electrical capacitance, $\mathrm{C}_{\text {elect }}$ (farad)	 Acoustic capacitance, $\mathrm{C}_{\text {acoust }}\left(\mathrm{kg}^{5 /} / \mathrm{N}\right)$
	(a) Mechanical	(b) Fluid Flow	(c) Electrical	(d) Acoustical

Análogos

Table D.1. Analog of blood flow and electrical circuits (with units)
blood circulation parameter
volume, $V_{\text {flow }}\left(\mathrm{m}^{3}\right)$
blood flow rate, $Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$ pressure, $\Delta P\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
vascular resistance, $R_{\text {flow }}\left(\mathrm{N}-\mathrm{s} / \mathrm{m}^{5}\right)$
inertance, $L_{\text {flow }}\left(\mathrm{kg} / \mathrm{m}^{4}\right)$
compliance, $C_{\text {flow }}\left(\mathrm{m}^{5} / \mathrm{N}-\mathrm{s}\right)$
electrical parameter
charge, q (C, coulomb) current, I (A, ampere) voltage, $V_{\text {elect }}(\mathrm{V}$, volt) resistance, $R_{\text {elect }}(\Omega$, ohm $)$ inductance, $L_{\text {elect }}$ (H, henry) capacitance, $C_{\text {elect }}$ (F, farad)

Fluidos Viscosos

$$
\begin{array}{r}
P_{1}+\frac{1}{2} \rho u_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho u_{2}^{2}+\rho g y_{2} . \\
Q=A_{1} u_{1}=A_{2} u_{2} .
\end{array}
$$

A Equação de Bernoulli prevê que a pressão não muda durante o fluxo se a área da seção transversal e a altura não mudar

Isso é verdade para um fluido ideal não viscoso.

- Viscosidade é o atrito/fricção durante o fluxo.
- Viscosidade causa uma queda na pressão durante o fluxo.
- O coeficiente de viscosidade η, surge como uma constante de proporcionalidade entre a força tangencial (shear force) necessária para mover uma camada de fluido de área A, a uma velocidade constante v, na direção x, quando a camada está a uma distância y de uma outra placa estacionária

Fluidos Viscosos

$$
F=\eta \frac{A}{y} v . \quad \tau=F / A \quad \tau=\eta \frac{\mathrm{d} v}{\mathrm{~d} y},
$$

Moving plate
$\mathrm{d} v / \mathrm{d} y$ is called the shear rate.

Fluidos caracterizados por essas equações são ditos Newtonianos

Fixed plate of area A
Por causa dessa resistência deve existir um gradiente de pressão para manter esse fluxo. A relação entre essa queda de pressão e a taxa de fluxo volumétrico Q é dada pela Lei de Poiseuille

$$
\Delta P=\frac{8 \eta L}{\pi R^{4}} Q
$$

Que pode ser visto como a queda de pressão quando existe um fluxo em um tubo

Fluidos Viscosos

Fig. 7.11. Establishment of steady-state Newtonian flow into the parabolic velocity profile (in the fully developed flow). (From [351], based on [355]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Fluidos Viscosos

FLUID	SHEAR STRESS	PHYSICAL BEHAVIOR
Ideal	$\tau=0$	
Newtonian	$\tau=\eta \frac{d v}{d y}$	
Non-Newtonian	$\tau=\eta\left(\frac{\mathrm{dv}}{\mathrm{dy}}\right)^{\mathrm{n}}$	
Ideal Plastic	$\tau=\tau_{y}+\eta\left(\frac{d v}{d y}\right)$	
Viscoelastic	$\tau+\left(\frac{\mu}{\lambda}\right) \dot{\tau}=\eta\left(\frac{d v}{d y}\right)$	
$\begin{aligned} & \tau_{y}=\text { yield stress } \\ & \eta=\text { coefficient of viscosity } \end{aligned}$		$\begin{aligned} & \lambda=\text { rigidity modulus } \\ & \mathrm{n}=\text { constant } \end{aligned}$

Fio. 7.12. Newtonian and non-Newtonian fluid flow (From [3.57])

Viscosidade

material	$T\left({ }^{\circ} \mathrm{C}\right)$	η
water	0	1.78×10^{-3}
	20	1.00×10^{-3}
	37	0.69×10^{-3}
	50	0.55×10^{-3}
blood plasma	100	0.28×10^{-3}
whole blood ${ }^{a}$	37	1.5×10^{-3}
low shear rate, Hct $=45 \%$	37	$\sim 4.0 \times 10^{-3}$
low shear rate, Hct $=90 \%$		$\sim 1,000 \times 10^{-3}$
high shear rate, Hct $=45 \%$		$\sim 10 \times 10^{-3}$
low shear rate, Hct $=90 \%$		$\sim 100 \times 10^{-3}$
cerebrospinal fluid	20	1.02×10^{-3}
interstitial fluid	37	$1.0-1.1 \times 10^{-3}$
human tears	37	$0.73-0.97 \times 10^{-3}$
synovial fluid ${ }^{b}$	20	>0.3
castor oil	20	1
motor oil, SAE 10	20	0.065
motor oil, SAE 50	20	0.54
machine oil, heavy	37	0.13
machine oil, light	37	0.035
ethylene glycol	37	0.011
mercury, liquid	37	1.465×10^{-3}
methanol	37	0.47×10^{-3}
ketchup	20	50
peanut butter	20	250
glass (anneal)	100	2.5×10^{12}
(blowing)		$\sim 1 \times 10^{6}$
(furnace)	$720-920 \mathrm{~K}$	$\sim 1 \times 10^{2}$
air	$\sim 1,300 \mathrm{~K}$	1.8×10^{-5}
	$1,500-1,700 \mathrm{~K}$	2.1×10^{-5}

Hct - hematocrit é
 a fração de células vermelhas no
 sangue

Modelo de velocidade

Fig. 7.13. Velocity flow profile of whole blood is blunted relative to the ideal parabolic flow of a Newtonian fluid. (From [351], based on [355]. Courtesy of Robert A. Freitas Jr., Nanomedicine, Vol. 1 (1999), http://www.nanomedicine.com)

Difusão

Fig. 7.17. Schematic of how the locations of particles vary at successively later times, from (\mathbf{a}) to (c), as a result of diffusion

Difusão

MODEL

VELOCITY PROFILE

TRACER PROFILE

CONCENTRATION PROFILE

Sistema Circulatório

Organs and lower extremities
Fig. 8.1. Blood circulation system, and labeled within the heart: the (a) right atrium, (b) right ventricle, (c) left atrium, (d) left ventricle, (1) right atrioventricular (tricuspid) valve, (2) pulmonary semilunar valve, (3) aortic semilunar valve, (4) left atrioventricular (bicuspid, mitral) valve. (From [416])

Sistema Circulatório

Table 8.1. Normal resting values of blood pressure, with system volumes

	$P(\mathrm{mmHg})$	$V(\mathrm{~L})$
systemic arteries	100	1.0
systemic veins	2	3.5
pulmonary arteries	15	0.1
pulmonary veins	5	0.4

Sistema Circulatório

Fig. 8.2. Diagram of the heart, with its principle chambers, valves, and vessels. (From [367])

Sistema Circulatório

- O sistema circulatório possui estágios bastante controlados:
- O primeiro estágio é a diástole onde as veias enchem ambos os átrios do coração, enquanto ambos os ventrículos estão relaxados.
- No segundo estágio, sístole, o músculo cardíacos (miocardio) do lado direito e do lado esquerdo dos átrios contraem, bombeando sangue pelas válvulas atrioventicular respectivamente em ambos os ventrículos ao mesmo tempo (todavia $\sim 75 \%$ do sangue chega aos ventrículos antes dessa contração).
- No primeiro passo da sístole, ambos os ventrículos contraem (isovolumetricamente) ao mesmo tempo, e no segundo passo eles ejetam o sangue na artéria pulmonar e na aorta respectivamente.
- A pressão sistolica ocorre nesse segundo estágio.

Table 8.2. Approximate quantification of individual vessels in the human circulatory system. (Using data from [382])

vessel	diameter (mm)	length (mm)	wall thickness $(\mu \mathrm{m})$	pressure (mmHg)
aorta	25.0	400	1,500	100
large arteries	6.5	200	1,000	100
main artery branches	2.4	100	800	95
terminal artery branches	1.2	10	125	90
arterioles	0.1	2	20	60
capillaries	0.008	1	1	30
venules	0.15	2	2	20
terminal venules	1.5	10	40	15
main venous branches	5.0	100	500	15
large veins	14.0	200	800	10
vena cava ${ }^{a}$	30.0	400	1,200	5
heart chambers	-	-	-	120

This is for a 30 -yr-old male, with mass 70 kg and 5.4 L blood volume.
${ }^{a}$ There are really two vena cavae.

Table 8.3. Approximate quantification of total vessel systems in the human circulatory system. (Using data from [382])

vessel	number	total length (mm)	total surface area $\left(\mathrm{mm}^{2}\right)$	total blood volume $\left(\mathrm{mm}^{3}\right)$
aorta	1	400	31,400	200,000
large arteries	40	8,000	163,000	260,000
main artery branches	500	50,000	377,000	220,000
terminal artery branches	11,000	110,000	415,000	120,000
arterioles	$4,500,000$	$9,000,000$	$2,800,000$	70,000
capillaries	$19,000,000,000$	$19,000,000,000$	$298,000,000$	375,000
venules	$10,000,000$	$20,000,000$	$9,400,000$	355,000
terminal venules	11,000	110,000	518,000	190,000
main venous branches	500	50,000	785,000	$1,590,000$
large veins	40	8,000	352,000	$1,290,000$
vena cava ${ }^{a}$	10^{a}	400	37,700	280,000
heart chambers				450,000
Total		$\sim 19,000 \mathrm{~km}$	$312,900,000$	$5,400,000$

This is for a 30 -yr-old male, with mass 70 kg and 5.4 L blood volume.
${ }^{a}$ There are really two vena cavae.

Fisica da Circulação

Fig. 8.10. Blood viscosity vs. hematocrit. (Based on [390])

- O Sangue é um fluido altamente não Newtoniano.

