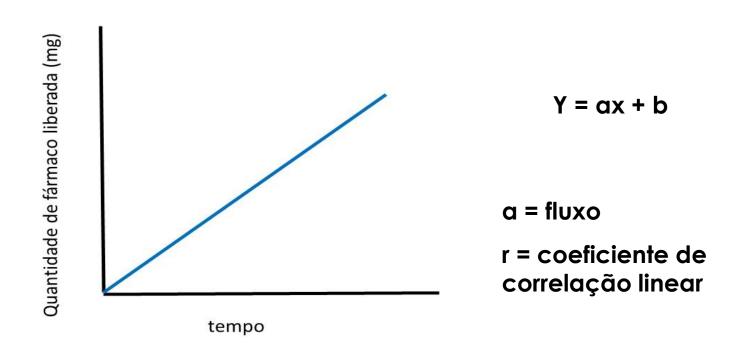
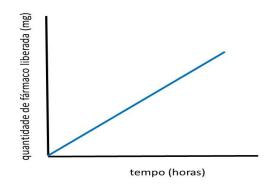

ESTUDOS DE LIBERAÇÃO DE FÁRMACOS IN VITRO


Estudos de liberação de fármacos in vitro

Quantidade cumulativa de fármaco liberado em função do tempo



Modelos de líberação de fármacos

Cinética de Ordem Zero

- Velocidade de liberação é constante por tempo prolongado
- Apresenta linearidade em função do tempo
- Quantidade liberada x tempo = linear

$$\frac{M_t}{M_{\infty}} = K_0 t + b$$

M_t = quantidade de fármaco liberada no tempo t

M_∞ = quantidade total de fármaco

K = constante

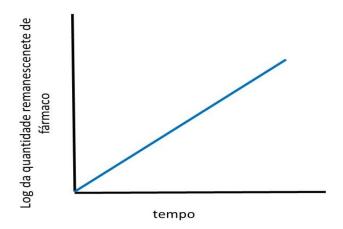
b = quantidade inicial de fármaco na solução

Modelo de Higuchi

- Velocidade de liberação diminui com o tempo
- Liberação se dá por difusão baseada na Lei de Fick
- Apresenta linearidade em função da raiz quadrada do tempo
- quantidade liberada x raiz quadrada do tempo

$$\frac{M_t}{M_{\infty}} = K_H \sqrt{t} + b$$

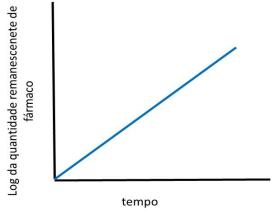
M_t = quantidade de fármaco liberada no tempo t

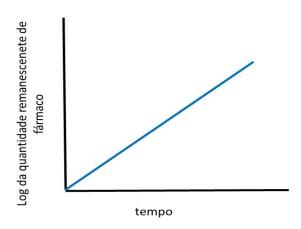

 M_{∞} = quantidade total de fármaco

K_H = constante de liberação de Higuchi

b = quantidade inicial de fármaco na solução

Cinética de primeira ordem


- Liberação proporcional à quantidade de fármaco remanescente no sistema
- Log da quantidade de fármaco remanescente x tempo



Quantidade liberada em função do tempo

Tempo (horas)	Quantidade de fármaco liberada (mg)
0,5	100,0 mg
1,0	125,0mg
2,0	134,0mg

Modelo de Korsmeyer

Korsmeyer et al, 1983 Rigter, Peppas, 1987

$$\frac{M_t}{M_{\infty}} = Kt^n + b$$

M_t = quantidade de fármaco liberada no tempo t

M_∞ = quantidade total de fármaco

K = constante

n = expoente difusional

b = quantidade inicial de fármaco na solução

$$\frac{M_t}{M_{\infty}} = Kt^n$$

- Difusão de Fick
- Transporte Caso II: consequência dos fenômenos de intumescimento/relaxamento do sistema
- Difusão anômala: combinação dos dois mecanismos

Expoente difusional e mecanismo de liberação de vários sistema de liberação non-swelling

Expoente difusional (n)			Mecanismo de liberação
Filme fino	Cilindro	Esférica	
0,5	0,45	0,43	Difusão de Fick
0,5< n < 1,00	0,45< n < 1,00	0,43< n < 1,00	Transporte anômalo
1,00	1,00	1,00	Cinética de ordem zero

Expoente difusional e mecanismo de liberação de vários sistema de liberação que intumescem

Expoente difusional (n)			Mecanismo de liberação
Filme fino	Cilindro	Esférica	
0,5	0,45	0,43	Difusão de Fick
0,5< n < 1,00	0,45< n < 0,89	0,43< n < 0,85	Transporte anômalo
1,00	0,89	0,85	Transporte Caso II

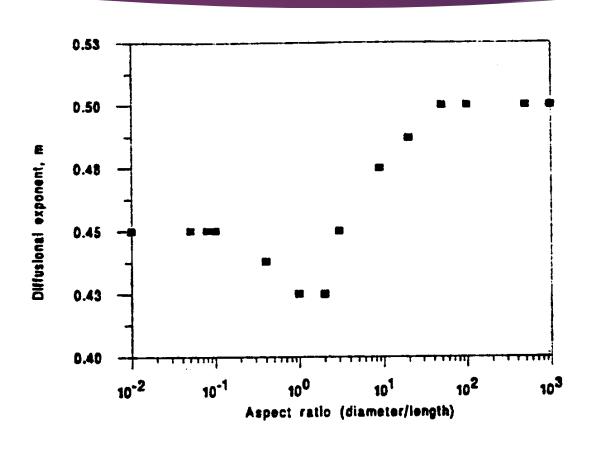
Válido para sistemas que intumescem moderadamente (swelling ratio menor que 1,33 ou aumento de volume de 25%)

Modelo de Peppas, Sahlim

Expoente difusional e mecanismo de liberação de vários sistema de liberação que intumescem

$$\frac{M_t}{M_{\infty}} = K_1 t^m + K_2 t^{2m}$$

M_t = quantidade de fármaco liberada no tempo t


 M_{∞} = quantidade total de fármaco

 K_1 = constante de Fick

K₂ constante relaxação

m = expoente difusional de Fick

Modelo de Peppas, Sahlim

Referências Bibliográficas

LOPES, C.M.; LOBO, J.M.; COSTA, P. Formas farmacêuticas de liberação modificada: polímeros hidrofílicos. Revista Brasileira de Ciências Farmacêuticas / Brazilian Journal of Pharmaceutical Sciences, 2005, 41 (2): 143-154.

MANADAS, R.; PINA, M.E.; VEIGA, F. A dissolução in vitro na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada. Revista Brasileira de Ciências Farmacêuticas / Brazilian Journal of Pharmaceutical Sciences, 2002, 38 (4): 375-399.

COSTA, P.; LOBO, J.M. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 2001, 13: 123-133.

PEPPAS, N.A.; SAHLIN, J.S. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 1989, 57: 169-172.

RIGTER, P.L.; PEPPAS, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 1987, 5: 37-42.

RIGTER, P.L.; PEPPAS, N.A. A simple equation for description of solute release II. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs.. Journal of Controlled Release, 1987, 5: 23-36.

KORSMEYER, R.W.; GURNY, R.; DOELKER, E.; BURI, P.; PEPPAS, N.A. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 1983, 15:25-35.

HIGUCHI, W.I. Analysis of data on the Medicament Release from Ointments. Journal of Pharmaceutical Scinces, 1962, 51(8): 802-804.