MAE-5725 - MODELOS LINEARES

4ª Lista de Exercícios

Profa. Silvia N. Elian

- 1) Considere o modelo $Y_i = \beta x_i + \epsilon_i$ onde ϵ_i , i = 1,2 ... n são variáveis aleatórias independentes, $\in_i \sim N(0, \sigma_i^2)$, com $\sigma_i^2 = X_i^2 \sigma^2$.
 - a) Obtenha o estimador não viciado uniformemente de variância mínima de β .
 - b) Determine a variância deste estimador.
 - c) Derive um intervalo de confiança com coeficiente 1 α para β .
- 2) Deseja-se comparar dois métodos de ensino A e B e com este objetivo, aplicou-se uma prova a n₁ alunos sujeitos ao método de ensino A e n₂ sujeitos ao método de ensino B. Admitindo o $Y_i = \beta_0 + \beta_1 \ W_i + \epsilon_i$, ϵ_i , i = 1,2 ... n variáveis aleatórias modelo

- a) Qual o significado prático de β_0 e β_1 ?
- b) Obtenha o estimador NVUVM da diferença das notas médias para alunos sujeitos aos métodos A e B, justificando a resposta.
- c) Construa o teste de hipóteses para a igualdade das notas médias segundo os dois métodos, contra a alternativa de que as médias são diferentes, usando a forma geral $C\beta = m$.
- d) Prove que o teste do item (c) é equivalente ao teste t de igualdade de médias para amostras independentes.
- 3) Considere o modelo $Y_i = \alpha + \beta x_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2 x_i^2)$, ϵ_i , ϵ_j v.a. independentes, $i \neq j$. Dados os valores de X e Y para uma amostra de 5 observações

- a) Obtenha os estimadores NVUVM para α e β e as correspondentes estimativas.
- b) Teste, ao nível de significância 0,10 a hipótese $H_0: \beta = 1$ contra $H_a: \beta > 1$.
- 4) Para um grupo de n alunos sujeitos a três diferentes métodos de ensino, observou-se a notanum teste (Y). conhecendo-se o número de horas (X) que cada aluno estudou para o referido teste. Se o modelo utilizado para o problema foi

$$Y_i = \beta_0 + \beta_1 x_i + \alpha_1 z_{1i} + \alpha_2 z_{2i} + \epsilon, \qquad \epsilon_i \sim N(0, \sigma^1), \text{ independentes}$$
 onde

$$(Z_1, Z_2) = \begin{cases} (1.0) & \text{para o método de ensino A} \\ (0.1) & \text{para o método de ensino B} \\ (0.0) & \text{para o método de ensino C} \end{cases}$$

- a) Qual a expressão de E (Y / x) para cada um dos métodos de ensino?
- b) Qual o significado prático dos parâmetros α_1 , α_2 , e β ?

5) Seja
$$Y_1 = \alpha_1 + \epsilon_1$$

 $Y_2 = 2\alpha_1 - \alpha_2 + \epsilon_2$
 $Y_3 = \alpha_1 + 2\alpha_2 + \epsilon_3$

onde $\in \sim N_3(0, \sigma^2 I)$ Derive o teste F para $H_0: \alpha_1 = \alpha_2$ contra $H_a: \alpha_1 \neq \alpha_2$.

6) Obtenha os estimadores de mínimos quadrados ponderados para os parâmetros do modelo

 $Y = \beta_0 + \beta_1 X + \epsilon$ com base nos dados

sabendo que Var
$$(Y / x) = \begin{cases} \sigma^2 & \text{para} \quad x = 1, 2, 3 \\ 2\sigma^2 & \text{para} \quad x = 4, 5 \end{cases}$$
, e que ϵ_i , ϵ_j são variáveis

aleatórias independentes, i ≠ j.

Admitindo normalidade para os \in i, teste a hipótese H_0 : $\beta_1 = 0$.

7) Considere o modelo de locação $Y_i = \mu + \epsilon_i$, i = 1, 2 ... n com $\epsilon \sim N_n(0, \Sigma)$, onde

$$\Sigma = \begin{bmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \rho & \rho & \dots & 1 \end{bmatrix}.$$

- a) Mostre que $\beta = \beta_c$.
- b) Determine a matriz F tal que $\Sigma X = XF$.
- 8) Os dados abaixo correspondem a uma amostra de n = 20 terrenos localizados em três diferentes regiões de uma cidade. sendo que X corresponde à área do terreno (em m²) e Y ao preço.

Y	200	200	250	300	300	400	400	450
- X	16	12	20	24	20	22	33	34
região	C	A	В	В	A	Α	С	В

v	500	500	550	550	600	600	600	700
- N	<u>40</u>	41	43	42	50	50	48	55
região		C	В	A	С	С	В	В

X	700	800	800	800
Y	54	60	61	62
região	A	A	Α	A

a) Construa o modelo de regressão $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.

b) Construa o gráfico dos resíduos contra região. O que podemos concluir sobre a influência da

região no preço dos terrenos?

c) Admitindo um modelo de três retas paralelas para as regiões A, B e C, com o auxílio de variáveis dummy, obtenha as equações estimadas destas três retas. Qual a restrição que está sendo imposta quando admitimos o paralelismo das três retas?

d) Teste a hipótese de que as retas para as regiões B e C são coincidentes.

e) Teste a hipótese de que o preço independe da região.

- 9) Considere o modelo linear geral $Y = X \beta + \epsilon, \epsilon \sim N(0, \sigma^2 I)$ e $\hat{\beta}_0$ o estimador de máxima verossimilhança de β sob a hipótese $C\beta = m$. Prove que $C\hat{\beta}_0 = m$.
- 10) Obtenha o teste da razão de verossimilhança generalizada para $H_0: \beta = b, b$ vetor de constantes especificadas, no modelo $Y = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2 I)$ β vetor de parâmetros k+1 dimensional. Determine o estimador de mínimos quadrados de β sob H_0 .

11)Considere R², o coeficiente de explicação após o ajuste de um modelo linear geral com intercepto, com k variáveis explicativas, com base em uma amostra de n observações.

a) Suponha que uma nova variável explicativa foi adicionada ao modelo. Nessas condições, o valor do coeficiente de explicação aumenta? Justifique sua resposta.

Uma crítica que é feita ao coeficiente de explicação é que ele não utiliza o tamanho de amostra e o número de variáveis explicativas no modelo. Por isso, define-se o coeficiente de explicação ajustado para graus de liberdade:

 $R_a^2 = 1 - (n-1)/(n-p) (1 - R^2),$

sendo p o número de variáveis explicativas no modelo mais 1. Nessas condições:

b) Prove que $R_a^2 \le R^2$

c) Prove que se Y é a variável resposta e X_1 , X_2 , X_k é um conjunto de variáveis explicativas, a equação de regressão com maior R^2 _a é aquela com menor quadrado médio do resíduo.

d) Prove que R²_a pode diminuir com o acréscimo de uma nova variável explicativa no modelo. pontos)