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9 Vector Spaces

A vector space over some field K is an algebraic structure consisting of a set V on which are defined
two algebraic operations: a binary operation referred to as addition, and an operation of multiplication
by scalars in which elements of the vector space are multiplied by elements of the given field K. These
two operations are required to satisfy certain axioms that correspond to many of the properties of
basic arithmetic. Vector spaces over the field of real numbers are usually referred to as real vector
spaces. (A real vector space is thus characterized by two operations: an operation in which two
elements of the vector space are added together, and an operation in which elements of the vector
space are multiplied by real numbers.) Similarly vector spaces over the field of complex numbers are
referred to as complex vector spaces.

Vector spaces arise in many contexts. A basic example is the vector space consisting of all vectors in
3-dimensional Euclidean space. Linear algebra, the algebra of vector spaces, plays a fundamental role
in many branches of pure mathematics. The foundations of quantum mechanics are often presented
in terms of linear operators acting on an infinite-dimensional complex vector space: this approach was
developed by P. A. M. Dirac. The equations of general relativity are usually expressed in the language
of tensors, operators between certain vector spaces that are derived from the tangent spaces at points
of a curved 4-dimensional space-time. In mathematical economics real vector spaces occur naturally
when modelling the manufacture of commodities and the exchange of commodities in markets. The
study of vector spaces over certain finite fields plays an important role in the design of error-correcting
codes, which may be used when sending messages along a telephone line, or when one wishes to assign
telephone numbers (or analogous identification numbers) in a way that allows for the automatic
correction of simple errors occurring if, say, a single digit is incorrectly typed, or if two adjacent digits
are transposed.

9.1 The Definition of a Vector Space

Definition. Let K be a field. A vector space over the field K consists of a set V on which is defined
an operation of addition (usually denoted by +), associating to elements u and v of V an element
u + v of V , and an operation of multiplication by scalars, associating to each element c of K and to
each element v of V an element cv of V , where the following axioms are satisfied:

• u + v = v + u for all elements u and v of V (i.e., vector addition is commutative);

• (u+v)+w = u+(v+w) for all elements u, v and w of V (i.e., vector addition is associative);

• there exists an an element 0 of V (known as the zero element) with the property that v+0 = v
for all elements v of V ;
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• given any element v of V , there exists an element −v of V with the property that v+(−v) = 0;

• (c + d)v = cv + dv for all elements c and d of K and elements v of V ;

• c(v + w) = cv + cw for all elements c of K and elements v and w of V ;

• c(dv) = (cd)v for all elements c and d of K and elements v of V ;

• 1v = v for all elements v of V , where 1 is the multiplicative identity element of the field K.

The first four of these axioms (the axioms that involve only the operation of addition) can be sum-
marized in the statement that a vector space is an Abelian group (i.e., a commutative group) with
respect to the operation of addition.

Given a vector space V over a field K, we shall refer to the elements of the field K as scalars. The
scalars of a real vector space are real numbers, and the scalars of a complex vector space are complex
numbers. Given an element v of the vector space V , we shall refer to elements of V that are of the
form cv for some scalar c as scalar multiples of v.

A vector space V over a field K is said to be trivial if it consists of a single element (which must
then be the zero element of V ). A vector space with more than one element is said to be non-trivial.

9.2 Examples of Vector Spaces

Example. The set of all vectors in 3-dimensional Euclidean space is a real vector space: the vector
space axioms in this case are familiar properties of vector algebra.

Example. Given any positive integer n, the set Rn of all ordered n-tuples (x1, x2, . . . , xn) of real
numbers is a real vector space. Operations of addition of such n-tuples and multiplication of n-tuples
by real numbers are defined in the obvious fashion:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn)

for all n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) and for all real numbers c. The space Rn is the
natural n-dimensional generalization of the space R3 of all 3-dimensional vectors, where such vectors
are represented with respect to Cartesian coordinates as ordered triples (u, v, w) of real numbers.

Example. Given any positive integer n, the set Cn of all ordered n-tuples (z1, z2, . . . , zn) of complex
numbers is a complex vector space. The algebraic operations of addition of complex n-tuples and
multiplication of complex n-tuples by complex numbers are defined in the obvious fashion, generalizing
the corresponding operations on the real vector space Rn.

Example. Let K be any field. Then the set Kn of n-tuples of elements of K is a field over K, where

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn)

for all elements (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of Kn and for all elements c of K. This example
is a generalization of the previous two examples.
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Example. The set of all polynomials with real coefficients is a real vector space, with the usual oper-
ations of addition of polynomials and multiplication of polynomials by scalars (in which all coefficients
of the polynomial are multiplied by the same real number). It is easy to verify that the vector space
axioms are all satisfied.

Example. The field Q(
√

2) consisting of all real numbers of the form p + q
√

2, where p and q are
required to be rational numbers, is a vector space over the field Q of rational numbers. The sum of
any two numbers in Q(

√
2) itself belongs to Q(

√
2), as does the product of a rational number and an

number in Q(
√

2).

Example. The set C(D, R) of all continuous real-valued functions defined over a given subset D of
the real numbers is a real vector space: if x 7→ f(x) and x 7→ g(x) are continuous functions on D then
so are x 7→ f(x) + g(x) and x 7→ cf(x) for all real numbers c; moreover these operations of addition
of functions and of multiplication of functions by real numbers satisfy the vector space axioms.

Example. The field C of complex numbers can be viewed as a real vector space: the vector space
axioms are satisfied when two complex numbers are added together in the normal fashion, and when
complex numbers are multiplied by real numbers.

9.3 Basic Consequences of the Vector Space Axioms

Let V be a vector space over some field K. Then the operation + of addition of elements of V is
required to satisfy the following axioms:

• u + v = v + u for all elements u and v of V (i.e., vector addition is commutative);

• (u+v)+w = u+(v+w) for all elements u, v and w of V (i.e., vector addition is associative);

• there exists an an element 0 of V (known as the zero element) with the property that v+0 = v
for all elements v of V ;

• given any element v of V , there exists an element −v of V with the property that v+(−v) = 0;

These are the axioms that characterize Abelian groups.
We now consider some of the consequences of these axioms. (Corresponding results hold in any

Abelian group.)

Lemma 9.1. Let u and v be elements of a vector space V . Then there exists a unique element x of
V satisfying x + v = u.

Proof. The vector space axioms ensure the existence of an element −v of V with the property that
v+(−v) = 0, where 0 is the zero element of V . The identity x+v = u is satisfied when x = u+(−v),
since

(u + (−v)) + v = u + ((−v) + v) = u + (v + (−v)) = u + 0 = u.

(Here we have used the fact that vector addition is required to be both commutative and associative.)
If now x is any element of V satisfying x + v = u then

x = x + 0 = x + (v + (−v)) = (x + v) + (−v) = u + (−v).

This proves that there is exactly one element x of V satisfying x + v = u, and it is given by the
formula x = u + (−v).
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Let u and v be elements of a vector space V . We denote by u−v the unique element x of V with
the property satisfying x + v = u. Note that u− v = u + (−v) for all elements u and v of V . This
defines the operation of subtraction on any vector space.

If x is an element of a vector space V and if there exists at least one element v for which v+x = v
then Lemma 9.1 ensures that x = 0. It follows immediately from this that the zero element of a
vector space is uniquely determined.

Lemma 9.1 also ensures that, given any element v of a vector space V there exists exactly one
element −v of V with the property that v + (−v) = 0.

In addition to the axioms for addition listed above, a vector space is required to satisfy axioms
that involve the operation of multiplication by scalars. These axioms are as follows:

• (c + d)v = cv + dv for all elements c and d of K and elements v of V ;

• c(v + w) = cv + cw for all elements c of K and elements v and w of V ;

• c(dv) = (cd)v for all elements c and d of K and elements v of V ;

• 1v = v for all elements v of V , where 1 is the multiplicative identity element of the field K.

We now discuss some elementary consequences of these axioms.

Lemma 9.2. Let V be a vector space over a field K. Then c0 = 0 and 0v = 0 for all elements c of
K and elements v of V .

Proof. The zero element 0 of V satisfies 0 + 0 = 0. Therefore

c0 + c0 = c(0 + 0) = c0

for any element c of K. The elements c0 and 0 of V must therefore be equal to one another, since
both are equal to the unique element x of V that satisfies x + c0 = c0.

The zero element 0 of the field K satisfies 0 + 0 = 0. Therefore

0v + 0v = (0 + 0)v = 0v

for any element v of V . The elements 0v and 0 of V must therefore be equal to one another, since
both are equal to the unique element y of V that satisfies y + 0v = 0v.

Lemma 9.3. Let V be a vector space over a field K. Then (−c)v = −(cv) and c(−v) = −(cv) for
all elements c of K and elements v of V .

Proof. (−c)v = −(cv), since

cv + (−c)v = (c + (−c))v = 0v = 0.

Also c(−v) = −(cv), since

cv + c(−v) = c(v + (−v)) = c0 = 0.

Lemma 9.4. Let V be a vector space over a field K. Then u − v = u + (−1)v for all elements u
and v of V .

Proof. The vector space axioms require that v = 1v. It follows from Lemma 9.3 that −v = (−1)v.
Therefore u− v = u + (−v) = u + (−1)v, as required.
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Lemma 9.5. Let V be a vector space over a field K, let c be an element of K and let v be an element
of V . Suppose that cv = 0. Then either c = 0 or v = 0.

Proof. Suppose that cv = 0 and c 6= 0. We must show that v = 0. Now there exists an element c−1

of K satisfying c−1c = 1, since any non-zero element of a field has a multiplicative inverse. It then
follows from the vector space axioms and Lemma 9.2 that

v = 1v = (c−1c)v = c−1(cv) = c−10 = 0,

as required.

9.4 Subspaces

Definition. Let V be a vector space over a field K. A non-empty subset U of V is said to be a
subspace of V if u + v ∈ U and cu ∈ U for all elements u and v of U and for all elements c of
the field K. (Thus the sum of two elements of a subspace of V is required to be an element of the
subspace, as is any scalar multiple of an element of that subspace.)

Example. The set of all vectors that are parallel to a given plane is a subspace of the space of all
vectors in 3-dimensional Euclidean space.

Example. For each positive integer n, the set of all polynomials with real coefficients whose degree is
less than or equal to n is a subspace of the space of all polynomials with real coefficients. (This follows
from the fact that the sum of two polynomials of degree not exceeding n is itself such a polynomial,
as is any scalar multiple of a polynomial of degree not exceeding n.)

Example. Let D be a subset of the set R of real numbers, and let C(D, R) be the real vector space
consisting of all continuous real-valued functions on D. Given any subset E of D, the set of all
continuous real-valued functions f on D with the property that f(x) = 0 for all x ∈ E is a subspace of
the vector space C(D, R): the sum of two functions that take the value zero on E is itself a function
taking the value zero on E, as is any constant multiple of such a function.

Example. The set of all differentiable real-valued functions on a given interval is a subspace of the
real vector space consisting of all continuous real-valued functions on that interval (with the usual
operations of addition of functions and of multiplication of functions by real numbers). Indeed the
sum of two differentiable functions is itself a differentiable function, as is any constant multiple of a
differentiable function.

Lemma 9.6. Let V be a vector space over a field K. Then any subspace of V is itself a vector space
over K.

Proof. Let U be a subspace of V . If v is an element of U then so is (−1)v. Now u− v = u + (−1)v
for all elements u and v of U (Lemma 9.4), and the sum of two elements of a subspace is itself an
element of that subspace. We conclude that if u and v are elements of U then so is u− v.

We must verify that the vector space axioms are satisfied when elements of U are added together
or are multiplied by scalars. The operation of addition on U is commutative and associative. The zero
element 0 of V must belong to U , since subspaces of V are required to be non-empty and 0 = v − v
for any element v of U . If v is an element of U then so is −v, since −v = 0 − v. We can therefore
conclude that the subspace U is an Abelian group with respect to the operation of addition. The
algebraic operations on U of addition and of multiplication by scalars must clearly satisfy the identities
listed in the vector space axioms, since these identities are satisfied by the algebraic operations on the
vector space V . We conclude therefore that any subspace of V is itself a vector space over the given
field.
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9.5 Linear Dependence, Spanning Sets and Bases

Let v1,v2, . . . ,vk be elements of some vector space over a given field K. An element specified by an
expression of the form c1v1 + c2v2 + · · · + ckvk where c1, c2, . . . , ck are scalars (i.e., elements of the
field K) is said to be a linear combination of the elements v1,v2, . . . ,vk.

Definition. Let V be a vector space over a field K. Elements v1,v2, . . . ,vk of V are said to be
linearly dependent if there exist scalars c1, c2, . . . , ck, not all zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Elements v1,v2, . . . ,vk are said to be linearly independent if they are not linearly dependent. (Thus
elements v1,v2, . . . ,vk of a vector space V are linearly independent if and only if the only solution of
the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

is the trivial solution in which the scalars c1, c2, . . . , ck are all zero.)

Example. The vectors (2, 2, 5), (3, 3, 12) and (5, 5,−1) are linearly dependent elements of the real
vector space R3, since

7(2, 2, 5)− 3(3, 3, 12)− (5, 5,−1) = (0, 0, 0).

(Thus if v1 = (2, 2, 5), v2 = (3, 3, 12) and v3 = (5, 5,−1), then the equation c1v1 + c2v2 + c3v3 = 0
is satisfied with c1 = 7, c2 = −3 and c3 = −1.)

Example. Let pj(x) = xj for j = 0, 1, 2, . . . , n, where n is some positive integer. Then the polyno-
mials p0(x), p1(x), p2(x), . . . , pn(x) are linearly independent elements of the vector space consisting of
all polynomials with real coefficients. Indeed if c0, c1, . . . , cn are real numbers and if

c0p0(x) + c1p1(x) + c2p2(x) + · · ·+ cnpn(x) = 0

then c0 + c1x + c2x
2 + · · ·+ cnxn is the zero polynomial, and therefore cj = 0 for j = 0, 1, 2, . . . , n.

Definition. Elements v1,v2, . . . ,vn of a vector space V are said to span V if, given any element u
of V , there exist scalars c1, c2, . . . , cn such that

u = c1v1 + c2v2 + · · ·+ cnvn.

Definition. Elements v1,v2, . . . ,vn of a vector space V are said to constitute a basis of V if these
elements are linearly independent and span V .

Example. The vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) constitute a basis of the vector space R3 of all
ordered triples of real numbers.

Example. Let Rn be the real vector space consisting of all ordered n-tuples (x1, x2, . . . , xn) of real
numbers, and, for each integer j between 1 and n, let ej be the ordered n-tuple whose jth component
is equal to one and whose other components are zero. Then

(x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen

for any ordered n-tuple (x1, x2, . . . , xn) of real numbers. It follows directly from this that the elements
e1, e2, . . . , en are linearly independent and span the vector space Rn. Thus e1, e2, . . . , en is a basis of
Rn.
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Example. Let pj(x) = xj for j = 0, 1, 2, . . . , n, where n is some positive integer. Then the lin-
early independent polynomials p0(x), p1(x), p2(x), . . . , pn(x) span the vector space consisting of all
polynomials with real coefficients whose degree does not exceed n, since

c0 + c1x + c2x
2 + · · ·+ cnxn = c0p0(x) + c1p1(x) + c2p2(x) + · · ·+ cnpn(x)

for all polynomials c0 + c1x+ c2x
2 + · · ·+ cnxn with real coefficients. We conclude that 1, x, x2, . . . , xn

is a basis of the vector space consisting of all polynomials with real coefficients whose degree does not
exceed n.

Theorem 9.7. Elements v1,v2, . . . ,vn of a vector space V constitute a basis of that vector space if
and only if, given any element u of V , there exist uniquely determined scalars c1, c2, . . . , cn such that

u = c1v1 + c2v2 + · · ·+ cnvn.

Proof. First suppose that v1,v2, . . . ,vn is a list of elements of V with the property that, given any
element u of V , there exist uniquely determined scalars c1, c2, . . . , cn such that

u = c1v1 + c2v2 + · · ·+ cnvn.

Then the elements v1,v2, . . . ,vn span V . Also the uniqueness of the scalars ensures that the zero
element 0 of V cannot be expressed as a linear combination of v1,v2, . . . ,vn unless the scalars involved
are all zero. Therefore these elements are linearly independent and thus constitute a basis of the vector
space V .

Conversely suppose that v1,v2, . . . ,vn is a basis of V . Then any element of V can be expressed
as a linear combination of the basis vectors. We must prove that the scalars involved are uniquely
determined. Let c1, c2, . . . , cn and d1, d2, . . . , dn be scalars satisfying

c1v1 + c2v2 + · · ·+ cnvn = d1v1 + d2v2 + · · ·+ dnvn.

Then
(c1 − d1)v1 + (c2 − d2)v2 + · · ·+ (cn − dn)vn = 0.

But then cj − dj = 0 and thus cj = dj for j = 1, 2, . . . , n, since the elements of any basis are required
to be linearly independent. This proves that any element of V can be represented in a unique fashion
as a linear combination of the elements of a basis of V , as required.

9.6 Finite-Dimensional Vector Spaces

Definition. A vector space V is said to be finite-dimensional if there exists a finite subset of V whose
elements span V .

A vector space is said to be trivial if it consists of a single element (the zero element). We shall
show that every non-trivial finite-dimensional vector space has a basis (Corollary 9.10). Moreover any
two bases of a finite-dimensional vector space have the same number of elements (Corollary 9.13). This
enables us to define the dimension of a non-trivial finite-dimensional vector space to be the number
of elements in any basis of that vector space. The dimension of a trivial vector space is defined to be
zero. Any subspace of a finite-dimensional vector space V is itself a finite-dimensional vector space
whose dimension does not exceed that of V (Proposition 9.14).
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Proposition 9.8. Let V be a non-trivial vector space, and let S be a finite subset of V whose elements
span V . Let n be the smallest positive integer for which there exists a set of n elements of S that span
V . Then any n vectors of S that span V are linearly independent, and thus constitute a basis of V .

Proof. Let v1,v2, . . . ,vn be n elements of S which span V . We show that these elements are linearly
independent.

Suppose that v1,v2, . . . ,vn were linearly dependent. Then n > 1, and there would exist scalars
a1, a2, . . . , an, not all zero, such that

a1v1 + a2v2 + · · ·+ anvn = 0.

We may suppose, without loss of generality, that an 6= 0. Then

vn = b1v1 + b2v2 + · · ·+ bn−1vn−1,

where bi = −aia
−1
n for i = 1, 2, . . . , n − 1. But then v1,v2, . . . ,vn−1 would span V , since any linear

combination of v1,v2, . . . ,vn could be expressed as a linear combination of v1,v2, . . . ,vn−1. (Indeed

n∑
i=1

civi =
n−1∑
i=1

(ci + cnbi)vi

for all scalars c1, c2, . . . , cn.) But the definition of n ensures that no set of n − 1 elements of S can
span V . We conclude that v1,v2, . . . ,vn must be linearly independent, and thus must constitute a
basis of V , as required.

Corollary 9.9. Let V be a non-trivial vector space, and let S be a finite subset of V whose elements
span V . Then there exists a basis of V whose elements belong to S.

Corollary 9.10. Every non-trivial finite-dimensional vector space has a basis.

Proposition 9.11. Let V be a non-trivial vector space, let S be a finite subset of V whose elements
span V , and let x1,x2, . . . ,xm be linearly independent elements of S. Let n be the smallest positive
integer for which there exists a set of n elements of S that span V . Then m ≤ n, and the elements
x1,x2, . . . ,xm can be included in a basis of V that consists of n elements of S.

Proof. We claim that if k is a non-negative integer less than m and n, and if the elements xi for
i ≤ k can be included in a basis of V consisting of n elements of S, then so can the elements xi

for i ≤ k + 1. Suppose therefore that v1, . . . ,vn−k are elements of S and that the elements xi for
1 ≤ i ≤ k together with the elements vi for 1 ≤ i ≤ n − k constitute a basis of V . Then the
elements x1,x2, . . . ,xk+1,v1,v2, . . . ,vn−k are linearly dependent, since xk+1 can be expressed as a
linear combination of the other elements in this list. Thus there exist scalars a1, a2, . . . , ak+1 and
b1, b2, . . . , bn−k, not all zero, such that

k+1∑
i=1

aixi +
n−k∑
i=1

bivi = 0.

The linear independence of x1,x2, . . . ,xk+1 ensures that the scalars b1, b2, . . . , bn−k are not all zero.
Without loss of generality we may suppose that bn−k 6= 0. Then

vn−k = −
k+1∑
i=1

aib
−1
n−kxi −

n−k−1∑
i=1

bib
−1
n−kvi.
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It follows from this that V is spanned by the n elements x1,x2, . . . ,xk+1 and v1,v2, . . . ,vn−k−1. But
n is the smallest positive integer for which there exist n elements of S that span V . It follows from
Proposition 9.8 that any n vectors of S that span V constitute a basis of V . Therefore the elements
x1,x2, . . . ,xk+1 and v1,v2, . . . ,vn−k−1 constitute a basis of V .

We have shown that if k is a non-negative integer less than m and n, and if the elements xi with
i ≤ k can be included in a basis of V consisting of n elements of S, then so can the elements xi

with i ≤ k + 1. Given any positive integer j that does not exceed m or n we can apply this result
with k = 0, 1, . . . , j − 1. We deduce that the elements x1,x2, . . . ,xj can be included in a basis of V
consisting of n elements of S, provided that j does not exceed m or n.

Suppose it were the case that m > n. Then it would follow (on taking j = n) that the elements
x1,x2, . . . ,xn would constitute a basis of V , and therefore each of the vectors xn+1, . . . ,xm would be
expressed as a linear combination of x1,x2, . . . ,xn. But this would contradict the linear independence
of x1,x2, . . . ,xm. Therefore m ≤ n. It then follows (on taking j = m) that x1,x2, . . . ,xm can be
included in a basis of V consisting of n elements of S, as required.

Corollary 9.12. Let V be a non-trivial vector space, and let X and Y be finite subsets of V . Suppose
that the elements of X are linearly independent and the elements of Y span V . Then the number of
elements of X does not exceed the number of elements of Y .

Proof. Let r and s denote the number of elements in X and Y respectively, and let S = X ∪ Y .
Then the elements of S span V . Let n be the smallest positive integer for which there exists a set
of n elements of S that span V . It follows from Proposition 9.11 that r ≤ n. But n ≤ s, since the
elements of Y span V . Therefore r ≤ s, as required.

Corollary 9.13. Any two bases of a finite-dimensional vector space contain the same number of
elements.

Proof. This result follows immediately from Corollary 9.13, since the elements of any basis of a
finite-dimensional vector space are linearly independent and span the vector space.

Definition. The dimension of a finite-dimensional vector space is defined to be number of elements
in any basis of that vector space. The dimension is defined to be zero in the case where the vector
space consists of just the zero element.

Example. The vector space Rn consisting of all n-tuples of real numbers is an n-dimensional real
vector space.

Example. The field C of complex numbers is a 2-dimensional real vector space: the numbers 1 and√
−1 constitute a basis of C as a real vector space since any complex number can be expressed uniquely

in the form x + y
√
−1, where x and y are required to be real numbers.

Example. Let n be a positive integer. The vector space consisting of all polynomials with real
coefficients whose degree does not exceed n is an (n+1)-dimensional real vector space: the polynomials
1, x, x2, . . . , xn constitute a basis for this vector space.

Proposition 9.14. A subspace U of a finite-dimensional vector space V is itself a finite-dimensional
vector space whose dimension cannot exceed that of V . Moreover if m and n are the dimensions of U
and V then there exists a basis v1,v2, . . . ,vn of V with the property that the first m elements of this
basis constitute a basis of the subspace U .
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Proof. Let U be a subspace of a finite-dimensional vector space V . The result is trivial when
U = {0}. Suppose then that U is non-trivial. Now Corollary 9.12 ensures that the number of
linearly independent elements in any subset of a finite-dimensional vector space V cannot exceed the
dimension of V . Let m be the largest number of linearly independent elements in any subset of U ,
and let v1,v2, . . . ,vm be linearly independent elements of U . We claim that these elements span U
and therefore constitute a basis for U .

Let u be an element of U . Then the elements v1,v2, . . . ,vm,u must be linearly dependent, since
this list contains m + 1 members. It follows that there exist scalars c1, c2, . . . , cm and d, not all zero,
such that

c1v1 + c2v2 + · · ·+ cmvm + du = 0.

The linear independence of v1,v2, . . . ,vm then ensures that d 6= 0. Then

u = −c1d
−1v1 − c2d

−1v2 − · · · − cmd−1vm.

We conclude that the linearly independent elements v1,v2, . . . ,vm span U and thus constitute a basis
of U . Moreover the dimension m of U does not exceed the dimension n of V .

Finally let S = {v1,v2, . . . ,vm} ∪ S0, where S0 is a finite subset of V whose elements span V . It
follows from Proposition 9.11 that there exists a basis of V consisting of elements of S which includes
v1,v2, . . . ,vm. Therefore there exist elements vi of S0 for m < i ≤ n such that v1,v2, . . . ,vn is a
basis of V . The first m elements of this basis constitute a basis of U , as required.

Example. The space consisting of all polynomials with real coefficients is an infinite-dimensional
real vector space. For if this space were a finite-dimensional vector space whose dimension is N then
no linearly independent subset of the vector space could contain more than N elements. But the
polynomials 1, x, x2, . . . , xn are linearly independent for each positive integer n. Therefore the space
of all polynomials with real coefficients cannot be finite-dimensional.

Example. The space consisting of all continuous real-valued functions defined on the set R of
real numbers is an infinite-dimensional real vector space since the polynomial functions constitute
an infinite-dimensional subspace, and a finite-dimensional vector space cannot contain any infinite-
dimensional subspace (Proposition 9.14).

9.7 Linear Transformations

Definition. Let V and W be vector spaces over some field K. A function T :V → W is said to be a
linear transformation if T (u + v) = T (u) + T (v) and T (cv) = cT (v) for all elements u and v of V
and for all elements c of K.

Let V and W be vector spaces over a field K, and let v1,v2, . . . ,vn be elements of a vector space V ,
and let T :V → W be a linear transformation from V to W . Let wj = T (vj) for j = 1, 2, . . . , n. Then

T (c1v1 + c2v2 + · · ·+ cnvn) = T (c1v1) + T (c2v2) + · · ·+ T (cnvn)
= c1w1 + c2w2 + · · ·+ cnwn

for all scalars c1, c2, . . . , cn.
In particular, Rn be the space of all ordered n-tuples (x1, x2, . . . , xn) of real numbers, and, for

each integer j between 1 and n, let ej be the ordered n-tuple whose jth component is equal to one
and whose other components are zero. Now

(x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen
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for any ordered n-tuple (x1, x2, . . . , xn). Thus if T : Rn → W is a linear transformation from Rn to
some real vector space W then

T (x1, x2, . . . , xn) = x1w1 + x2w2 + · · ·+ xnwn,

where wj = T (ej) for j = 1, 2, . . . , n.

Lemma 9.15. Let V and W be vector spaces over a given field, and let T :V → W be a linear
transformation from V to W . Then T (u − v) = T (u) − T (v) for all elements u and v of V , and
T (0) = 0.

Proof. Let u and v be elements of V . Then u− v = u + (−1)v (Lemma 9.4), and hence

T (u− v) = T (u + (−1)v) = T (u) + (−1)T (v) = T (u)− T (v).

In particular T (0) = T (v − v) = T (v)− T (v) = 0, as required.

Definition. The kernel ker T of a linear transformation T :V → W is defined by

ker T = {v ∈ V : T (v) = 0}.

Lemma 9.16. The kernel ker T of a linear transformation T :V → W is a subspace of V .

Proof. The kernel ker T is non-empty, since 0 ∈ ker T . Let u and v be elements of ker T . Then

T (u + v) = T (u) + T (v) = 0 + 0 = 0,

and therefore u + v is also an element of kerT . Moreover if v is an element of kerT then so is cv,
since T (cv) = cT (v) = c0 = 0. Thus kerT is a subspace of V .

Definition. The range (or image) T (V ) of a linear transformation T :V → W is defined by

T (V ) = {T (v) : v ∈ V }.

Lemma 9.17. The range T (V ) of a linear transformation T :V → W is a subspace of W .

Proof. The range T (V ) is clearly non-empty. The sum of two elements of T (V ) must belong to T (V )
since T (u) + T (v) = T (u + v) for all elements u and v of V . Also any scalar multiple of an element
of T (V ) must belong to T (V ), since cT (v) = T (cv) for all scalars c and elements v of V .

9.8 Representation of Linear Transformations by Matrices

Let V and W be vector spaces of dimensions m and n respectively over some field K, and let T :V → W
be a linear transformation from V to W . Let v1,v2, . . .vm be a basis for V , and let w1,w2, . . .wn be
a basis for W . An element u of V can then be expressed as a linear combination of elements of the
given basis of V :

u = x1v1 + x2v2 + · · ·+ xmvm,

where x1, x2, . . . , xm are scalars (i.e., elements of the field K). Similarly the image T (u) of u under
the linear transformation T can also be expressed as a linear combination of elements of the given
basis of W :

T (u) = y1w1 + y2w2 + · · ·+ ynwn,
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where y1, y2, . . . , yn are scalars. But if T :V → W is a linear transformation then

T (u) = T (x1v1 + x2v2 + · · ·+ xmvm)
= T (x1v1) + T (x2v2) + · · ·+ T (xmvm)
= x1T (v1) + x2T (v2) + · · ·+ xmT (vm).

Moreover T (v1), T (v2), . . . T (vm) are elements of the vector space W , and we can therefore write
T (vk) =

∑n
j=1 Mjkwj , where the quantities Mjk are scalars. It follows that

T (u) = T

(
m∑

k=1

xkvk

)
=

m∑
k=1

xkT (vk) =
m∑

k=1

xk

 n∑
j=1

Mjkwj

 =
n∑

j=1

m∑
k=1

Mjkxkwj .

Examination of this formula shows that

yj =
m∑

k=1

Mjkxk.

(Thus y1 = M11x1 + M12x2 + · · ·+ M1mxm etc.) The relation between the coefficients x1, x2, . . . , xm

and y1, y2, . . . , yn can be expressed more succinctly by the matrix equation y = Mx, where x and y
are the column vectors given by

x =


x1

x2
...

xn

 and y =


y1

y2
...

ym

 .

and M is the matrix with the value Mjk in the jth row and kth column. For example, suppose that
the dimensions of V and W are 3 and 2 respectively. Then(

y1

y2

)
=
(

M11 M12 M13

M21 M22 M23

) x1

x2

x3

 ,

where the coefficients Mjk of the 2×3 matrix representing the linear transformation T are determined
so that

T (v1) = M11w1 + M21w2

T (v2) = M12w1 + M22w2

T (v3) = M13w1 + M23w2

Example. An anticlockwise rotation about the vertical axis though an angle of θ radians sends a
vector with Cartesian components (u, v, w) to the vector (u′, v′, w′), where

u′ = u cos θ − v sin θ, v′ = u sin θ + v cos θ, w′ = w.

This rotation is thus a linear transformation on the space R3 of vectors in 3-dimensional Euclidean
space. The three vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) constitute a basis of R3 and the rotation is
represented with respect to this basis by the 3× 3 matrix cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 .
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Example. Let n be a positive integer, let Vn be the real vector space consisting of all polynomials
with real coefficients whose degree does not exceed n, and let Vn−1 be the subspace of Vn consisting
of those polynomials whose degree does not exceed n− 1. (The algebraic operations of addition and
of multiplication by real numbers are defined on Vn in the usual fashion.) It is easily seen that the
function that sends a polynomial p(x) to its derivative p′(x) is a linear transformation from Vn to
Vn−1, and therefore is represented by a matrix with respect to chosen bases of Vn and Vn−1.

Suppose for example that we take n = 3. We can take as our basis for the space V3 the four
polynomials 1, x, x2 and x3. The polynomials 1, x and x2 will then provide a basis for the space V2.
The matrix of the linear transformation sending a polynomial to its derivative is represented with
respect to these bases of V3 and V2 by the 3× 4 matrix 0 1 0 0

0 0 2 0
0 0 0 3


since the derivatives of the polynomials 1, x, x2 and x3 constituting the chosen basis of V3 are 0, 1,
2x and 3x2 respectively.

Let U , V and W be vector spaces over a field K, let u1,u2, . . .ul be a basis for U , let v1,v2, . . .vm

be a basis for V , and let w1,w2, . . .wn be a basis for W . Let S:U → V and T :V → W be linear
transformations, and let L and M be the matrices representing the linear transformations S and
T respectively with respect to the chosen bases of U , V and W . Then S(uk) =

∑m
j=1 Ljkvj and

T (vj) =
∑n

i=1 Mijwi, and hence

TS(uk) = T

 m∑
j=1

Ljkvj

 =
m∑

j=1

LjkT (vj) =
m∑

j=1

Ljk

(
n∑

i=1

Mijwi

)

=
n∑

i=1

 m∑
j=1

MijLjk

wi =
n∑

i=1

(ML)ikwi,

where (ML)ik denotes the element in the ith row and kth column of the product matrix ML. This
calculation demonstrates that when linear transformations are represented by matrices with respect to
chosen bases of the vector spaces involved, the composition of two linear transformations is represented
by the product of the corresponding matrices.

Proposition 9.18. Let V and W be finite-dimensional vector spaces over some given field, and let
T :V → W be a linear transformation from V to W . Let w1,w2, . . . ,wr be a basis of T (V ), and
let v1,v2, . . . ,vn be elements of V , where n ≥ r. Suppose that T (vj) = wj for j = 1, 2, . . . , r. If
ker T = {0} suppose that n = r. If ker T 6= {0} suppose that n > r and that the elements vj with
j > r constitute a basis for the kernel ker T of T . Then v1,v2, . . . ,vn is a basis of V .

Proof. Let u be an element of V . Then T (u) belongs to the range T (V ) of T , and hence there exist
scalars c1, c2, . . . , cr such that T (u) =

∑r
j=1 cjwj . Then

T

u−
r∑

j=1

cjvj

 = T (u)−
r∑

j=1

cjwj = 0.

and thus u−
∑r

j=1 cjvj belongs to the kernel of T . If n = r then the kernel of T consists of just the
zero vector, and therefore u =

∑r
j=1 cjvj . If on the other hand n > r then any element of kerT can
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be expressed as a linear combination of the elements vr+1, . . . ,vn, since these elements constitute a
basis of kerT , and therefore there exist scalars cr+1, . . . , cn such that

u−
r∑

j=1

cjvj =
n∑

j=r+1

cjvj .

Then u =
∑n

j=1 cjvj . We conclude that the elements v1,v2, . . . ,vn span the vector space V .
We now show that the elements v1,v2, . . . ,vn are linearly independent. Let c1, c2, . . . , cn be scalars

satisfying
∑n

j=1 cjvj = 0. Now

r∑
j=1

cjwj =
n∑

j=1

cjT (vj) = T

 n∑
j=1

cjvj

 = 0,

since T (vj) = wj if 1 ≤ j ≤ r and T (vj) = 0 if r < j ≤ n. But the elements w1,w2 . . . ,wr are
linearly independent, since they constitute a basis of T (V ). It follows from this that cj = 0 for each
j between 1 and r. If n = r then we can conclude immediately that the elements v1,v2, . . . ,vn are
linearly independent. Suppose that n > r. Then

∑n
j=r+1 cjvj = 0, since

∑n
j=1 cjvj = 0 and cj = 0

when j ≤ r. But the elements vj with r < j ≤ n are linearly independent, since they constitute a
basis for the kernel of T . Thus if n > r then cj = 0 for each j satisfying r < j ≤ n. We have thus
shown that if

∑n
j=1 cjvj = 0 then cj = 0 for each integer j between 1 and n. We conclude that the

elements v1,v2, . . . ,vn are linearly independent, and thus constitute a basis of V .

Corollary 9.19. Let V and W be finite-dimensional vector spaces over some given field, and let
T :V → W be a linear transformation from V to W . Let w1,w2, . . . ,wr be a basis of T (V ). Then
there exists a basis v1,v2, . . . ,vn of V , where n ≥ r, such that

T (vj) =
{

wj if 1 ≤ j ≤ r;
0 if r < j ≤ n.

Moreover if n > r then the elements vj with r < j ≤ n constitute a basis for the kernel of T .

Proof. The existence of the required basis v1,v2, . . . ,vn follows on applying Proposition 9.18. If∑n
j=1 cjvj belongs to the kernel of T then cj = 0 for j = 1, 2, . . . , r, since T (

∑n
j=1 cjvj) =

∑r
j=1 cjwj .

It follows that if n > r then the elements vj with r < j ≤ n span the kernel of T . These elements are
also linearly independent. They therefore constitute a basis of the kernel of T , as required.

Let V and W be finite-dimensional vector spaces over some given field, let T :V → W be a linear
transformation from V to W . The rank of T is defined to be the dimension of the range T (V ) of T ,
and the nullity of T is defined to be the dimension of the kernel of T . The dimension of a vector space
is by definition the number of elements in a basis of that vector space. The following result therefore
follows immediately from Corollary 9.19.

Corollary 9.20. Let V and W be finite-dimensional vector spaces over some given field, and let
T :V → W be a linear transformation from V to W . Then the sum of the rank and nullity of T is
equal to the dimension of V .

Example. Let T :V → W be a linear transformation of rank 2 from a vector space V of dimension 4 to
a vector space W of dimension 3. The range T (V ) of T is 2-dimensional. We see from Proposition 9.14
that there exists a basis w1,w2,w3 of W with the property that the elements w1 and w2 belong to
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the range T (V ) and constitute a basis for T (V ). Then Theorem 9.19 shows the existence of a basis
v1,v2,v3,v4 of V such that T (v1) = w1, T (v2) = w2, T (v3) = 0 and T (v4) = 0. The matrix
representing the linear transformation T :V → W with respect to these bases of V and W is then 1 0 0 0

0 1 0 0
0 0 0 0

 .

This example can easily be generalized to apply to linear transformations between finite-dimensional
vector spaces of arbitrary dimensions.

9.9 Isomorphisms of Vector Spaces

A function f :X → Y from a set X to a set Y is said to be injective if, given any element y of Y , there
exists at most one element x of X satisfying f(x) = y. A function f :X → Y is said to be surjective
if, given any element y of Y , there exists at least one element x of X satisfying f(x) = y. A function
f :X → Y is said to be bijective if, given any element y of Y , there exists exactly one element x of
X satisfying f(x) = y. We see from these definitions that a function is bijective if and only if it is
both injective and surjective. Injective, surjective and bijective functions are referred to as injections,
surjections and bijections.

A function f−1:Y → X is said to be the inverse of a function f :X → Y if f−1(f(x)) = x for
all x ∈ X and f(f−1(y)) = y for all y ∈ Y . It is a straightforward exercise to show that a function
between two sets is bijective if and only if it has a well-defined inverse: the inverse f−1:Y → X of
a bijection f :X → Y is the function that sends an element y of Y to the unique element x of X
satisfying f(x) = y. The inverse of a bijection is itself a bijection.

Definition. Let V and W be vector spaces over a given field. An isomorphism from V to W is a
linear transformation T :V → W that is also a bijection from V to W . The vector spaces V and W
are said to be isomorphic if there exists an isomorphism from V to W .

We recall that the kernel of a linear transformation T :V → W between vector spaces V and W is
the subspace of V consisting of all vectors of V that are sent by T to the zero vector of W .

Lemma 9.21. A linear transformation T :V → W is injective if and only if ker T = {0}.

Proof. Suppose that T :V → W is injective. Then there can be at most one element v of V satisfying
T (v) = 0. But T (0) = 0 (Lemma 9.15). Therefore kerT = {0}.

Conversely suppose that T :V → W is a linear transformation with the property that kerT = {0}.
Let u and v be elements of V satisfying T (u) = T (v). Then T (u− v) = T (u)− T (v) = 0 and hence
u−v ∈ ker T . But then u−v = 0, and hence u = v. Thus if kerT = {0} then T :V → W is injective,
as required.

Lemma 9.22. Let V and W be vector spaces over a given field. A linear transformation T :V → W
from V to W is an isomorphism if and only if ker T = {0} and T (V ) = W .

Proof. The result follows immediately from the fact that the linear transformation T :V → W is
injective if and only if kerT = {0}, and T :V → W is surjective if and only if T (V ) = W .

Lemma 9.23. Let V and W be vector spaces over a given field, and let T :V → W be an isomorphism
from V to W . Then the inverse T−1:W → V of the function T is well-defined and is an isomorphism
from W to V .
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Proof. A function is bijective if and only if it has a well-defined inverse. Therefore, given an isomor-
phism T :V → W , there exists a well-defined function T−1:W → V that is an inverse of the function
T :V → W . Moreover the function T−1:W → V is a bijection. It remains to show that the inverse
function T−1 is a linear transformation.

Let w and x be elements of W . Then there exist unique elements u and v of V satisfying T (u) = w
and T (v) = x. Then T (u + v) = w + x, and thus

T−1(w + x) = u + v = T−1(w) + T−1(x).

Also T−1(cw) = cu = cT−1(w) for all scalars c. Thus the bijection T−1:W → V is indeed a linear
transformation, and is therefore an isomorphism from W to V , as required.

Lemma 9.24. Let V and W be vector spaces over a given field, and let T :V → W be an isomorphism
from V to W . Let v1,v2, . . . ,vn be elements of V .

(i) If v1,v2, . . . ,vn are linearly independent, then so are T (v1), T (v2), . . . , T (vn).

(ii) If v1,v2, . . . ,vn span the vector space V , then T (v1), T (v2), . . . , T (vn) span the vector space W .

(iii) If v1,v2, . . . ,vn is a basis of V , then T (v1), T (v2), . . . , T (vn) is a basis of W .

Proof. Suppose that v1,v2, . . . ,vn are linearly independent elements of V . Let c1, c2, . . . , cn be
scalars satisfying

∑n
j=1 cjT (vj) = 0. We must prove that cj = 0 for all j. Now T

(∑n
j=1 cjvj

)
=∑n

j=1 cjT (vj), since T :V → W is a linear transformation. It follows that
∑n

j=1 cjvj belongs to
the kernel of T . But kerT = {0}, since T :V → W is an isomorphism (Lemma 9.22). Therefore∑n

j=1 cjvj = 0. It follows now from the linear independence of v1,v2, . . . ,vn that cj = 0 for all j.
Thus T (v1), T (v2), . . . , T (vn) are linearly independent elements of W . This proves (i).

Next suppose that v1,v2, . . . ,vn are elements of V that span V . Let w be any element of W .
Then w = T (u) for some element u of V , since the isomorphism T :V → W is surjective. There exist
scalars c1, c2, . . . , cn for which u =

∑n
j=1 cjvj , since the elements vj span V , and then

w = T (u) = T

 n∑
j=1

cjvj

 =
n∑

j=1

cjT (vj).

Thus T (v1), T (v2), . . . , T (vn) span the vector space W . This proves (ii).
Finally we note that (iii) is an immediate consequence of (i) and (ii).

Theorem 9.25. Two finite-dimensional vector spaces over a given field are isomorphic if and only
if they have the same dimension.

Proof. The dimension of a vector space is the number of elements in any basis of that vector space.
It follows immediately from Lemma 9.24 that isomorphic vector spaces have the same dimension.

Suppose that V and W are vector spaces over a given field that have the same dimension. We
must show that V and W are isomorphic. This result clearly holds when the dimension of both
spaces is zero. Suppose then that the dimension of these spaces is non-zero. Now there exists a
basis v1,v2, . . . ,vn of V and a basis w1,w2, . . . ,wn of W where both bases have the same number of
elements. Moreover, given any element u of V , there exist uniquely determined scalars x1, x2, . . . , xn

such that u =
∑n

j=1 xjvj (Theorem 9.7). It follows that there exists a well-defined function T :V → W

characterized by the property that T
(∑n

j=1 xjvj

)
=
∑n

j=1 xjwj for all scalars x1, x2, . . . , xn. One
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can readily check that the function T is a linear transformation. It is also invertible: the inverse T−1

of T satisfies T−1
(∑n

j=1 xjwj

)
=
∑n

j=1 xjvj for all scalars x1, x2, . . . , xn. Therefore T :V → W is an
isomorphism, and thus the vector spaces V and W are isomorphic, as required.

Let K be a field, and, for each positive integer n, let Kn be the set of all ordered n-tuples
(x1, x2, . . . , xn) of elements of K. Then Kn is a vector space over the field K, where

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and
c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn)

for all elements (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of Kn and for all elements c of K. Now Kn is
an n-dimensional vector space over K, and the ordered n-tuples in which one component has the
value 1 and the remaining components are zero constitute a basis of Kn. Theorem 9.25 ensures
that any vector space of dimension n over the field K is isomorphic to the vector space Kn. Indeed
if v1,v2, . . . ,vn is a basis for a vector space V of dimension n over the field K, then the function
sending an element (x1, x2, . . . , xn) of Kn to

∑n
j=1 xjvj is an isomorphism from Kn to V .

Any real vector space of dimension n is isomorphic to the space Rn. In particular, any 3-
dimensional real vector space is isomorphic to the vector space consisting of all vectors in 3-dimensional
Euclidean space.

Problems

1. Let V be a vector space over a field K. Using the vector space axioms, the definition of
subtraction in a vector space etc., prove formally that the following identities are satisfied for
all elements u, v and w of V and for all elements c and d of V :

(i) u− (v −w) = (u− v) + w;

(ii) c(v −w) = cv − cw;

(iii) (c− d)v = cv − dv.

2. Let C([0, 1], R) be the real vector space consisting of all continuous real-valued functions on the
interval [0, 1], where the operations of addition of functions and of multiplication of functions
by real numbers are defined in the usual fashion. Is the subset of C([0, 1], R) consisting of those
continuous functions f : [0, 1] → R that satisfy 0 ≤

∫ 1
0 f(x) dx ≤ 1 a subspace of C([0, 1], R)?

3. Show that (1, 0, 0), (1, 2, 0), (1, 2, 3) is a basis of the real vector space R3.

4. For each non-negative integer n, let Vn be the real vector space consisting of all polynomials
with real coefficients whose degree does not exceed n.

(i) Show that 24, 24x, 12x2, 4x3, x4 is a basis of V4.

(ii) Suppose that n ≥ 1. Is the function from Vn to itself that sends a polynomial p(x) to
p(x) + x a linear transformation?

(iii) Is the function from Vn to Vn+1 that sends a polynomial p(x) to xp(x) a linear transforma-
tion?
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(iv) Let S:V4 → V4 be the linear transformation from V4 to itself that sends a polynomial
p(x) to its derivative p′(x). Write down the matrix that represents S with respect to the basis
24, 24x, 12x2, 4x3, x4 of V4.

(v) Let T :V4 → V3 be the linear transformation from V4 to V3 that sends a polynomial p(x) to
p′′(x) − 3p′(x). Calculate the matrix that represents T with respect to the basis 1, x, x2, x3, x4

of V4 and the basis 1, x, x2, x3 of V3.

5. Let T : R3 → R2 be the linear transformation given by T (u1, u2, u3) = (u1 + u2, u1 − u2). Find
a basis v1,v2,v3 of R3 such that T (v1) = (1, 0), T (v2) = (0, 1) and T (v3) = (0, 0).

6. Let U , V and W be vector spaces over some given field. Suppose that the vector spaces U and
V are isomorphic and that the vector spaces V and W are isomorphic. Explain why the vector
spaces U and W are then isomorphic.

7. Let V be a vector space of dimension n over a field K. Suppose that the field K is finite and
has q elements. Is the vector space V then a finite set, and, if so, how many elements does it
have?

8. Let V be a vector space over a field K, and let U be a subspace of V . A coset of U in V is a
subset of V that is of the form U +v, where U +v = {u+v : u ∈ U}. Show that the set V/U of
all cosets of U in V is a well-defined vector space over K, where (U +v)+ (U +w) = U +v+w
and c(U + v) = U + cv for all elements v and w of V and for all elements c of K.

Now let V and W be vector spaces over K, and let T :V → W be a linear transformation. Show
that the function that sends a coset kerT + v of the kernel ker T to T (v) is well-defined and is
an isomorphism from V/ ker T to T (V ).
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