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Unobservable Selection and Coefficient Stability:
Theory and Evidence

Emily OSTER
Department of Economics, Brown University, Providence, Rhode Island, and NBER (emily_oster@brown.edu)

A common approach to evaluating robustness to omitted variable bias is to observe coefficient movements
after inclusion of controls. This is informative only if selection on observables is informative about selec-
tion on unobservables. Although this link is known in theory in existing literature, very few empirical arti-
cles approach this formally. I develop an extension of the theory that connects bias explicitly to coefficient
stability. I show that it is necessary to take into account coefficient and R-squared movements. I develop
a formal bounding argument. I show two validation exercises and discuss application to the economics
literature. Supplementary materials for this article are available online.
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1. INTRODUCTION

Concerns about omitted variable bias are common to most or
all nonexperimental work in economics. (Despite recent trends,
this still makes up the vast majority of results within economics:
in 2012 the combination of the American Economic Review,
the Quarterly Journal of Economics,and the Journal of Polit-
ical Economy published 69 empirical, nonstructural articles,
only 11 of which were randomized.) The most straightforward
approach to such concerns is to include controls that can be
observed. Angrist and Pischke (2010) argued that among the
major advances in empirical economics in the past two decades
is greater effort to identify the most important threats to validity,
and to address them with appropriate selection of controls.
In some cases it is possible to argue that a control (or set of

controls) fully captures a particular omitted variable. However,
in many cases observed controls are an incomplete proxy for the
true omitted variable or variables. For example, it is common
in many applications to worry about confounding from socioe-
conomic status. Researchers often include controls to capture
this, but typically with the acknowledgment that the controls
observed in a typical dataset (e.g., education and income cate-
gories, race groups) do not perfectly capture overall socioeco-
nomic status. Similarly, in many cross-country or cross-regional
analyses authors seek to control for geographic differences
across areas, but observed controls (extent of mountains, access
to water) are incomplete proxies for the true omitted factor.
A common approach in these situations is to explore the sen-

sitivity of treatment effects to the inclusion of observed controls.
If a coefficient is stable after inclusion of the observed controls,
this is taken as a sign that omitted variable bias is limited. (The
next section and the final section of this article will discuss more
explicitly the use of this approach within economics, but it is
worth noting that it is the link between coefficient stability and
omitted variable bias is often quite direct. For example, Chiap-
pori, Oreffice, and Quintana-Domeque (2012) stated: “It is reas-
suring that the estimates are very similar in the standard and the
augmented specifications, indicating that our results are unlikely

to be driven by omitted variables bias.” Similarly, Lacetera,
Pope, and Sydnor (2012) stated: “These controls do not change
the coefficient estimates meaningfully, and the stability of the
estimates from columns 4 through 7 suggests that controlling
for the model and age of the car accounts for most of the rele-
vant selection.”) The intuitive appeal of this approach lies in the
idea that the bias arising from the observed (imperfect) controls
is informative about the bias that arises from the full set includ-
ing the unobserved components. This is not, however, implied
by the baseline assumptions underlying the linear model.
Formally, using the observables to identify the bias from the

unobservables requires making further assumptions about the
covariance properties of the two sets. In particular, the case
in which the omitted variable bias is fully identified by the
observed controls corresponds to the extreme assumption that
the relationship between treatment and unobservables can be
fully recovered from the relationship between treatment and
observables (Murphy and Topel 1990; Altonji, Elder, and Taber
2005a; Altonji et al. 2011).
Even under this most optimistic assumption, however, coeffi-

cient movements alone are not a sufficient statistic to calculate
bias. To illustrate why, consider the case of a researcher estimat-
ing wage returns to education with individual ability as the only
counfounder, and where there are two orthogonal components
of ability, one of which has a higher variance than the other.
Assume wages would be fully explained if both ability compo-
nents were observed but, in practice, the researcher sees only
one of the two. The coefficient will appear much more stable if
the observed ability control is the lower variance one, but this
is not because the bias is smaller but simply because less of the
wage outcome is explained by the controls.
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This example is described inmore detail in Section 2. The key
observation is that the quality of the control is diagnosed by how
much of the variance in the outcome is explained by its inclu-
sion or, equivalently, how much the R-squared moves when the
controls are introduced. Omitted variable bias is proportional to
coefficient movements, but only if such movements are scaled
by the change in R-squared when controls are included. (This
point is closely related to the partial R-squared logic in Imbens
2003.)

Recognizing this point, Altonji, Elder, and Taber (2005a,
hence, AET) suggested a method for evaluating the robustness
of results under the assumption that the relationship between
treatment and unobservables can be recovered from the rela-
tionship between treatment and observables. Specifically, they
provided a test statistic that is valid under the null of a zero treat-
ment effect for how important the unobservables would have to
be relative to the observables to eliminate the observed effect.
The test statistic assumes that if one could observe the full set of
unobservables the outcome variance would be fully explained,
so the regression would have an R-squared of 1.

Empirical work in economics that invokes coefficient stability
rarely either discusses R-squared movements or explicitly uses
the AET method. I demonstrate this in Section 2 using a sam-
ple of 76 results from 27 articles in top journals after AET and
explicitly discuss coefficient stability in the context of imperfect
controls. (The universe is articles from the American Economic
Review, Quarterly Journal of Economics, Econometricaandthe
Journal of Political Economy for 2008–2010 with at least 20
citations in the ISI Web of Science, and those from 2011–2013
in the same journals with at least 10 citations. I further limit to
articles with replication files available.) Only two of these arti-
cles mention the importance of their controls in explaining the
variance of the outcome. Only one article in this set (Nunn and
Wantchekon 2011) attempts to implement the method described
in AET and they do not do it correctly. I show that these omis-
sions are especially problematic as only a third of results con-
sidered would be robust by the AET standard.
At least three factors may have limited the take-up of the

AET methodology. First, in their analysis of the linear case
in AET they present a test that is valid only under the null of
a zero treatment effect, and do not detail how a bias-adjusted
treatment effect would be estimated. Among other things, this
limits the possibility of evaluating the robustness of results for
which the magnitude increases when controls are added. (Their
working article, Altonji, Elder, and Taber (2002), does produce
an implicit function of the bias-adjusted effect in the nonlinear
case, although empirical researchers do not appear to have made
use of this at all.) Second, their assumption that including the
unobservables would produce an R-squared of 1 may understate
the robustness of results, for example, in cases where there
is measurement error in the outcome. Finally, perhaps most
important, they do not provide any validation evidence for this
approach. (A fourth factor, in addition to these, is that their
article does not explicitly link their calculation to coefficient
movements although the link is obvious econometrically.)
The aim of this article is to extend the methodology for eval-

uating robustness to omitted variable bias under the assump-
tion that the relationship between treatment and unobservables
can be recovered from the relationship between the treatment
and observables. I link the bias explicitly to coefficient stability

and provide some validation suggesting the procedure performs
well. Finally, I will return to analyzing the economics literature
and suggest possible robustness standards using evidence from
randomized data.
Section 3 expands on the theory in AET. I focus on the case

of a linear model in which an outcome is fully determined by
a treatment, a set of observed, a set of unobserved covariates,
and an iid error term. The coefficient of interest is the treatment
effect. The observed and unobserved covariates are linked by
shared covariance properties with the treatment. I show first that
under a restrictive set of assumptions a consistent estimator of
the treatment effect can be recovered through an intuitive func-
tion of coefficients and R-squared values. The inputs in this case
are typically reported in standard regression output, making it
easy to evaluate robustness of published results.
Following this, I show it is possible to generate a consis-

tent, closed-form, estimator for omitted variable bias under less
restrictive assumptions. This estimator also relies on coefficient
and R-squared values, but in addition requires the researcher
to observe the variance of the outcome and treatment, as well
as information on the share of the treatment variance, which
is explained by the observed controls. Although these values
are not typically reported in standard regression tables, they are
straightforward to calculate. Details of this estimator make clear
the limits of coefficient stability: it is possible that the coefficient
will be completely unchanged with the addition of controls but
there may still be a large bias on the treatment effect. I show in
this section how it is also possible to deliver these results in a
GMM setup.
A key input into the estimator is the R-squared from a

hypothetical regression of the outcome on treatment and both
observed and unobserved controls; I denote this Rmax. If the out-
come can be fully explained by the treatment and full controls
set, then Rmax = 1 (this is the assumption in AET). In many
empirical settings it seems likely (due, e.g., to measurement
error) that the outcome cannot be fully explained even if the full
control set is included. Knowledge about measurement error or
expected idiosyncratic variation in the outcome can be used to
develop intuition about this value.
The results allow researchers to calculate a consistent esti-

mate of the bias-adjusted treatment effects under two assump-
tions: (1) a value for the relative degree of selection on observed
and unobserved variables (δ) and (2) a value for Rmax. Given
bounding values for both objects, researchers can calculate an
identified set for the treatment effect. As in AET I suggest that
equal selection (i.e., δ = 1) may be an appropriate upper bound
on δ.
The second contribution of the article, in Section 4, is to per-

form some validation of the estimator and the bounding logic
suggested in empirical settings. This section first uses NLSY
data to construct a dataset relating education and wages; the data
are constructed such that we know the true treatment effect. I
evaluate the performance of this adjustment by excluding com-
binations of controls from the “observed” set. I estimate the rel-
ative degree of selection on observed and unobserved controls,
which would be produced by each excluded set and calculate
the bias-adjusted treatment effect. I show that in 89% of cases
the bounds I propose would include the true effect; in only 62%
of cases does the confidence interval of the naive coefficients
estimated with controls include this effect. This may actually
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undervalue the estimator performance as the control set in this
exercise is selected at random rather than based on using the
most important controls first, as would be common in practice.
In a second test, I estimate several relationships between

maternal behavior and child outcomes; socioeconomic status
confounders are a major concern. I match possibly biased obser-
vational estimates with external evidence on causal effects from
randomized data or comprehensive meta-analyses (this is close
in spirit to LaLonde 1986). I then ask whether the robustness
tests described above would separate true from false associa-
tions. I find that the adjustment performs well: the approach
identifies as robust only the two relationships for which exter-
nal evidence confirms a link. Both of the validation exercises
therefore suggest empirical support for this assumption.
The final contribution of the article, developed in Section 5,

is to return to the application of the procedure to the economics
literature. As in Section 2, I focus on a sample of well-cited arti-
cles from top journals in which coefficient stability is invoked
in light of imperfect controls. I use the estimator developed to
calculate bias-adjusted treatment effects under the assumption
of Rmax = 1 and the assumption that δ = 1. I am able to calcu-
late these effects for both results where controls move the coef-
ficient toward zero, and those that move it away from it. As in
Section 2, I show that only a small share of results is robust to
this adjustment.
I then consider how this conclusion changes with other

bounds onRmax, in particular focusing on bounds that are a func-
tion of the R-squared from the regression with controls. These
capture the idea that there is variation in how predictable out-
comes are, and this variation can be roughly inferred from how
much is predicted by the observables. Denoting the R-squared
from the regression with controls as R̃, I explore robustness to
Rmax = �R̃, with varying values of�. Twenty-seven percent of
results are robust to a value of � = 2, and 57% to a value of
� = 1.25. I demonstrate that coefficient movements alone can
be very misleading about the degree of robustness.
There is considerable variation across articles in the robust-

ness of stability claims, but this does not suggest an appropriate
general value for the bound on Rmax. There are many possible
ways to calculate such a bound. In Section 5, I suggest one: that
randomized results might provide a bounding value. I use a sam-
ple of randomized articles, also from top journals, to derive cut-
off values of�, which would allow at least 90% of randomized
results to survive: this value is � = 1.3. To the extent that this
is an attractive methodology for generating bounds on Rmax it
suggests that researchers might calculate a bias-adjusted treat-
ment effect bound using a value of Rmax = 1.3R̃. In the sample
of nonrandomized results considered, about 45% would survive
this standard.
The theoretical contribution of this article relates to a large

literature on causal inference in the face of unobserved con-
founders (Rosenbaum and Rubin 1983). Imbens (2003) pre-
sented an analysis of sensitivity using a partial R-squared logic
that is conceptually similar to the insights in this article. A num-
ber of methodological articles consider the approach of varying
the covariate set as a sensitivity analysis (Heckman and Hotz
1989; Dehejia and Wahba 1999; Gelbach 2016). I also relate to
the idea of specification and control set search (Leamer 1978;
Pearl 2000; Angrist and Pischke 2010). It is worth noting that
the approach in this article differs in some conceptual sense from

the latter set of references in that I am concerned with estimat-
ing a bias-adjusted treatment effect under an assumption about
the full model rather than with searching for the appropriate full
model.
The article follows most closely a series of articles that

explore bias in treatment effect under proportional selection
(Murphy and Topel 1990; Altonji, Elder, and Taber 2005a;
Altonji et al. 2011). The derivation of closed-form estimators
in the linear case represents an extension of the case of nonlin-
ear estimation in Altonji, Elder, and Taber (2005a) and Altonji,
Elder, and Taber (2002).

2. COEFFICIENT STABILITY: ILLUSTRATIVE
EXAMPLE AND USE IN ECONOMICS

I motivate the analysis in the article with a simple illustration
of the issue and with some data on coefficient stability within
economics.
Illustrative Example. A central point of this article is to make

clear that coefficient movements alone are not sufficient to eval-
uate bias, even under the strong assumption of related observed
and unobserved variables. As an illustration, consider the case
of a researcher estimating wage returns to education with indi-
vidual ability as the only counfounder. (This example is moti-
vated by independent work by Pischke and Schwandt (2015),
although their setting is focused on issues of measurement error
in the ability measure.)
I consider the following simple setup. Assume that the model

that determines wages is given by

Y = βX +W +C,

whereW andC are two orthogonal components of “ability” and
X is education. Assume that the variance of W is much larger
than the variance of C but both relate to X in the same way.
More specifically, a regression of X on eitherW orC yields the
same coefficient.
Now consider the difference between the case where the

researcher observesW (the high variance control) and the case
where s/he observes C (the lower variance control). The key
observation is that if the researcher observes the ability con-
trol with the lower variance, the coefficient will appear stable
when the control is included. This is not, however, because the
bias is small, but simply because the control is less important in
explaining wages.
To see this precisely, consider Panel A of Table 1, which uses

data constructed from themodel above, with the assumption that
β = 0. The first row shows controlled and uncontrolled coef-
ficients when the observed control is the one with the larger
variance; the second shows the coefficients when the observed
control is the one with the smaller variance. The coefficient in
the second row appears much more stable, even though the true
effect is zero in both.
The key difference in the two rows is the change inR-squared,

which diagnoses the poor quality of the proxy in the second row
compared to the first. The uninformative control leaves the coef-
ficient largely unchanged but also adds little to the R-squared.
Omitted variable bias is proportional to coefficient movements,
but only if such movements are scaled by movements in R-
squared.
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Table 1. Calibrated example

High versus low variance control

Quality of observed control Uncontrolled coefficient [R2] Controlled coefficient [R2] True effect

High variance control observed 0.202 [0.004] 0.002 [0.990] 0
Low variance control observed 0.202 [0.004] 0.200 [0.013] 0

NOTES: This table shows calculations based on simulated data. The true model is Y = βX +W +C, with β = 0. The data are constructed so the high variance control is W and
var(W ) = 10 and the low variance controls isC and var(C) = 0.1. var(X ) = 1, cov(X,W ) = 0.2 and cov(X,C) = 0.002.Note that cov(X,C) is implied by the equal selection assumption,
cov(X,W ), var(C), and var(W ).

Coefficient Stability in Economics. Many economics articles
use coefficient stability to argue for a causal treatment effect in
the presence of imperfect controls. To get a sense of the formal
robustness of these claims, I extract a sample of top journal pub-
lications. I begin with the universe of all articles in the American
Economic Review, Quarterly Journal of Economics, The Jour-
nal of Political Economy, and Econometrica from 2008–2010
with at least 20 citations in the ISI Web of Science, and those
from 2011–2013 in the same journals with at least 10 citations. I
limit the sample to articles with replication files available so it is
possible to do further robustness calculations. From these arti-
cles, I extract all results where the researcher explores the sen-
sitivity of the result to a control set and, using a close reading of
the articles, those in which this exercise appears to be designed
to address an imperfect set of controls. (This later restriction
does not eliminate many results; nearly all articles that com-
ment on coefficient stability appear to do so to deal with this
issue. However, there are exceptions. As an example, in their
work on corruption in trucking routes, Olken and Barron (2009)
commented on the stability of the coefficients when trip fixed
effects are included. The inclusion of these effects is clearly
an important robustness check, as it tests whether differences
across trips drive the results. But there is no sense in which such
fixed effects are a proxy for some unobserved omitted control.
In a case like this it is worth noting that in fact the movement
of the coefficient is notable only to the extent one wants to draw
conclusions from the effect without controls.) The sample (full
citation list in Appendix C) includes 27 articles with 76 total
results.
The illustrative example above makes clear the importance

of incorporating movements in R-squared in coefficient stabil-
ity discussions. However, this importance is rarely acknowl-
edged in these articles. Only two of the articles in the sample
mention anything about movements in R-squared (or variance
explained).
In principle, if coefficients and R-squared values typically

move together, this will introduce less bias. If large coeffi-
cient movements were always accompanied by large R-squared
movements, then the coefficient stability would be effectively
a sufficient statistic. Similarly, if the R-squared values from the
regression with controls were always very large—say, always
close to 1—then the coefficient movements would be enough.
In practice, neither of these is the case.
Figure 1 uses the results extracted from the 27 articles

described above. I include only results where the controlled
effect is significant. The figures graph the relationship between
the percent movement in effect size and the absolute movement

in R-squared values. Figure 1(a) uses all results, and Figure 1(b)
limits to cases where the inclusion of controls moves the coef-
ficient toward zero.
It is not the case that the controlled regressions uniformly

have a high R-squared. The range of values for the R-squared in
the regression with controls is 0.029 to 0.992, with an average
of 0.403. Moreover, there is at best a very weak relationship
between coefficient movements and R-squared movements.

Figure 1. Coefficient stability and R-squared movements. (a) All
significant relationships. (b) Sample where controls lower magnitude.
These figures show the relationship between the percent change in coef-
ficient and the increase in R-squared in sample of highly cited articles
from top journals in economics. The sample is discussed in Section 2.
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If we limit ourselves to results where the percent change in
coefficient values is between −12% and −8%, for example, the
range of changes in R-squared values is from 0.034 to 0.156.
This observation suggests that the robustness of these results
may vary widely even if they all have similarly small coefficient
movements.
AET suggested a formal notion of robustness drawing on

the assumption that the observed and unobserved controls have
related covariance properties. In particular, they derived a con-
sistent estimator for the ratio of the covariance between (a) the
treatment and the unobserved controls and (b) the treatment and
the observed controls, which would produce a treatment effect
of zero. They suggested that results with a ratio above 1—that
is, those in which the unobserved controls are more important in
explaining the treatment than the observed controls—be viewed
as robust. Their estimator is consistent under the null of a zero
treatment effect and under the assumption that if both observed
and unobserved controls were included in a regression the R-
squared would be 1. Although AET do not explicitly derive the
relation between their estimator and the idea of coefficient sta-
bility, the connection is theoretically direct.
The articles in the sample I consider were all published after

AET. However, only one of them engages in a formal robustness
calculation of the type AET suggest (Nunn and Wantchekon
2011). Further, even that article does not perform the exact
calculation in AET. Instead, they follow Bellows and Miguel
(2009) in implicitly assuming that the observed and unobserved
controls are equally important in explaining the variance of the
outcome. This ignores the fact that that coefficient movements
must be scaled by R-squared movements.

Focusing on the 45 results in which the inclusion of controls
moves the coefficient toward zero, I calculate the AET estimator
for the articles in this sample. Table 2 shows some characteris-
tics of the distribution. The median result would be eliminated
if the ratio of the selection on unobservables to selection on
observables was 0.73, less than the suggested robustness stan-
dard of 1. Indeed, only 30% of results are robust to a value of
δ = 1.

On its own, this observation makes clear that formalizing
the coefficient stability procedure is important, and is likely to
matter quantitatively in many settings. In practice, the specific

Table 2. Summary of results under AET adjustment

Relative degree of selection
to eliminate result (δ)

Min 0.0039
10% 0.099
25% 0.326
Median 0.739
75% 1.22
90% 8.45
Max 90.37

NOTES: This table uses data from published articles in economics to calculate the degree of
selection on unobservables compared to observables that would be required to eliminate the
result. The calculation used is that from Altonji, Elder, and Taber (2005). The calculation
assumes that if unobservables were included in the regression all of the outcome variance
would be explained.

approach suggested by AET may be incomplete for several rea-
sons. First, the estimator they detail is consistent only under
the null of a zero treatment effect. It is not possible to evalu-
ate robustness under other null assumptions, nor do they pro-
vide an explicit estimator for the bias-adjusted treatment effect
in the linear case. This means it is not possible to use this to
evaluate robustness of results where the inclusion of controls
moves the coefficient away from zero—effectively, all results
of this type are “robust.” However, if the coefficient is increased
significantly by the included controls then the conclusions about
magnitudemay be radically biased even if the rejection of zero is
retained. More generally, if one wants to make statements about
the size of the “bias-adjusted treatment effect,” their estimator
will not deliver this.
A second issue is that the calculation they suggest does

not provide a direct way to allow for the possibility that
the inclusion of the unobserved controls might not move the
R-squared all the way to 1. Since in many settings there
is likely to be some idiosyncratic variation in outcome—
and, importantly, the degree of this is likely to vary—this
will understate the robustness of results in an unpredictable
way.
The theory section below addresses both of these issues while

developing a consistent estimator for the bias-adjusted treatment
effect in the linear version of the AET model. I then look at the
empirical performance of this estimator in simulated data and,
finally, return to the sample of articles described above in an
attempt to develop a more tractable procedure for formalizing
coefficient stability.

3. THEORY

I begin in this section by developing the estimator under a
set of restrictive assumptions. Although these assumptions are
unlikely to be met in practical settings, the resulting estimator
has an intuitive form that lays bare many of the issues in this set-
ting. I then develop the estimator under more general assump-
tions. Finally, I discuss implementation.
Before moving into the theory it is useful to briefly discuss

the conceptual approach. I focus on an approach to estimating
an unbiased treatment effect from a model in which there are
some observed confounders and some unobserved confounders.
Assuming the data-generating process specified below, the
approach will generate bias-adjusted treatment effects. There
may be numerous other threats to causality, including poorly
specified functional form and others. (This analysis is appropri-
ate only for a linear model. AET developed a similar estimator
in the context of at least one type of nonlinear model (a bivari-
ate probit model).) This approach will not remove the bias aris-
ing from those. Leamer (1978) and Angrist and Pischke (2010)
(among others) provided more discussion on the related topic of
model specification in search of a causal effect.

3.1 General Setup and Definitions

Throughout this section, I will focus on the following setup.
Consider the regression model

Y = βX +�ωo +W2 + ε, (1)
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where X is the (scalar) treatment and ωo is a vector of the
observed controls, ωo1, . . . , ω

o
J . The index W2 is not observed.

Define W1 = �ωo and assume that all elements of ωo are
orthogonal to W2, so W1 and W2 are orthogonal. Without loss
of generality, assume the elements of ωo are also orthogonal
to each other. (All results go through identically if these ele-
ments are correlated.) Define the proportional selection relation-
ship as δ σ1X

σ 2
1

= σ2X
σ 2
2
, where σiX = cov(Wi,X ), σ 2

i = var(Wi) for

i ∈ {1, 2}, and δ is the coefficient of proportionality. Note that
at this point we do not make any assumptions about δ so this
relationship will always hold for some δ. Define var(X ) = σ 2

X
and var(Y ) = σ 2

y .

This setup is drawn from AET, who assume ε = 0 and that
W2 contains some error unrelated to X . These results go through
in a straightforward way if ε = 0.

As in AET, the orthogonality ofW1 andW2 is central to deriv-
ing the results and may be somewhat at odds with the intuition
that the observables and the unobservables are “related.” In prac-
tice, the weight of this assumption is in how we think about
the proportionality condition. In Appendix A.1, I show formally
that if we begin with a case in which the elements ofW1 are cor-
related withW2 we can always redefineW2 such that the results
hold under some value of δ.
Denote the coefficient resulting from the short regression ofY

onX as β̊ and theR-squared from that regression as R̊. Define the
coefficient from the intermediate regression ofY on X and ωo as
β̃ and the R-squared as R̃. Finally, define Rmax as the R-squared
from a hypothetical regression of Y on X, ωo andW2. Note that
other than Rmax these are values that are estimated in-sample
based on the available data. Rmax is a (theoretical) population
value.
The omitted variable bias of the OLS estimates β̊ and β̃

are determined by auxiliary regressions of (1) each value
ωo1, . . . , ω

o
J on X ; (2)W2 on X ; and (3)W2 on X and ωo. Denote

the in-sample estimated coefficient on X from regressions of
each ωoi on X as λ̂ωoi |X and the (unobservable) in-sample esti-
mated coefficient on X from a hypothetical regression ofW2 on
X as λ̂W2|X . Finally, denote the coefficient on X from a regression
ofW2 on X and ωo as λ̂W2|X,ωo .Denote the population analogs of
these values λωoi |X , λW2|X and λW2|X,ωo.

The goal is to provide a consistent estimator for β from Equa-
tion (1). Throughout this section all estimates are implicitly
indexed by n. Probability limits are taken as n approaches infin-
ity. All observations are independent and identically distributed
according to model (1).

3.2 Restricted Estimator

I develop a consistent estimator of the bias under two additional
assumptions.

Assumption 1. δ = 1, so σ1X
σ 2
1

= σ2X
σ 2
2
.

Assumption 2. Consider a regression of X on ωo and denote
the coefficient vector from this regression as (μ1, . . . , μJ ). The
coefficients on these controls in the regression ofY on X and ωo

are ψi. Assume that ψi
ψ j

= μi
μ j

∀i, j.
The first of these assumptions implies an equal selection

relationship—the unobservable and observables are equally

related to the treatment. The second assumption delivers the
result that the coefficient on X in the intermediate regression
of Y on X and controls is the same with the observed control set
ωo as it would be if we could control for the indexW1. The proof
of this statement appears in Appendix A.2.
The intuition behind the second condition is straightforward:

the relative contributions of each variable to X must be the same
as their contribution to Y . It will be satisfied trivially if there
is only one observed control. With multiple controls it is very
unlikely to hold except in pathological cases. However, as long
as the deviations from this condition are not extremely large,
the estimator will provide an approximation to the consistent
estimator.
Using the definitions above, and standard omitted variable

bias formulas, I can express the probability limits of the short
and intermediate regression coefficients in terms of the auxil-
iary regression coefficients.

β̊
p→ β +

J∑
i=1

ψo
i λωoi |X + λW2|X

β̃
p→ β + λW2|X,ωo.

The asymptotic bias on β̃ (the coefficient on X with controls
included) is λW2|X,ωo. Under the second assumption above, β̃ is
the same coefficient, which would be recovered from a regres-
sion of Y on X and the indexW1. Given this, the bias is equal to

σ 2
2 σ1X

σ 2
1 (σ

2
X− σ21X

σ21
)
. Denote this bias as �.

Define the following.

β∗ = β̃ −
[
β̊ − β̃

] Rmax − R̃

R̃− R̊

Proposition 1 summarizes the result.

Proposition 1. β∗ p→ β.

Proof. I outline the proof here, with details in Appendix A.3.
Using the definition of coefficient and R-squared values and
recalling the bias is denoted � we have the following relation-
ships:

(β̊ − β̃ )
p→
(
σ1X

σ 2
X

)(
1 − σ1X

σ 2
1

�

)
(
R̃− R̊

)
σ̂ 2
y

p→ σ 2
1 +�2

(
σ 2
X − σ 2

1X

σ 2
1

)

− 1

σ 2
X

(
σ1X +�

(
σ 2
X − σ 2

1X

σ 2
1

))2

(Rmax − R̃)σ̂ 2
y

p→ �

⎛
⎝σ 2

1

(
σ 2
X − σ 2

1X

σ 2
1

)
σ1X

−�

(
σ 2
X − σ 2

1X

σ 2
1

)⎞⎠ .
These define a system of three equations in three unknowns
(σ 2

1 ,σ1X and �). The system is identified and the solution is

� = [β̊ − β̃]Rmax−R̃
R̃−R̊ . �

Some intuition for this result may be developed by observing
that � = β̃ − β so this result implies that β̃−β

β̊−β̃ = Rmax−R̃
R̃−R̊ . That
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is, under the equal selection assumption, the ratio of the move-
ment in coefficients is equal to the ratio of the movement in R-
squared. The objectsW1 andW2 enter the equation for Y sym-
metrically in terms of coefficients, and equal selection implies
they also are symmetric in their impact on X . The only way in
which their impact may differ is if they have different variances.
This possible difference will be captured in the differential con-
tributions to R-squared. In the special case where the variances
are equal, then Rmax−R̃

R̃−R̊ = 1 and the coefficient movement with
inclusion of observed controls is equal to the expected coeffi-
cient movement with unobserved controls.
If we relax the assumption of equal selection, and return to the

proportional selection relationship (δ σ1X
σ 2
1

= σ2X
σ 2
2
), it is straightfor-

ward to observe that we can calculate an approximation of the
bias-adjusted treatment effect with

β∗ ≈ β̃ − δ
[
β̊ − β̃

] Rmax − R̃

R̃− R̊
.

Given the restrictiveness of the assumptions required to gen-
erate this simple formulation it is not appropriate to suggest that
researchers use this as an estimator directly. However, it is useful
for developing intuition and, perhaps more so, because it can be
calculated from objects included in standard regression tables.
In many cases, this will be a close approximation to the consis-
tent estimator for the bias developed below. It therefore provides
a simple way to evaluate the robustness of published results.

3.3 Unrestricted Estimator

I now consider the estimator without the additional restrictions
described above. I retain the notation and the proof method pro-
ceeds similarly.
The estimator now relies on observing an additional object

from the data. Define X̃ as the residual from a regression of X
onωo. Define the variance of this residual in sample as τ̂x and the
population analog as τx. Effectively, the difference between τx
and σ 2

X captures howmuch of the variance of X can be explained
by the controls. This is not an object that is reported in standard
regression tables although it is straightforward to calculate (it
would be sufficient to observe the R-squared from a regression
of X on ωo along with the variance of X).
As above, I can express the probability limits of the short

and intermediate regression coefficients in terms of the auxil-
iary regression coefficients:

β̊
p→ β +

j∑
i=1

ψo
i λωoi |X + λW2|X

β̃
p→ β + λW2|X,ωo.

The asymptotic bias on β̃ is δσ1Xσ
2
2

σ 2
1 τx

. Denote this bias �.

Define the cubic function f (ν) as

f (ν) = δ
(
(Rmax − R̃)σyy

) (
β̊ − β̃

)
σ 2
X

+ ν
(
δ
(
(Rmax − R̃)σ 2

y

)
(σ 2

X − τx) −
((
R̃− R̊

)
σ 2
y

)
τx

− σ 2
Xτx

(
β̊ − β̃

)2)

+ ν2
(
τx

(
β̊ − β̃

)
σ 2
X (δ − 2)

)
+ ν3(δ − 1)(τxσ

2
X − τ 2x ).

Proposition 2. The proposition has two cases depending on
the roots of f (ν).

Case 1: f (ν) has a single real root, define this root as ν1. Define

β∗ = β̃ − ν1. β∗ p→ β.
Case 2: f (ν) has three real roots, define them as ν1, ν2, and ν3.

Define a set β∗ = {β̃ − ν1, β̃ − ν2, β̃ − ν3}. One ele-
ment of the set β∗ converges in probability to β.

Proof. This is an outline of the proof, with details inAppendix
A.4. Using the definition of coefficient and R-squared values
and recalling that the bias is denoted � we have the following
relationships:

(β̊ − β̃ )
p→ σ1X

σ 2
X

−�

(
σ 2
X − τx

σ 2
X

)
(
R̃− R̊

)
σ̂yy

p→ σ 2
1 +�2(τx) − 1

σ 2
X

(σ1X +�(τx))
2

(Rmax − R̃)σ̂yy
p→ �

(
σ 2
1 τx

σ1X
−�τx

)
.

These define a system of three equations in three unknowns
(σ 2

1 ,σ1X , and �). Solving recursively leaves us with � as the
root of the equation f (ν) given above. This is a cubic with all
real coefficients so it has either one or three real roots. If it has a
single real root, that is the solution. If it has multiple real roots,
one of the three will be the solution. �
Proposition 2 parallels Theorem 2 in the Altonji, Elder, and

Taber (2002) working article; they consider the case where X is
binary.
The corollary below develops the case of δ = 1.

Corollary 1. Define

ν1 =
− () −

√
()2 + 4

(
(Rmax − R̃)σ 2

y

) (
β̊ − β̃

)2
(σ 2

X )
2τx

−2τX
(
β̊ − β̃

)
(σ 2

X )

ν2 =
− () +

√
()2 + 4

(
(Rmax − R̃)σ 2

y

) (
β̊ − β̃

)2
(σ 2

X )
2τx

−2τX
(
β̊ − β̃

)
(σ 2

X )
,

where  = (((Rmax − R̃)σ 2
y )((σ

2
X ) − τx) − ((R̃− R̊)σ 2

y )τx −
(σ 2

X )τx(β̊ − β̃ )2). Define a set β∗ = {β̃ − ν1, β̃ − ν2}. One
element of the set β∗ converges in probability to β.

Proof. This follows immediately from Proposition 2, with
δ = 1. �

In either case—regardless of whether δ = 1—this problem
may have multiple solutions. Only one element of the set will
converge in probability to the true β. I discuss solution selection
below.
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Proposition 3 shows a result related to δ. In particular, I solve
for the value of δ to match a particular treatment effect. This will
be central to implementation since it allows us to ask how large
the relative selection on observables and unobservables would
need to be to produce a treatment effect of zero.

Proposition 3. Define some value β̂. Define δ̂ as the coeffi-
cient of proportionality for which β = β̂. Define

δ∗ =
(
β̃ − β̂

) (
R̃− R̊

)
σ̂ 2
y τ̂x + (

β̃ − β̂
)
σ̂ 2
X τ̂x(β̊ − β̃ )2 + 2

((
β̃ − β̂

))2 (
τ̂x(β̊ − β̃ )σ̂ 2

X

)
+ ((

β̃ − β̂
))3 (

(τ̂xσ̂ 2
X − τ̂ 2x )

)
(
(Rmax − R̃)σ̂ 2

y (β̊ − β̃ )σ̂ 2
X + (

β̃ − β̂
)
(Rmax − R̃)σ̂ 2

y (σ̂
2
X − τ̂x) + ((

β̃ − β̂
))2 (

τ̂x(β̊ − β̃ )σ̂ 2
X

)
+ ((

β̃ − β̂
))3 (

(τ̂xσ̂ 2
X − τ̂ 2x )

))
Under this definition, δ∗ p→ δ̂.

Proof. The proof follows from setting � = β̃ − β̂, substitut-
ing into the f (ν) function and solving for δ. �

Proposition 3 shows that there is a single value of δ to match
any targeted treatment effect—for example, a single value of δ
will match a treatment effect of zero.
Together, Proposition 2, Corollary 1, and Proposition 3 define

the details of the estimator. The following subsections discuss
some issues in interpretation and extensions.
3.3.1 Interpretation of ε. In discussing empirical appli-

cations, it will be crucial to take a stand on the value of Rmax,
which is influenced by ε. Conceptually, ε represents an error,
which is uncorrelated with X ,W1, orW2. One interpretation of
ε is that it captures the degree of measurement error in the out-
come. Another interpretation is that ε captures the influence of
anything, which is determined after X , W1, and W2 are deter-
mined. Both of these interpretations may be useful in choosing
a value for Rmax in a particular context.
3.3.2 Solution Selection. This estimator may deliver

multiple solutions for β. One of these will be the true β under
the proportional selection relationship. With an added assump-
tion we can typically eliminate at least one solution and, in the
case where δ = 1, always produce a single solution.

Using the notation inAssumption 2, note that can defineW1 =
ψ1ω

o
1 + · · · + ψJω

o
J . Now define Ŵ1 = ψ̂1ω

o
1 + · · · + ψ̂Jω

o
J ,

where ψ̂i is the coefficient on ωoi , which is estimated in the
observable regression of Y on X and the observed controls.

Assumption 3. Sign(cov(X,Ŵ1)) = Sign(cov(X,W1)).

Effectively, this assumes that the bias from the unobserv-
ables is not so large that it biases the direction of the covari-
ance between the observable index and the treatment. Under
Assumption 3, if δ = 1 there is a unique solution.

In the case where δ �= 1 there may be multiple solutions, one
closer to the controlled treatment effect and one further. The
obvious procedure of selecting the treatment effect closest to
the controlled coefficient will be appropriate if one is willing to
assume that the bias is fairly small.
I argue below that in empirical settings a value of δ = 1 is a

good bounding value; this is consistent with arguments in AET.
For the purposes of implementation, therefore, it may be appro-
priate to consider either (a) calculating the bias-adjusted effect
under the assumption of δ = 1, with Assumption 3 active or (b)
calculating the value of δ such that β = 0. Either of these will
provide a unique solution.

3.3.3 Additional Controls. It is useful to consider a sim-
ple extension in which there is an additional observed set of
controls.
Formally, consider the case where the full model is

Y = βX +�ωo +W2 + m+ ε, (2)

wherem is orthogonal toωo,W2 and ε and the assumptions about
orthogonality with ε are as above. Assume that the covariance
between m and X is unrelated to the covariance between X and
ωo andW2. It is straightforward to observe in this case that if we
simply regress all other variables on m and take the residuals,
we return to the setup above and the results go through as stated
there. In practice, this means that the controls m are included in
both controlled and “uncontrolled” regressions, and X is resid-
ualized with respect to m when generating σ 2

X and τx.
3.3.4 Inference. Standard errors around β∗ could be

generated using a bootstrap approach. Such an approach
depends on the estimator displaying asymptotic normality.
I show evidence for this using simulation. I simulate data
from two populations with varying data-generating processes.
(The inputs are described in the figure notes.) The popula-
tions are of size 1,000,000 and I run 1000 Monte Carlo sim-
ulations of the estimator, drawing 10,000 observations each
time.
The distributions of estimated β∗ in the two cases are shown

in Figure 2. A normal distribution is overlaid. The distributions
appear normal and a Shapiro–Wilk test does not reject normality
in either case. This suggests that a bootstrap approach may be an
acceptable way to generate standard errors if that is of interest.
3.3.5 Relation to Coefficient Stability. All else equal,

coefficient stability correlates with a smaller amount of bias.
However, it is crucial to note that it is possible for coefficients
to be stable—indeed, to be completely unchanged—even in the
presence of very large bias.
To see this in theory, assume δ = 1 and consider the condi-

tions under which the uncontrolled coefficient β̊ is exactly equal
to the controlled coefficient β̃. Using the notation above, this

occurs if and only if σ1X
σ 2
X

+ σ1Xσ
2
2

σ 2
1 τx

τx
σ 2
X

= σ1Xσ
2
2

σ 2
1 τx

One condition that

will cause this to hold is if σ1X = 0. The formula for the bias is
σ1Xσ

2
2

σ 2
1 τx

so if σ1X = 0, then there is no bias and β = β̃.

However, this condition will also hold if σ 2
1 = σ 2

X−τx
τx
σ 2
2 .

Under this assumption, the movement in R-squared is

(σ 2
X − τx)

(
σ 2
2

τx
−
(

σ1X

(σ 2
X − τx)

)2
)
,

which will be nonzero as long as σ 2
X > τx and σ 2

2 > 0. In this
way, the coefficient movement is zero and the R-squared move-
ment is positive, whichwould appear to suggest limited (or zero)
bias. However, the bias in this case is actually σ1X

σ 2
X−τx , which is

nonzero.
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Figure 2. Distribution of estimated treatment effects. (a) First
parameter set. (b) Second parameter set. These figures show the
distribution of estimated bias-adjusted treatment effects under two
parameter sets. The figures are generated by drawing 1000 sam-
ples of size 10,000 from a population of 1,000,000. The data gen-
erating values for the first set are: β = 200, δ = 1, γ1 = 100, γ2 =
200, cov(X,wo

1) = 0.1, cov(X,wo
2) = 0.1, var(W2) = 20,000, var

(wo
1) = var(wo

2) = 1. The second set uses the same inputs but with
var(W2) = 250,000. In both cases, I add an iid error with mean 100
and standard deviation 1.

In practice, this will become a serious issue when the
variance of W2 is large and the proportionality assumption
underlying the restricted estimator in Section 3.2 is seriously
violated.
3.3.6 GMM Representation. It is useful to observe that

there is a GMM representation of this problem. To observe this
consider Equation (3) below, which explicitly includes a set
of many observed controls j ∈ {1 . . . J} and excludes the error
term.

Y = βX +
J∑
j=1

� jω
o
j +W2. (3)

By assumption, W2 in this setup is orthogonal to all of the
ωoj , which means we can define the normal OLS moments on
ωoj with W2 treated as the error. (If W2 is not mean 0 then

we will also need to include a constant that will add another
moment.)
Additional moments are generated by the combination

of the proportional selection assumption and the auxiliary
regressions of X on the index of observed and unobserved
controls. More specifically, we have the following GMM
setup

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Y − βX −∑J

j=1� jω
o
j

)
ωo(

X − α1 − π
(∑J

j=1� jω
o
j

)) (∑J
j=1� jω

o
j

)
(
X − α1 − π

(∑J
j=1� jω

o
j

))
(
X − α1 − δπ

(
Y − βX −∑J

j=1� jω
o
j

))
(
Y − βX −∑J

j=1� jω
o
j

)
(
X − α1 − δπ

(
Y − βX −∑J

j=1� jω
o
j

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

where the first moment is a vector of moments for each observed
control. The value of δ is provided by the user.

There are J + 4 moments and J + 4 parameters to estimate
(the J elements of � j, α1, α2, π , and β.) The system can be
estimated by GMM.
The case of primary concern above is represented in Equation

(4), which replicates Equation (3) but includes an orthogonal
error term

Y = βX +
J∑
j=1

� jω
o
j +W2 + ε. (4)

Note that if we considerW2 + ε as a single object, we are back
in the case above without error and the moments are the same.
The proportional selection condition is given by δ σ1X

σ 2
1

= σ2X
σ 2
2

with Rmax < 1. Note, however, that we can rewrite this as
δ

σ 2
2

var(W2+ε)
σ1X
σ 2
1

= σ2X
var(W2+ε) . We now have this condition defined

with Rmax = 1 and δmod = δ
σ 2
2

var(W2+ε) . The object σ 2
2

var(W2+ε) can
be summarized as the share of the total unobserved vari-
ance explained by W2. This will be approximated by the ratio
Rmax−R̃
1−R̃ but will not be exact.

3.4 Implementation

In empirical work in economics, discussions of coefficient sta-
bility are typically used in establishing robustness. The estima-
tor above suggests two related ways that such robustness state-
ments might be made. I detail these below.
Statements About δ. One approach to robustness is to

assume a value for Rmax and calculate the value of δ for which
β = 0. This can be interpreted as the degree of selection on
unobservables relative to observables that would be necessary
to explain away the result (under the full model hypothesized).
A value of δ = 2, for example, would suggest that the unobserv-
ables would need to be twice as important as the observables to
produce a treatment effect of zero.
This approach is akin to the robustness statements suggested

by AET. (The calculation will be different since their test pro-
duces a value of δ under the null that β = 0, whereas the calcu-
lation in this section is correct for the true β.) They suggest that
a value of δ = 1 may be an appropriate cutoff. A value of δ = 1
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suggests the observables are at least as important as the unob-
servables. One reason to favor this is that researchers typically
focus their data collection efforts (or their choice of regression
controls) on the controls they believe ex ante are themost impor-
tant (Angrist and Pischke 2010). A second is thatW2 is residual-
ized with respect to ωo so, conceptually, we want to think of the
omitted variables as having been stripped of the portion related
to the included variables.
This suggested robustness leaves open the question of what

is a reasonable Rmax to assume in describing the identified set.
I discuss this in two specific empirical contexts in Section 4
and in more detail in the context of the economics literature in
Section 5.
Bounding Statements About β. A second approach to

robustness is to use bounds on Rmax and δ to develop a set of
bounds forβ. Such bounds could then be compared to, for exam-
ple, a value of zero or some other value of interest.
I consider this with language similar to partial identification

(Manski 2003; Tamer 2010). Consider the estimator β∗(Rmax, δ)
defined as above. Without any additional assumptions, I note
that Rmax is bounded between R̃ (the R-squared in the regression
with controls) and 1. I assume that the proportional selection is
positive, that is, that the covariance between X and the observ-
ables has the same sign as the correlation between X and the
unobservables. This bounds the value of δ below at 0 and it is
bounded above at some arbitrary upper bound δ.

We can then define bounds for β. One bound is β̃, the
value of β delivered when Rmax = R̃ or δ = 0. The other bound
is β∗(1, δ). Without more assumptions, this is either posi-
tive or negative infinity, since δ is unbounded. The insight
of partial identification is that it may be possible to use
additional intuition from the problem to further bound both
Rmax and δ.
Consider first the issue of bounding δ. I argue that for many

problems δ = 1 is an appropriate bound, for the reasons dis-
cussed above. Ultimately, this is an empirical issue, and I will
discuss at least some evidence for this bound in Section 4.
In the case of Rmax, it may be possible to generate a bound

smaller than 1 by, for example, considering measurement error
in Y or evaluating variation in Y that cannot be related to X
because it results from choices made after X is determined.
Define an assumed upper bound onRmax asRmax,withRmax ≤ 1.

With these two bounding assumptions, I can define a bound-
ing set as �s = [β̃, β∗(Rmax, 1)].
Empirically, the question of interest in considering �s is

whether the conclusions based on the full set are similar to what
we would draw based on observing the controlled coefficient β̃.
If inclusion of controls moves the coefficient toward zero, one
natural question is whether the set includes zero. Regardless of
the direction of movement one could ask whether the bounds of
the set are outside the confidence interval on β̃—this effectively
asks whether the conclusions based on the controlled coefficient
are robust.
As above, an assumption about Rmax is necessary for gener-

ating this bounding statement.
Statements About Rmax. If the question of interest is

whether the bias-adjusted β is different from zero, and one
assumes that the bound δ = 1 holds, a third approach is to calcu-
late bounds on Rmax. That is, researchers could report the value

of Rmax for which β = 0 if δ = 1. This value could then be dis-
cussed in terms of whether it is plausible that the unobservables
explain more of the variance than implied by this value.
Stata Code. These calculations can be performed using

STATA code that accompanies this article. The command is
psacalc.

4. EMPIRICAL VALIDATION

The results above provide a way to recover an estimate of
unbiased treatment effects under the assumption that selection
on observables and unobservables is proportional. However, the
theoretical discussion does not provide any insight as to how
this is likely to perform in empirical settings.
In this section, I explore this issue using two approaches. In

the first subsection, I ask how this adjustment performs in sim-
ulated data where, by definition, we know the treatment effect.
I construct the data with a full set of controls and then explore
coefficient bias when various sets of controls are excluded. This
allows for a test of whether the proportional selection relation-
ship would lead to better inference in this setting, and allows
for direct estimation of values of δ. The latter is helpful in eval-
uating the empirical validity of the bounding assumption sug-
gested above. I perform this exercise in the familiar setting of
wage returns to education.
In the second subsection, I use observational data on the

relationship between maternal pregnancy and early life behav-
iors and child outcomes. I compute possibly biased treatment
effects, perform the adjustment, and compare the resulting con-
clusions to external evidence on causal impacts. I ask whether
the adjusted coefficients generate more accurate conclusions
than the simple controlled estimates.

4.1 Simulated Data: Returns to Education

In this section, I consider validation of the estimator in real data,
which is constructed such that we know the treatment effect. I
use the canonical example of estimating wage returns to educa-
tion.
Estimation of this relationship starts with standard Mincer

regressions of wages on education, experience, and experience-
squared. One central counfounder is family background: peo-
ple whose mothers have more education, for example, are more
likely to be highly educated but also have higher wages for other
reasons. (A second obvious confounder is ability. It would be
possible to do an exercise similar to this one with that coun-
founder. Since the exercise is not about finding the causal effect
of education on wages, but is simply about exploring this adjust-
ment, there is no loss to ignoring the issue of ability.) Using
data from the NLSY, I construct a dataset in which I define the
“true” return to education as the impact of education controlling
for a full set of family background characteristics. I then con-
sider the bias—both in simple controlled regressions and after
this adjustment is performed—in hypothetical cases in which I
do not observe the full set of controls. This exercise will allow
me to see how the adjustment performs, to compare the perfor-
mance of the simple and the general estimator and to estimate
values of δ and ask how they compare to the bounds suggested
in Section 3.4.
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4.1.1 Data and Empirical Strategy. I use data from the
NLSY-79 cohort. I am concerned with the impact of years of
education on log wages, and I begin by considering the standard
Mincer regression of log wages on educational attainment. I use
the higher of the two educational levels recorded in 1981 and
1986 and the higher of the two wage values recorded in 1996
and 1998. Experience and experience-squared are calculated in
the typical way (experience = age – education years – 6). I also
control for sex.
My concern is with confounding by demographics and family

background. I capture this with eight variables: region of resi-
dence, race, marital status, mother’s education, father’s educa-
tion, mother’s occupation, father’s occupation, and number of
siblings. All variables are controlled for fully flexibly, with dum-
mies. Summary statistics for these data appear in Appendix B.
I construct a dataset by regressing log wages on education,

experience, sex, and the full set of family background data. I
generate fitted values, and then take these as the “true” effects
in the model—that is, the effect on education we see in this
regression is the unbiased treatment effect in the simulated data.
(Clearly, this is not to suggest that this is the causal impact of
education on wages. I mean only to assume that this is the true
effect in the simulated data, against which I will evaluate esti-
mates that exclude some of the controls used in constructing the
effect.)
The regression of this fitted value on the full set of controls

has an R-squared of 1 by construction. In practice, however,
wages are not fully predicted by family background or individ-
ual characteristics. I therefore add an orthogonal error term to
this fitted value. To generate a magnitude for this term I regress
the log wage measure I use on log wages in 1992 or 1994 (again,
I take the higher of the two). This regression has an R-squared
of 0.45. I argue that family background, education, etc., should
not explain more of the outcome than the previous year’s wages,
since these variables all contribute to that wage. I therefore add
an orthogonal error term to the fitted value such that the ultimate
regression R-squared is about 0.45.

It is important to note that the addition of this error term
is done largely for realism; it will be instructive to explore
errors that may be introduced by incorrectly assuming that
Rmax = 1. However, the calculations of δ is not sensitive to this
addition.
Given this dataset, the empirical exercise is straightforward.

I iterate through excluding all sets of controls (up to 6 of the
8). In each case I: (1) calculate the δ implied by the included
and excluded control set; (2) calculate β∗ with this δ and the
true Rmax; and (3) calculate whether the set bounded by β̃ and
β∗(Rmax, 1) contains the true effect.
4.1.2 Results. Figure 3(a) shows the distributions of the

true β and the estimated β̃ and the values of β∗. The true effect
in the simulated data is 0.087, with a standard error of 0.003.
The β∗ values cluster at the true effect value. This is a simple
numerical check of the procedure: if we know the true Rmax and
the true δ the adjustment works as it should. Not surprisingly,
the estimates of β̃ are shifted substantially to the right of the
true β. The estimates of β from the regressions with controls
are systematically biased upward.
Figure 3(b) shows the values of δ calculated in this exercise.

This value is not mechanical: nothing in the setup constrains any

Figure 3. NLSY wage data simulation. (a) “True,” controlled, and
adjusted beta. (b) Distribution of estimated delta. These figures show
results from the validation using the constructed NLSY wage dataset.
The analysis is described in Section 5.

particular value of δ. In the figure, I show the full distribution of
δ and the [0,1] bounds that I suggest would be appropriate in
many settings.
The average δ is 0.545 and 86% of values fall within the [0,1]

range. Only 2 (of 211) values are negative. The cases with val-
ues of δ > 1 are instructive. These are combinations of controls
where the index of the omitted variables are more important in
explaining education than the included ones. Of the 28 cases
with δ > 1, 92% of them excluded either maternal or paternal
education. This makes clear that these variables are among the
most important confounders; this should not be surprising and,
indeed, it seems likely that researchers would think to include
these first, before considering data on (e.g.) parental occupa-
tion or number of siblings. Put differently, if we consider con-
trol set selection not at random as I do in this example but with
the idea that the most important controls are selected first, it
is likely that the [0, 1] bound would fit in an even larger share
of cases. The fact that the average δ is less than 1 supports the
idea of 1 as an upper bound on δ, rather than as an average
value.
I can comment on the bounding logic described in Section 4.

Given the δ values, it is straightforward to observe that if we
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calculate the set [β̃,β∗′(Rmax, 1)], in 89% of cases this will
include the true value. This is an improvement over the regres-
sion with observed controls. The naive estimate with controls
captures the true value of β only 62% of the time. It is worth
saying that if I were to use a value of Rmax = 1 to do these cal-
culations the adjustment would be too large.
A final approach to evaluating performance is to look more

directly at the likely control set in a more limited data source.
The full set of demographic controls used in the analysis above
are region of residence, race, marital status, mother’s educa-
tion, father’s education, mother’s occupation, father’s occupa-
tion, and number of siblings. The data on parents and siblings
is available in the NLSY because of the panel nature of the
data. Such data would not be available in many cross-sectional
datasets, or even in panel datasets withmore limited information
on early life.
It is simple to consider what we would conclude if we saw

only the more standard controls of region, marital status, and
race (these would, e.g., be available in datasets like the SIPP
or the CPS). The coefficient estimate with these controls only
is 0.107, versus the true effect of 0.087. The value of δ which
matches the true effect is 0.79 and if we assume a value of δ = 1
the adjusted coefficient is 0.082. The δ = 1 bound would, there-
fore, include the true estimate of δ.

4.2 Observational Data: Maternal Behavior and
Child Outcomes

A second approach to validation is to take a setting in which we
have some possibly biased observational relationships and we
think we have a sense of the causal effect from external sources.
Given this, the question is whether this approach can separate
causal from noncausal associations. (Altonji, Elder, and Taber
(2008) did a version of this for the relationship between survival
and catheterization.)
In this section, I undertake this type of validation exercise in

the context of the link between maternal behaviors, infant birth
weight, and child IQ. These relationships are of some interest
in economics, and of wider interest in public health and pub-
lic policy circles. A literature in economics demonstrates that
health shocks while children are in the womb can influence
early outcomes and later cognitive skills (e.g., Almond and Cur-
rie 2011; Almond and Mazumder 2011). A second literature,
largely in epidemiology and public health, suggests that even
much smaller variations in behavior—occasional drinking dur-
ing pregnancy, not breastfeeding—could impact child IQ and
birth weight. These latter studies, in particular, are subject to
significant omitted variable concerns, largely associated with
omitted socioeconomic status and family background. I con-
sider five relationships in all: the relationship between child
IQ and breastfeeding, drinking during pregnancy, and low birth
weight/prematurity, and the relationship between birth weight
(as the outcome) and maternal drinking and smoking in preg-
nancy.
4.2.1 Data. I use NLSY data, this time from the Chil-

dren and Young Adult sample, which has information on the
children of NLSY participants. I measure IQ with PIAT test
scores for children 4 to 8 and birth weight (in grams)as reported

by the mother. In the latter analysis, I include all children. In all
cases I control for child sex and, with IQ, for their age. These
are not considered as part of the confounding set.
The IQ treatments are: months of breastfeeding, any drink-

ing of alcohol in pregnancy, and an indicator for being low birth
weight and premature (<2500 g and <37 weeks of gestation).
The birth weight treatments are maternal smoking and drinking
intensity during pregnancy. I measure family background, the
confounding category, with child race, maternal age, maternal
education, maternal income, and maternal marital status. Sum-
mary statistics for these data appear in Appendix B.
4.2.2 Empirical Strategy. I run regressions with and

without the controls to extract β̊, R̊, β̃, and R̃. I adopt a
bounding value for Rmax drawn from within sibling correlations
(Mazumder 2011). In theory, Rmax should reflect how much of
the variation in child IQ and birth weight could be explained if
we had full controls for family background; I argue this is the
thought experiment approximated by the sibling fixed effect R-
squared. The figures are 0.61 for IQ and 0.53 for birth weight.
Given this Rmax bound, I first calculate the set

[β̃,β∗(Rmax, 1)]. I also find the value of δ that would pro-
duce β = 0 under the assumed Rmax and compare this to
δ = 1. These two analyses effectively contain the same
information.
The conclusions from these robustness calculations are com-

pared to the conclusions we would expect to get if we were able
to estimate the full model. To ask whether the adjusted coeffi-
cient leads to the correct answer, it is necessary to know what
this answer is.
I use two types of evidence. First, I consider external evidence

from randomized trials (where available) and meta-analyses.
Randomized evidence suggests that breastfeeding is not linked
with full-scale IQ (Kramer et al. 2008) and most evidence does
not suggest an impact of occasional maternal drinking on child
IQ (see, e.g., O’Callaghan et al. 2007; Falgreen-Eriksen et al.
2012). (Although the question of whether occasional maternal
drinking lowers IQ is a controversial issue, as I show below the
observational data actually estimates positive impacts of mater-
nal drinking on IQ, and the fact that those effects are not causal is
not a subject of much debate.) In contrast, low birth weight and
prematurity do seem to be consistently linked to low IQ (Salt
and Redshaw 2006), a link that also has a biological underpin-
ning (de Kieviet et al. 2012). Occasional maternal drinking is
typically not thought to impact birth weight (Henderson, Gray,
and Brocklehurst 2007), but there is better evidence that smok-
ing does (e.g., from trials of smoking cessation programs as in
Lumley et al. 2009).
Second, I consider the conclusions one would draw from sib-

ling fixed effects regressions in the NLSY data described above,
which provides a more “within sample” test of fully controlling
for family background. Of course, sibling fixed effects estimates
may be subject to their own concerns about causality, so it is per-
haps comforting that the conclusions are the same using either
approach.
4.2.3 Results. Table 3 reports the results: Panel A shows

results on IQ, Panel B on birth weight.
The first column shows treatment effects, standard errors,

and R-squared values without the socioeconomic status con-
trols. Column 2 shows similar values with the full control set.
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Table 3. Maternal behavior, child IQ, and birth weight

Panel A: Child IQ, standardized (NLSY) (Rmax = 0.61)

(1) (2) (3) (4) (5) (6)
Treatment Baseline effect Controlled effect Null reject? Sibling FE Identified δ̃ for β = 0
variable (Std. error), [R2] (Std. error), [R2] (extrnl. evid.) estimate set given Rmax

Breastfeed (Months) 0.045∗∗∗ (0.003) [0.045] 0.017∗∗∗(0.002) [0.256] No − 0.007 (0.005) [− 0.033,0.017] 0.37
Drink in Preg. (Any) 0.176∗∗∗(0.026) [0.008] 0.050∗∗(0.023) [0.249] No 0.026 (0.036) [− 0.146,0.050] 0.26
LBW + Preterm − 0.188∗∗∗(0.057) [0.004] − 0.125∗∗∗(0.050) [0.251] Yes − 0.111 (0.070) [− 0.124,−0.033]† 1.37

Panel B: Birth weight in grams (NLSY) (Rmax = 0.53)

Treatment Baseline effect Controlled effect Null reject? Sibling FE Identified δ̃ for β = 0
variable (Std. error), [R2] (Std. error), [R2] (extrnl. evid.) estimate set given Rmax

Smoking in Preg − 183.1∗∗∗ (12.9) [0.31] − 172.5∗∗∗(13.3) [0.35] Yes − 94.3∗∗∗(27.6) [− 172.5,-30.3]† 1.08
Drink in Preg. (Amt) − 16.7∗∗∗(5.15) [0.30] − 14.1∗∗∗ (5.06) [0.34] No − 1.53 (7.48) [− 14.1,0.49] 0.96

NOTES: This table shows the validation results for the analysis of the impact of maternal behavior on child birth weight and IQ. Baseline effects include only controls for child sex and
(1) age dummies in the case of IQ and (2) gestation week in the case of birth weight. Full controls: race, age, education, income, marital status. Sibling fixed effects estimates come from
NLSY in all panels. The identified set in Column (5) is bounded below by β̃ and above by β∗ calculated based on Rmax given in the top row of each panel and δ̃ = 1. Column (6) shows
the value of δ̃ which would produce β = 0 given the values of Rmax reported in the title of each Panel. ∗ significant at 10% level, ∗∗ significant at 5% level, ∗∗∗ significant at 1% level.
†identified set excludes zero.

More breastfeeding is associated with higher IQ in these regres-
sions, and low birth weight is associated with lower child IQ.
More maternal drinking appears in these data to be associated
with higher child IQ later, a finding that is likely to be due
to selection given limited biological mechanisms. Both sam-
ples show smoking and drinking are associated with lower birth
weight. All analyses reported show significant effects with the
full set of controls. Interpreting these results in a naive way,
one would conclude that each has a significant link with child
outcomes.
Column 3 reports whether external evidence, summarized

above, suggests a causal impact. As noted, external evidence
supports a relationship between low birth weight and IQ and
between smoking and low birth weight but the other relation-
ships do not have broad support. Column 4 shows sibling fixed
effects regressions, which result in similar conclusions. The
only difference is in the impact of low birth weight on child IQ,
where the NLSY regression coefficient is significant only at the
11% level.
Column 5 shows the bounding set, using the Rmax estimates

in the top row of each panel and δ = 1. This procedure performs
well. The two cases in which the identified set does not include
zero are those where the external evidence suggest significant
results. Put differently, if one were to use the rule of accepting
the effect as causal only if the identified set excluded zero, this
would lead to the same conclusions as the external evidence.
In all cases the identified set includes the sibling fixed effect
estimates. In Column 6, I calculate the values of δ such that β =
0. I show that the effects confirmed in external data are those for
which δ > 1 is necessary to produce β = 0.

There are two final points to make about this analysis. First,
similar to the wage analysis above, the average value of δ which
matches the adjusted effects to the sibling fixed effect values is
less than 1—it is 0.47—pointing to the value of 1 as a bound.
Second, doing these calculations with a value of Rmax = 1 as the
boundwould lead us to reject all the associations—including the
two which are confirmed in outside data.

The results in this section suggest that the robustness frame-
work performs well. It also makes clear the importance of doing
formal bias calculations. In this latter example, if we based our
analysis only on the size (say, in percent terms) of the coefficient
movements we would conclude that the link between drinking
and low birth weight is much more robust than the link between
low birth weight and IQ, since the former moves only by 10%
and the latter by 30%. In fact, the low birth weight and IQ
link has more external support. This is confirmed by the iden-
tified set conclusions, and mechanically it is reflective of the
much larger change in R-squared in the low birth weight—IQ
relationship.

5. APPLICATION TO ECONOMICS LITERATURE

I now return to the application of this approach within eco-
nomics, using the data described in Section 2. I undertake two
exercises. First, I return to the sample of articles discussed in
Section 2 and the question of how robust these claims are to the
formal adjustment. I calculate bias-adjusted treatment effects
under the assumption that Rmax = 1 but also under varying val-
ues of Rmax. The discussion in Section 4 suggests that Rmax = 1
may lead to over-adjustment in many cases.
In the second subsection, I discuss how Rmax may be chosen

in practice. I detail one approach based on an analysis of results
from randomized treatment effects.

5.1 Robustness of Coefficient Stability Claims

The data in this section is the same as that used in Section 2.
Recalling that discussion: I begin with the universe of all arti-
cles in the American Economic Review, Quarterly Journal of
Economics, The Journal of Political Economy, and Economet-
rica from 2008–2010 with at least 20 citations in the ISI Web of
Science, and those from 2011–2013 in the same journals with
at least 10 citations. I limit the sample to articles with repli-
cation files available so it is possible to do further robustness
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calculations. From these articles, I extract all results where the
researcher explores the sensitivity of the result to a control set
and, using a close reading of the articles, those in which this
exercise appears to be designed to address an imperfect set of
controls. The sample (full citation list in Appendix C) includes
27 articles with 76 total results.
The empirical exercise is as follows. I extract the relevant

inputs from replication files. Note that in cases where controls
are included sequentially, I compare the fewest-controls to the
most-controls set. For each result, I calculate the bias-adjusted
treatment effect with δ = 1 and varying values of Rmax.

I consider Rmax = 1 as one bound. I also consider a parame-
terization of Rmax as a function of R̃ : Rmax = min{�R̃, 1} with
varying values of �. This function assumes that the degree of
variation accounted for by the observables (including the treat-
ment) is informative as to the degree accounted for by the unob-
servables.
Having calculated the identified set using these Rmax values,

I consider two standards for robustness. First, focusing on the
subset of results for which the inclusion of controls moves the
coefficient toward zero, I ask whether the set includes zero. I
also consider whether the bounds of the set fall within +/− 2.8
standard errors of the controlled estimate, an analysis that can
be done by including results where controls move the coeffi-
cient away from zero (+/− 2.8 standard errors is the bounds of
the 99.5% confidence interval). This second standard captures a
test of whether the size of the estimate from the regression with
controls is similar to the bias-adjusted estimate.
I summarize the robustness of a given relationship with the

largest value of � for which the result survives the robustness
standard. The results appear in Figure 4(a) and 4(b). Figure 4(a)
shows the primary robustness with rejection of zero; Figure 4(b)
uses all results and shows themagnitude test. These graphs show
the share of relationships, which would survive varying values
of�, with Rmax = min{�R̃, 1}. In either case, I find only about
9% to 16% of results would survive Rmax = 1. This share is
smaller than the share implied by the AET calculation in Section
2 since the analysis does not use the null of β = 0 but, instead,
calculates the δ value with the true β. Within the set of results
which would not survive this standard, there is a wide range of
robustness. Some of these results would not survive even quite
small differences between R̃ and Rmax.

To quantify this, Panel A of Table 4 shows the share of
results which would survive Rmax = 1 and three values of �.
About 40% of results would not survive � = 1.25. Consider-
ing the rejection-of-zero robustness criteria, within this set that
is not robust to � = 1.25, the average study fails at a value of
� = 1.15 or, in point estimate terms, a predicted increase in R-
squared of 0.06 with inclusion of unobserved controls.
In nearly all of the analyses discussed in this section, the

authors discuss only coefficient movements. As noted, this is
potentially misleading for two reasons. First, it fails to take into
account the R-squared movements. Second, as I note in Section
3.3.5, it is possible that coefficient stability is misleading even
in the context of large R-squared movements in some cases, par-
ticularly if the assumption of proportionality that underlies the
restricted estimator described is seriously violated. I explore the
importance of these two issues empirically.

Figure 4. Robustness of stability results in Economics literature.
(a) Rejection of zero, Rmax = �R̃. (b) Results within +/− 2.8 SE,
Rmax = �R̃. These graphs show the performance of nonrandomized
results under the proportional selection adjustment. Each figure graphs
the share of results that would survive varying parameterization ofRmax,
in all cases assuming δ̃ = 1. Subfigure (a) indicates the share of results
that would survive Rmax = �R̃ for varying values of �, with survival
in this case meaning the identified set does not include zero. This figure
contains only relationships where the effect is significant with controls
and adding the controls moves the coefficient toward zero. Subfigure
(b) indicates the share of results for which the full identified set would
be within 2.8 standard errors of the controlled coefficient. This subfig-
ure includes all relationships.

First, consider how the conclusions would differ from those
which rely only on coefficient movements. To explore this, I
choose an Rmax = 1.3R̃ cutoff and compare the percent reduc-
tion (in absolute value) in coefficients for results that do and
do not survive this cutoff. I choose this value because it will
be the cutoff I identify later in the analysis of randomized data.
Figure 5 shows these results. There is full overlap in the distri-
butions of coefficient movements between robust and nonrobust
results, illustrating the fact that coefficient movements alone do
not provide much insight about these.
Second, I calculate the bias implied by the restricted estimator

in each case. The restricted estimator accounts for movements
in R-squared values but makes the strong proportionality
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Table 4. Robustness of stability results

Panel A: Nonrandomized data, share of results, which survive δ̃ = 1, varying Rmax

(1) (2) (3) (4)
Rmax = 1 Rmax = min(2R̃; 1) Rmax = min(1.5R̃; 1) Rmax = min(1.25R̃; 1)

Share with adjusted β same sign as β̃ 9.1% 27% 36% 57%
Sample: Add controls, moves toward zero

Share with adjusted β +/− 2.8 SE of β̃ 16% 38% 42% 51%
Sample: All

Panel B: Randomized data, share of results, which survive δ̃ = 1, varying Rmax

Rmax = 1 Rmax = min(2R̃; 1) Rmax = min(1.5R̃; 1) Rmax = min(1.25R̃; 1)

Share with adjusted β same sign as β̃ 42% 82% 91% 97%
Sample: Add controls, moves toward zero

Share with adjusted β +/− 2.8 SE of β̃ 37% 82% 86% 91%
Sample: All

NOTES: This table describes the survival of nonrandomized (Panel A) and randomized (Panel B) results under the proportional selection adjustment. Both panels show the share of
results that would survive δ̃ with varying Rmax values. I consider two definitions of survival: (1) the identified set does not include zero and (2) the outer bound of the set is within 2.8
standard errors of β̃. The first of these is considered only for results that move toward zero when controls are added.

assumption, so the difference in the effect implied by this
restricted version and the true bias-adjusted effect gives a sense
of how misleading conclusions may be if a simpler version of
the adjustment is used. I do the calculation assuming, again, that
Rmax = 1.3R̃. In about 80% of cases one would draw the correct
conclusion about robustness from the restricted estimator.
However, the restricted version generally understates the bias,
on average by about 40%. The error is larger in cases where
much of the treatment variance is explained by the controls.
5.1.1 Example. To bemore concrete on the issues above,

I illustrate with an example.
Nunn and Wantchekon (2011) analyzed the impact of the

slave trade on mistrust in Africa. This is a salient exam-
ple because the authors worry explicitly about unobserved

Figure 5. Relationship between full robustness and coefficient
movement. This graph shows the range of coefficient movements in
nonrandomized studies. These studies are divided into those that are
robust to the proportional selection adjustment with Rmax = 1.3R̃ (solid
line) and those that are not (dotted line). This includes only relation-
ships in which the inclusion of controls moves the coefficient toward
zero.

differences across areas, and present a number of arguments to
support the interpretation of their results as causal. In contrast to
most articles in this literature, they undertake direct calculations
based on the theory in AET. They use coefficient movements
in their regressions to calculate the value of δ which would be
required to produce β = 0. They argue the results are robust
because all the calculated values of δ are greater than 1. Equiv-
alently, the adjusted treatment effects have the same sign as the
effects in regressions with controls if δ = 1.

Although it is not made explicit, the calculations they under-
take in the article assume that Rmax = R̃+ (R̃− R̊). (They draw
this from Bellows and Miguel (2009).) In other words, they
assume that the unobservable controls explain as much of the
outcome as the observable controls. In practice, the R-squared
values in their regressions do not move much; as an example,
in the first row of their Table 4, considering the “Trust Rela-
tives” measure, adding controls increases R-squared from 0.115
to 0.133. Their adjustment assumes that the R-squared in the
regression with controls would be 0.151. This change is quite
small, and it seems reasonable to explore the impact on the
results from changing it.
A set of results from their Table 4 are reported in Table 5. The

first two columns show their estimated effects, and the third col-
umn shows the estimated β using their implicit assumption on
Rmax and δ = 1. Three of the five results have adjusted β values
the same sign as the estimated effects; two differ in sign. This
result differs from the result in the article because the robust-
ness in the article is done under the null of β = 0. On its face,
this suggests that the results are less robust than implied in the
article even with the implicit assumption used.
Column (4) estimates these bias-adjusted βs using the

assumption that Rmax = 1.3R̃. As noted above, this cutoff is
derived from randomized data later, so it serves as a focal point.
Although the Rmax values implied by this cutoff are still fairly
small (e.g., in the first row the implied Rmax is just 0.169) only
one of the five results are robust to this assumption. Column (5)
calculates the value of Rmax at which each of the results fail. In

Oster: Unobservable Selection and Coefficient Stability 201



Table 5. Example: Nunn and Wantchekon (2011)

(1) (2) (3) (4) (5)
Result Baseline effect Controlled effect Bias-adjusted β Bias-adjusted β Max Rmax

description (Std. error)[R2] (Std. error)[R2] Rmax = R̃+ (R̃− R̊) Rmax = 1.3R̃ for β < 0

Trust relatives − 0.193 (0.043) [0.106] − 0.178 (0.031) [0.130] − 0.103 0.352 0.161
Trust neighbors − 0.238 (0.044) [0.115] − 0.202 (0.029) [0.159] − 0.069 − 0.044 0.210
Trust local council − 0.177 (0.027) [0.175] − 0.128 (0.021) [0.205] 0.046 0.821 0.230
Intragroup trust − 0.208 (0.041) [0.121] − 0.187 (0.032) [0.155] − 0.091 0.100 0.197
Intergroup trust − 0.145 (0.031) [0.093] − 0.115 (0.030) [0.119] 0.010 0.194 0.142

NOTES: This table shows the results from Nunn and Wantchekon (2011, Table 4). The first columns show the baseline and controlled effects. Columns (3) through (5) show the bias-
adjusted β under various assumptions on Rmax. Column (3) uses the assumption from their article. Columns (4) uses an alternative assumption, which is based on the conclusions from
the randomized data. Column (5) estimates the maximum value of Rmax for which the result would survive in each case.

general, these values are fairly low and suggest that even if the
unobservables play a fairly small role in explaining the outcome,
the results may not be robust by this test.
In addition to showing the importance of the formal adjust-

ment in analyzing coefficient stability, this example illustrates
one way that robustness might be explored in this context.
Rather than assuming a value for Rmax it would be feasible to
explore a range of values and report, for example, the value of
Rmax for which the result is no longer robust (if δ = 1). Com-
paring this to the R-squared in the regression with controls,
authors and readers can discuss the concept of robustness more
concretely.
An alternative approach is to try to generate some general

guidelines about Rmax. Below, I suggest one approach to this,
using data from randomized trials.

5.2 Evidence on Stability Cutoffs from Randomized
Data

The evidence above makes clear that, even within a sample of
articles which argue for coefficient stability, there is a lot of vari-
ation in the robustness of results depending on Rmax. A natu-
ral following question is whether we can suggest any guidance
about where onemight draw the line—specifically, is there some
value of� (whereRmax = �R̃) abovewhichwe should consider
a result robust?
I argue that one place to look for such guidance is in reports

from randomized data. Randomized experiments are becoming
increasingly common within economics and articles reporting
results of these experiments often include regressions with and
without controls. Sometimes these are explicitly used to test
balance in the experiment, although it is also commonly done
to increase precision. Assuming that the data are correctly ran-
domized, if the sample size were infinite, the effects would not
be expected to move at all. In practice, with finite data, coeffi-
cients canmove a bit simply due to very small differences across
groups.
When nonrandomized articles invoke a coefficient stability

heuristic to argue the results they observe are causal, they are
(perhaps implicitly) suggesting that the treatment is as good
as random. Including controls does not change the coefficient
because there is no confounding; this is exactly the argument
we know holds in randomized cases. Given this, I argue we

can use the stability of randomized data as a guide to how
much stability we would expect in nonrandomized data if the
treatment were assigned exogenously:is the coefficient stability
within the range the researcher would expect with a randomly
assigned treatment?
The approach in this section is to assume that the effects

estimated in randomized data are causal and to therefore
assume that they should survive this adjustment procedure.
(An obvious concern is that, perhaps, these articles are not cor-
rectly randomized. This would lead me to a standard which was
too lax. I address this in two ways. First, I have focused on arti-
cles published in highly ranked journals, increasing the chance
that the randomization was of high quality. Second, I will draw
guidelines that fit nearly all but not all articles, thus accepting
that a small share of randomized articles may suffer from true
lack of balance and should not be used to guide this approach.)
I then ask what value of � in the Rmax parameterization would
make this true.
The baseline set of articles for this analysis is all random-

ized articles (lab or field) published in the American Economic
Review, Quarterly Journal of Economics, Journal of Political
Economy, Econometrica, and the American Economic Jour-
nal – Applied Economics in the period 2008 through 2013. (I
include AEJ-Applied because it has published a large num-
ber of experimental articles. This journal began publishing in
2009.) I extract from these all articles that report sensitivity of
a treatment effect to controls. In cases where there are mul-
tiple effects reported (i.e., multiple outcomes), I include all
effects. I use replication files or researcher requests to extract the
estimator inputs where possible. The final sample includes 65
results.
The full set of references is in Appendix C.
I undertake the same analysis as in the nonrandomized data:

calculate the bias-adjusted treatment effect assuming δ = 1 and
varying Rmax and compare the results to the two standards for
robustness.
Figure 6(a) and 6(b) shows the distributions of sensitivity for

the randomized data. A first thing to note is that these results
are more robust than the nonrandomized results. About 40% of
randomized results would survive a cutoff of Rmax = 1. Nearly
all would survive a cutoff of Rmax = 1.25R̃, much greater than
for the nonrandomized results. Panel B of Table 4 shows the
survival shares for this dataset explicitly under the varying Rmax

cutoffs.
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Figure 6. Results from randomized data. (a) Rejection of zero,
Rmax = �R̃. (b) Results within +/− 2.8 SE, Rmax = �R̃. These graphs
show the performance of randomized results under the proportional
selection adjustment. Each figure graphs the share of results that would
survive varying parameterizations of Rmax, in all cases assuming δ̃ = 1.
Subfigure (a) indicates the share of results that would survive Rmax =
�R̃ for varying values of�,with survival in this casemeaning the iden-
tified set does not include zero. This figure contains only relationships
where the effect is significant with controls and adding the controls
moves the coefficient toward zero. Subfigure (b) indicates the share of
results for which the full identified set would be within 2.8 standard
errors of the controlled coefficient. This subfigure includes all relation-
ships.

It is not surprising that the randomized results are more
robust. The fact that they do not all survive Rmax = 1 is because
even small changes in coefficients can be blown up with this
assumption. I use these data to develop robustness cutoff val-
ues. I base these on the value of � which would allow 90% of
results to survive in both the confidence interval and the rejec-
tion of zero test. This leads to the bounding values of � = 1.3.
This value suggests a bound where the unobservables explain
somewhat less than the observables (where the latter includes
the treatment). This has some intuitive appeal if we think that
the observables are chosen with an eye to those which are most
important in explaining the outcome.
Under this approach, to argue for a level of stability con-

sistent with randomized treatment, researchers should consider

whether the set [β̃,β∗(min{1.3R̃, 1}, 1)] excludes zero or, equiv-
alently, that the δ which produces β = 0 with Rmax = 1.3R̃
exceeds 1. Applying this to the nonrandomized data above, I
find that 45% of results would survive this standard. This stan-
dard could be valuable to explore even in cases where the con-
trols cause the coefficient to move away from zero; in that
case the question would be whether considering the full set
would lead to very different conclusions than the controlled
estimate.

6. CONCLUSION

Coefficient stability is a commonly invoked argument against
omitted variable bias. In fact, such stability is informative only if
authors also consider the importance of the controls in explain-
ing the variance of the outcome. I connect the heuristic to the
idea of a proportional selection relationship on observed and
unobserved variables. I describe a tractable strategy for gener-
ating bounds on treatment effects and show validation in empir-
ical contexts. Importantly, I show that most existing work does
not consider these issues explicitly, and I argue that many results
with “stable coefficients” are not very robust.
I suggest a standard for robustness relying on this estimator

that could be easily implemented by researchers. A key issue
is the need to make an assumption about the share of the vari-
ance of the dependent variable which is jointly explained by the
observed and unobserved variables that are correlated with it. I
suggest a standard based on the performance of this estimator
in randomized data.
This provides one general approach to developing intuition

about Rmax but it is worth noting that within a given context it
may be possible to develop a better intuition. Some examples
of this are provided earlier in the article. In the case of educa-
tion and wages, I develop a value of Rmax (used for construct-
ing the data) by looking at how much of current year wages
are explained by past year wages; the theory is that any abil-
ity/motivation/family background confounders are determined
prior to the previous year’s wages. In the analysis of mater-
nal behavior and child outcomes I use sibling correlations as
a benchmark since sibling share the same family background.
In two articles following on their original article (Altonji, Elder,
and Taber 2005b; Altonji et al. 2008) Altonji and coauthors sug-
gested two methods for adjusting for idiosyncratic variance, an
approach parallel to my use of Rmax.

The core insight is to recognize that coefficient stability on
its own is at best uninformative and at worst very misleading.
It must be combined with information about R-squared move-
ments to develop an argument.
The robustness approach in this article addresses concerns

related to unobservables that are related to the observables. A
key issue that must still be addressed is the appropriate choice of
observables (as discussed in Angrist and Pischke 2010). If there
are unobservables related to the treatment for which we can-
not learn about this relationship using the relationship between
treatment and observed controls then this result breaks down.
Recognizing this issue may help improve the control sets used
in empirical work.
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SUPPLEMENTARY MATERIALS

Supplementary materials are three appendices. Appendix A:
Theoretical results, including proofs. Appendix B: Additional
tables and figures. Appendix C: List of citations for Section 5.
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