PSI3024 - Eletrônica

Aulas 36 e 37 2023

(c)

(b)

- Figure 10.33 (a) Basic structure of dynamic-MOS logic circuits. (b) Waveform of the clock needed to operate the dynamic logic circuit. (c) An example circuit.

EXEMPLO 10.3

Considere o inversor pseudo-NMOS fabricado na tecnologia CMOS especificada no Exemplo 10.1, ou seja, $\mu_{n} C_{o x}=115 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=-V_{t p}=$ $0,4 \mathrm{~V}$ e $V_{D D}=2,5 \mathrm{~V}$. Seja a razão W / L de Q_{N} de $(0,375 \mu \mathrm{~m} / 0,25 \mu \mathrm{~m})$ e $r=9$. Obtenha:
(a) $V_{O H}, V_{O L}, V_{I L}, V_{I H}, V_{M}, M R_{H}$ e $M R_{L}$
(b) $(W / L)_{p}$
(c) $I_{\text {estat }} \mathrm{e} P_{D}$
(d) $t_{P L H}, t_{P H L}$ e t_{P}, supondo uma capacitância total na saída do inversor de 7 fF

Inversor pseudo-NMOS

Região II (segmento BC) $\quad k_{n}=r k_{p}$,

$$
v_{O}=V_{t}+\sqrt{\left(V_{D D}-V_{t}\right)^{2}-r\left(v_{I}-V_{t}\right)^{2}}
$$

$$
V_{I L}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r(r+1)}}
$$

$$
V_{M}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r+1}}
$$

(ponto C)

$$
v_{O}=v_{I}-V_{t}
$$

Região IV (segmento DE)

$$
k_{n}=r k_{p}
$$

Região III (segmento CD)

$$
\text { ponto } \mathrm{D} \quad v_{O}=V_{t} \text {. }
$$

$\partial v_{O} / \partial v_{I}=-1$ e $v_{1}=V_{I H}$,

$$
V_{I H}=V_{t}+\frac{2}{\sqrt{3 r}}\left(V_{D D}-V_{t}\right)
$$

$$
\begin{gathered}
v_{I}=V_{D D} \\
V_{O L}=\left(V_{D D}-V_{t}\right)\left[1-\sqrt{1-\frac{1}{r}}\right]
\end{gathered}
$$

Célula de Memória SRAM CMOS

- A 2^{M+N}-bit memory chip organized as an array of 2^{M} rows $\times 2^{N}$ columns.

- Figure 11.19 Relevant parts of the SRAM cell circuit during a read operation when the cell is storing a logic 1 . Note that initially $-v_{Q}=$ $V_{D D}$ and $v_{Q}=0$. Also note that the B and B lines are usually precharged to a voltage of about $V_{D D} / 2$. However, in Example 11.2, it is assumed for simplicity that the precharge voltage is $V_{D D}$.

EXEMIPLO 11.2

A intenção deste exemplo é analisar a operação dinâmica da célula CMOS SRAM da Figura 11.18. Considere a célula sendo fabricada em uma tecnologia de processo para a qual $\mu_{n} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=20 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{t n 0}=-V_{t p 0}=1 \mathrm{~V}, 2 \phi_{f}=0,6 \mathrm{~V}, \gamma=0,5 \mathrm{~V}^{1 / 2} \mathrm{e} V_{D D}$ $=5 \mathrm{~V}$. Suponha que os transistores da célula tenham $(W / L)_{n}=4 / 2,(W / L)_{p}=10 / 2$ e suponha os transistores de acesso com $(W / L)=10 / 2$. Supondo que a célula esteja armazenando um 1 e que a capacitância de cada linha de bit seja de 1 pF , determine o tempo necessário para surgir uma tensão de $0,2 \mathrm{~V}$. Para simplificar a análise, suponha que as linhas B e B estão pré-carregadas em $V_{D D}$.

$$
\begin{gathered}
I_{1}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left[\left(V_{D D}-V_{t 1}\right) v_{\bar{Q}}-\frac{1}{2} v_{Q}^{\frac{2}{Q}}\right] \\
I_{1}=50 \times \frac{4}{2}\left[(5-1) v_{\bar{Q}}-\frac{1}{2} v_{\bar{Q}}^{2}\right] \\
I_{5}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{5}\left(V_{D D}-v_{\bar{Q}}-V_{t 5}\right)^{2} \\
V_{t 5}=1+0,5\left(\sqrt{v_{Q}+0,6}-\sqrt{0,6}\right) \\
V_{t 5}=1 \mathrm{~V} \text { e, portanto, } I_{5} \text { será } \\
I_{5}=\frac{1}{2} \times 50 \times \frac{10}{2}\left(5-v_{\bar{Q}}-1\right)^{2}
\end{gathered}
$$

resolvendo para $v_{\bar{Q}}$ resulta em $v_{\bar{Q}}=1,86 \mathrm{~V}$
segunda iteração,

O resultado é $V_{t 5}=1,4 \mathrm{~V}$.

$$
\begin{aligned}
& v_{\bar{Q}}=1,6 \mathrm{~V} \\
& I_{5}=0,5 \mathrm{~mA}
\end{aligned}
$$

$$
v_{\bar{Q}} \text { é menor que } V_{D D} / 2
$$

$$
\begin{gathered}
\Delta t=\frac{C_{B} \Delta V}{I_{5}} \\
\Delta t=\frac{1 \times 10^{-12} \times 0,2}{0,5 \times 10^{-3}}=0,4 \mathrm{~ns}
\end{gathered}
$$

- Figure 11.20 Relevant parts of the SRAM circuit during a write operation. Initially, the SRAM has a stored 1 and a 0 is being written. These equivalent circuits apply before switching takes place. (a) The circuit is pulling node Q up toward $V_{D D} / 2$. (b) The circuit is pulling node Q down toward $V_{D D} / 2$.

Para a célula de memória SRAM na figura a seguir, as linhas $\mathrm{B} \mathrm{e}^{\bar{B}}$ são energizadas com $V_{D D} / 2$ durante o ciclo de leitura e os transistores Q_{5} e Q_{6} são habilitados através da aplicação de uma tensão $V_{D D}$ na Word line (W) quando passamos a ter ${ }^{7} Q=3,75 \mathrm{~V}$ $\mathrm{e}^{\bar{V} \bar{Q}}=1,25 \mathrm{~V}$. Determine as correntes $I_{5}=I_{1}$ e $I_{4}=I_{6}$ e obtenha o intervalo de tempo Δt necessário para que a diferença de potencial ΔV entre as linhas $B \mathrm{e}^{\bar{B}}$ seja de $0,2 \mathrm{~V}$ a fim de ativar o amplificador sensor de leitura supondo que as correntes $I_{5}=I_{1}$ e $I_{4}=$ I_{6} permaneçam aproximadamente constantes. Suponha que o efeito de corpo nos transistores Q_{5} e Q_{6} seja desprezível, ou seja, a tensão de limiar não muda ($\mathrm{V}_{\mathrm{m}}=1 \mathrm{~V}$).

- Figure 11.23 A differential sense amplifier connected to the bit lines of a particular column. This arrangement can be used directly for SRAMs (which utilize both the B and B lines). DRAMs can be turned into differential circuits by using the "dummy cell" arrangement shown in Fig. 11.25.

- Figure 11.24 Waveforms of v_{B} before and after the activation of the sense amplifier. In a read-1 operation, the sense amplifier causes the initial small increment $\Delta V(1)$ to grow exponentially to $V_{D D}$. In a read- 0 operation, the negative $\Delta V(0)$ grows to 0 . Complementary signal waveforms develop on the B line.

- Figure 11.21 The one-transistor dynamic RAM cell.

- Figure 11.22 When the voltage of the selected word line is raised, the transistor conducts, thus connecting the storage capacitor C_{S} to the bit-line capacitance C_{B}.

- Figure 11.25 An arrangement for obtaining differential operation from the single-ended DRAM cell. Note the dummy cells at the far right and far left.

