

Universidade de São Paulo Instituto de Física

EVIDÊNCIAS EXPERIMENTAIS DA NATUREZA QUÂNTICA DA RADIAÇÃO E DA MATÉRIA

AULA 10

Profa. Márcia de Almeida Rizzutto
Pelletron – sala 220
rizzutto@if.usp.br
rodrigo.fernandes.me@gmail.com

2º. Semestre de 2023

Monitores: Rodrigo Fernandes de Almeida Samuel Pizzol

Dualidade Onda-Partícula

- •Max Born introduziu uma interpretação probabilística para a dualidade onda-partícula
- •Como no caso da radiação eletromagnética, podemos descrever a propagação da matéria a partir de uma abordagem ondulatória Broglie diz: se ondas de luz tem propriedades de partículas, partículas devem ter propriedades de onda. E propôs que:

$$p = \frac{h}{\lambda}$$
 $\lambda = \frac{h}{p} = \frac{h}{mv}$ $E = hv$

isto é, ambas as relações cima são válidas também para partículas

•Essa onda, chamada de *função de onda* e representada pela letra grega Ψ, determina a **probabilidade** da partícula ser observada em uma certa posição em um certo instante de tempo

Associaremos uma função de onda ψ (probabilidade da partícula ser observada em uma certa posição em um certo instante de tempo)

Função de onda

$$\Psi(x,t)$$

que é solução da equação de onda

Uma solução simples é a chamada onda harmônica

Cujo nº de onda

Velocidade da onda ou
$$\, \, v = f \lambda \,$$
de fase

$$\frac{\partial^2 \Psi}{\partial r^2} = \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial r^2}$$

$$\Psi(x,t) = A\cos k(x-vt)$$

$$\Psi(x,t) = Asenk(x-vt)$$

$$\Psi(x,t) = A\cos(kx - wt)$$

Curva que viaja na direção de x positivo

w é a frequência angular w=2πf=2π/T

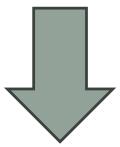
v é a velocidade de fase

Teoria de Schroedinger

- •Em 1925, Erwin Schroedinger desenvolve uma teoria para descrever o comportamento das funções de onda
- •Ele propõe uma equação que permite obter a forma matemática da função de onda.
- •Essa equação depende do potencial, isto é, das forças presentes no problema em questão
- •Essa equação não pode ser deduzida, mas podemos dar um "palpite bem fundamentado" e verificar se ele descreve bem a natureza

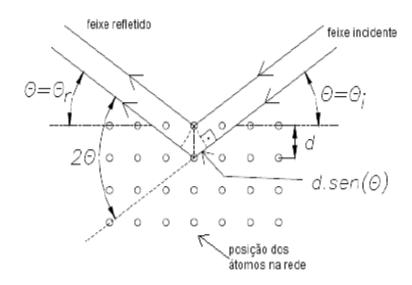
Teoria de Schroedinger

- •Essa equação deve ser consistente com as hipóteses de Einstein e de Broglie
- •Ela deve reproduzir a conservação de energia
- •Deve ser linear, para contemplar o princípio da superposição



Próximo curso

Difração de RX em cristais



Lei de Bragg

 $n\lambda = 2d sen\theta$

n = ordem de difração

Lembre que E = hc/λ

Tabela 3.2 Relações entre os Parâmetros de Rede e Figuras Mostrando as Geometrias das Células

Sistema Cristalino	Relações Axiais	Āngulos Interaxiais	Geometria da Célula Unitária
Cúbico	a = b = c	$\alpha=\beta=\gamma=90^{\circ}$	3
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	1
Tetragonal	$a = b \neq c$	$\alpha=\beta=\gamma=90^{\circ}$	2
Romboédrico	a = b = c	$\alpha=\beta=\gamma\neq 90^{o}$	1
Ortorrômbico	$a \neq b \neq c$	$\alpha=\beta=\gamma=90^{\circ}$	4
Monoclínico	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	

Triclínico

 $a \neq b \neq c$

Tipos de redes cristalinas

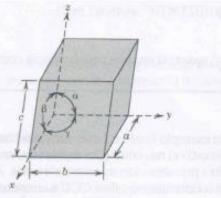


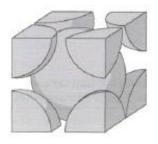
Fig. 3.4 Uma célula unitária com os eixos coordenados x, y e z, mostrando os comprimentos axiais (a, b e c) e os ângulos interaxiais (α, β) e y).

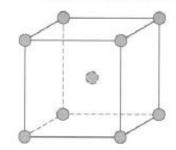
Célula unitária com Célula unitária com esferas rígidas

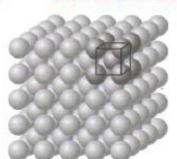
esferas reduzidas

Agregado com muitos átomos

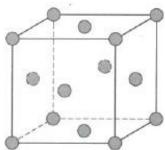
Rede cúbica de corpo centrado

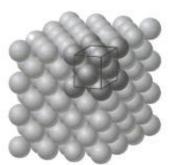




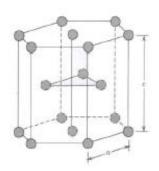


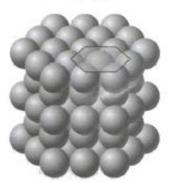
Rede cúbica de face centrada





Rede hexagonal compacta





Difração de Raios X e Determinação de Estruturas Cristalinas

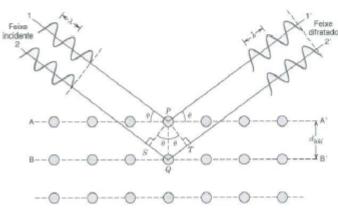


Fig. 3.18 Difração de raios X por planos de átomos (A-A' e B-B').

Difração nas variações da densidade eletrônica e Lei de Bragg

$$n\lambda = 2d_{hkl}sen\theta$$

Onde, para uma rede cúbica:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Técnica de Medida

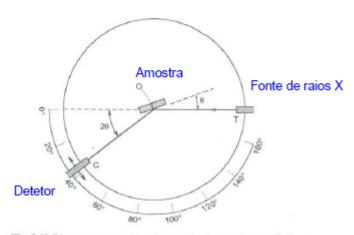


Fig. 3.19 Diagrama esquemático de um difratômetro de raios X; T = fonte de raios X, A = amostra, C = detetor e O = o eixo em torno do qual a amostra e o detetor giram.

- Geometria simétrica (θ-2θ), onde visualizamse planos cristalinos paralelos à superfície da amostra.
- Geometrias assimétricas, em geral para aplicações específicas.

Difração de Raios X e Determinação de Estruturas Cristalinas

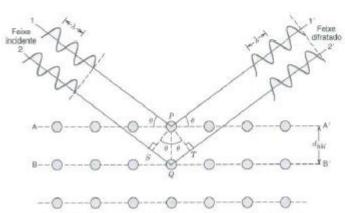


Fig. 3.18 Difração de raios X por planos de átomos (A-A' e B-B').

Difração nas variações da densidade eletrônica e Lei de Bragg

$$n\lambda = 2d_{hkl}sen\theta$$

Onde, para uma rede cúbica:

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

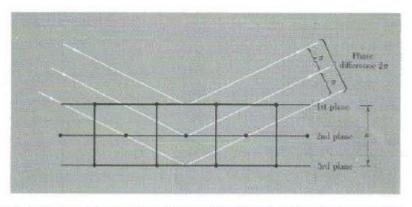
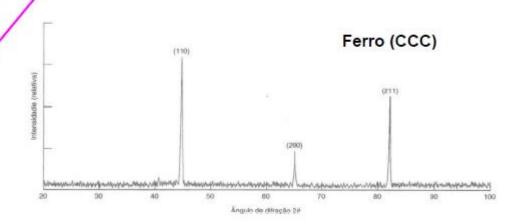


Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice. The phase difference between successive planes is π , so that the reflected amplitude from two adjacent planes is $1 + e^{-i\pi} = 1 - 1 = 0$.

Para rede CCC, valores possíveis para (hkl) são tais que h+k+l= inteiro par



Difração de neutrons

Ferro (CCC)

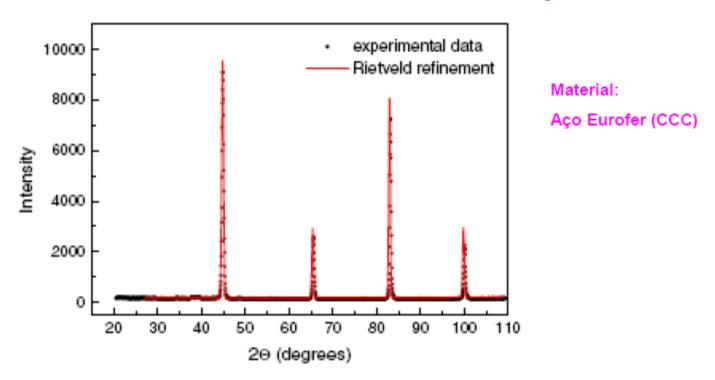


Fig. 1. Neutron diffraction data from Eurofer 97. The continuous line is a fit to the data after Rietveld refinement.

Para rede CCC, valores possíveis para (hkl)
são tais que h+k+l= inteiro par

Difração de elétrons

Parte Experimental

Usaremos estruturas cristalinas como objetos difratantes.

Difração de elétrons

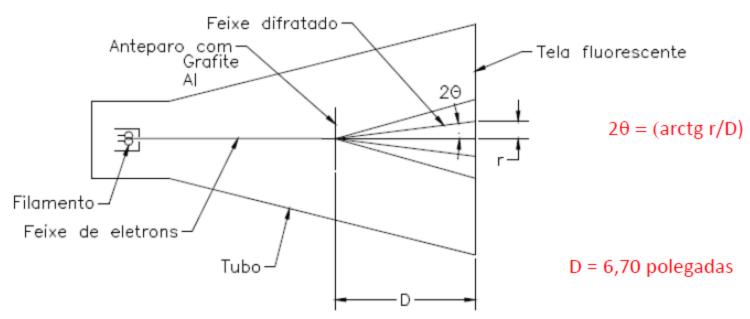
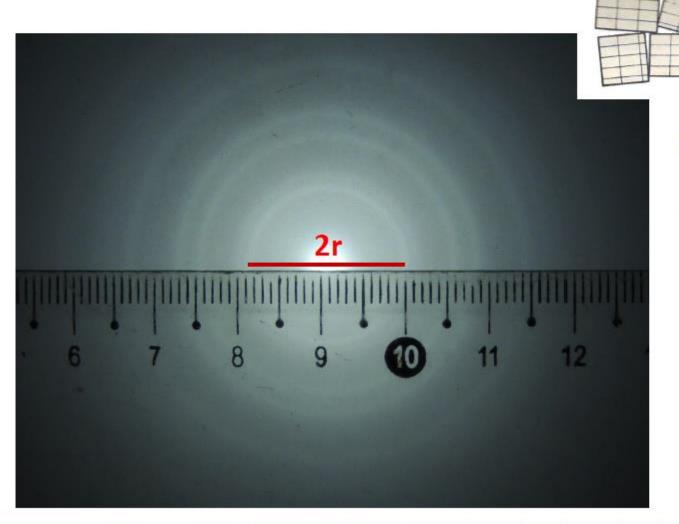


Figura c-1. Tubo de raios catódicos para medida de difração de elétrons.

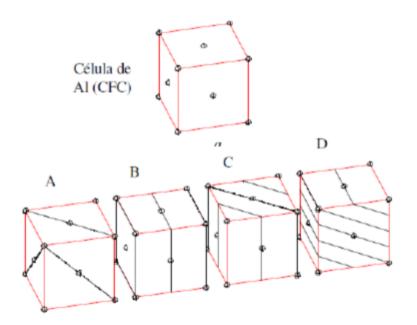
Policristal de Al



Fórmula de Scherrer

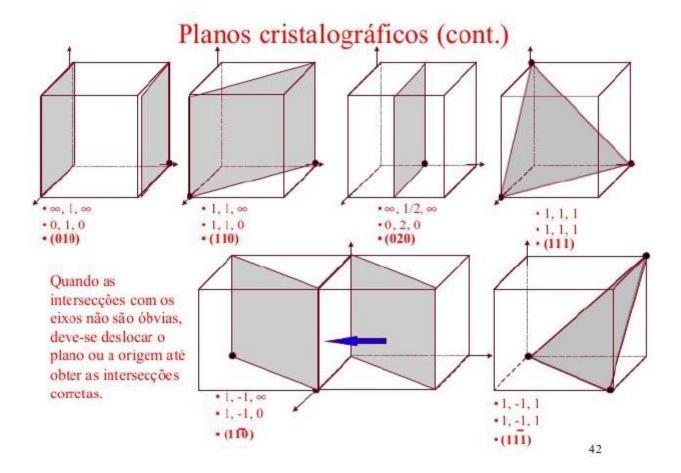
$$t = \frac{0.9\lambda}{B\cos\theta_B}$$

A estrutura policristalina do alumínio



 $n\lambda = 2d sen\theta$

Figura c-4 - Célula cúbica de faces centradas e correspondentes famílias de planos cristalinos com *d* em ordem decrescente (A,B,C,D).



Os ângulos de difração são obtidos de:

$$2\theta = (arctg r/D)$$

onde r é a distância entre o ponto de incidência do feixe direto e um ponto de máximo da figura de interferência, medida sobre a tela fluorescente, e D é a distância entre o alvo e a tela = 6,70 polegadas!

Lei de Bragg : $n\lambda = 2d sen\theta$

Tabela c-2 - Parâmetros de um cristal de alumínio (CFC), $a = (4.04 \pm 0.01)$ Å.

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$n\lambda = 2d_{hkl}sen\theta$$

Família	d	n	$\frac{2d}{n}$	Ângulo
A	$\frac{a}{\sqrt{3}}$	1	$\frac{2a}{\sqrt{3}}$	θ_1
В	$\frac{a}{2}$	1	a	θ_2 θ_3
C	$\frac{a}{2\sqrt{2}}$	1	$\frac{a}{\sqrt{2}}$	θ_3
D	$ \frac{a}{\sqrt{3}} $ $ \frac{a}{2} $ $ a $ $ 2\sqrt{2} $ $ \frac{a}{\sqrt{11}} $	1	$ \frac{a}{\sqrt{2}} $ $ \frac{2a}{\sqrt{11}} $ $ \frac{a}{\sqrt{3}} $ $ \frac{a}{2} $	$ heta_4 \ heta_5 \ heta_6$
A	$\frac{a}{\sqrt{3}}$ $\frac{a}{2}$	2	$\frac{a}{\sqrt{3}}$	θ_5
В	$\frac{a}{2}$	2	$\frac{a}{2}$	θ_6

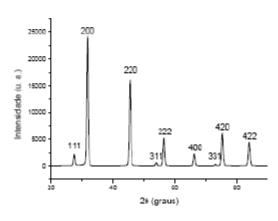


Figura 12. Padrão de difração de pó (difratograma) do NaCl

Vamos analisar os 4 primeiros halos de difração e determinar λ (para cada halo)

Determinar valor médio de λ e respectiva incerteza e comparar com λ de deBroglie (lembrar que tensão de aceleração dos elétrons foi de 10 kV)

Cristal de grafite

Pela lei de Bragg:

$$\lambda = \frac{2d \operatorname{sen}(\theta)}{n} \quad (4)$$

onde d é a distância interplanar de uma certa família de planos cristalinos e n é a ordem da difração.

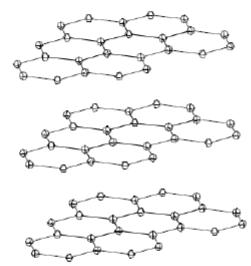


Figura c-2. Camadas de rêdes hexagonais de um cristal de grafite em perspectiva.

Cristal de grafite

