MAT2352 - Cálculo para funções de várias variáveis II 5a. Lista de Exercícios - 2o. semestre de 2023

- 1. Determine uma paramétrizaç ão de cada uma das superfícies S abaixo e calcule sua área.
- (a) S é a parte da esfera $x^2 + y^2 + z^2 = 4$ interior ao cone $z \ge \sqrt{x^2 + y^2}$;
- (b) S é a parte do cilindro $x^2 + z^2 = 1$ compreendida entre os planos y = -1 e y = 3;
- (c) S é a parte do plano z = 2x + 3y que é interior ao cilindro $x^2 + y^2 = 16$;
- (d) S é a parte do parabolóide hiperbólico $z=y^2-x^2$ que está entre os cilindros $x^2+y^2=1$ e $x^2+y^2=4$;
- (e) S é a parte do cilindro $x^2 + z^2 = a^2$ que está no interior do cilindro $x^2 + y^2 = a^2$, onde a > 0;
- (f) S é a parte da esfera $x^2+y^2+z^2=a^2$ que está no interior do cilindro $x^2+y^2=ax$, onde a>0;
- (g) S é a parte da esfera $x^2+y^2+z^2=4$ com $z\geq \frac{\sqrt{x^2+y^2}}{3}$.
- (h). S é a parte do parabolóide $z=1-2x^2-y^2$ limitada pela superfície $16x^2+4y^2=1$.
- Resp. (a) $4\pi(2-\sqrt{2})$, (b) 8π , (c) $16\pi\sqrt{14}$, (d) $\frac{\pi}{6}(17\sqrt{17}-5\sqrt{5})$, (e) $8a^2$, (f) $2a^2(\pi-2)$, (g) $4\pi(2-\frac{2}{\sqrt{10}})$, (h) $\frac{\pi}{12}(2\sqrt{2}-1)$.
- 2. Calcule as seguintes integrais de superfícies.
- (a) $\iint_S y \, dS$, onde S é a superfície dada por $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$;
- (b) $\iint_S x^2 dS$, onde S é a esfera $x^2 + y^2 + z^2 = 1$;
- (c) $\iint_S yz \, dS$, onde S é a parte do plano z = y + 3 limitada pelo cilindro $x^2 + y^2 = 1$;
- (d) $\iint_S xy \, dS$, onde S é o bordo da região limitada pelo cilindro $x^2 + z^2 = 1$ e pelos planos y = 0 e x + y = 2;
- (e) $\iint_S z(x^2+y^2) dS$, onde S é o hemisfério $x^2+y^2+z^2=4$, $z\geq 0$;

(f) $\iint_S xyz \, dS$, onde S é a parte da esfera $x^2 + y^2 + z^2 = 1$ interior ao cone $z = \sqrt{x^2 + y^2}$;

(g) $\iint_S \sqrt{\frac{2x^2 + 2y^2 - 2}{2x^2 + 2y^2 - 1}} dS$, onde S é a parte de $x^2 + y^2 - z^2 = 1$ com $1 \le z \le 3$;

(h) $\iint_S (x+1)dS$, onde S é a parte de $z=\sqrt{x^2+y^2}$ limitada por $x^2+y^2=2y$.

Resp: (a) $13\sqrt{2}/3$, (b) $4\pi/3$, , (c) $\pi\sqrt{2}/4$, (d) $\frac{-\pi}{4}(8+\sqrt{2})$, (e) 16π , (f) 0, (g) $8\pi\sqrt{2}$, (h) $\pi\sqrt{2}$.

- 3. Calcule a massa das superfícies sendo $\delta(x,y,z)$ a densidade pontual de massa para:
- (a) S é a parte do plano 3x + 2y + z = 6 contida no primeiro octante e $\delta(x, y, z) = y$.
- (b) S é o triângulo com vértices (1,0,0), (1,1,1) e (0,0,2) e $\delta(x,y,z)=xz$.
- (c) S é a parte de $z = \ln(x^2 + y^2)$ limitada pelos cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = e^2$, e $\delta(x, y, z) = x^2 + y^2$.

Resp: (a) $3\sqrt{14}$, (b) $7\sqrt{6}/24$, (c) $\frac{\pi}{2}(e^4 + 4e^2 - 5)$.

- 4. Calcule a integral de superfície $\iint_S \vec{F} \cdot \vec{n} \, dS$ para cada um dos campos de vetores \vec{F} e superfícies orientadas S indicadas abaixo. Em outras palavras, calcule o fluxo de \vec{F} através de S. Quando S é uma superfície fechada, admita que S está orientada pela normal exterior.
- (a) $\vec{F}(x,y,z) = x^2y\vec{\imath} 3xy^2\vec{\jmath} + 4y^3\vec{k}$ e S é a parte do parabolóide $z = 9 x^2 y^2$, com $z \ge 0$, orientada de modo que a normal no ponto (0,0,9) é \vec{k} ;
- (b) $\vec{F}(x,y,z) = x\vec{\imath} + xy\vec{\jmath} + xz\vec{k}$ e S é a parte do plano 3x + 2y + z = 6 interior ao cilindro $x^2 + y^2 = 1$, orientada de modo que seu vetor normal é $\frac{1}{\sqrt{14}}(3\vec{\imath} + 2\vec{\jmath} + \vec{k})$;
- (c) $\vec{F}(x,y,z) = -x \vec{\imath} y \vec{\jmath} + z^2 \vec{k}$ e S é a parte do cone $z = \sqrt{x^2 + y^2}$ entre os planos z = 1 e z = 2, orientada de modo que sua normal \vec{N} satisfaça $\vec{n} \cdot \vec{k} < 0$;
- (d) $\vec{F}(x, y, z) = x \vec{i} + y \vec{j} + z \vec{k}$ e S é a esfera $x^2 + y^2 + z^2 = 9$;
- (e) $\vec{F}(x,y,z) = -y\vec{\imath} + x\vec{\jmath} + 3z\vec{k}$ e S é o hemisfério $z = \sqrt{16 x^2 y^2}$, orientada de modo que a normal no ponto (0,0,4) é \vec{k} ;
- (f) $\vec{F}(x,y,z) = y\vec{\imath} z\vec{k}$ e S consiste do parabolóide $y = x^2 + z^2$, $0 \le y \le 1$ e do disco $x^2 + z^2 \le 1$, y = 1;
- (g) $\vec{F}(x,y,z) = -yz\vec{\imath}$ e S é a parte da esfera $x^2 + y^2 + z^2 = 4$ exterior ao cilindro $x^2 + y^2 \le 1$, orientada de modo que a normal no ponto (2,0,0) é $\vec{\imath}$;
- (h) $\vec{F}(x,y,z)=x\,\vec{\imath}+y\,\vec{\jmath}-2z\vec{k}$ e S é a parte do cone $z=\sqrt{x^2+y^2}$ limitada pelo cilindro $x^2+y^2=2x$, orientada de modo que sua normal \vec{n} satisfaça $\vec{n}\cdot\vec{k}<0$.
- Resp. (a) 0, (b) $-3\pi/4$, (c) $-73\pi/6$, (d) 108π , (e) 128π , (f) $-\pi/2$, (g) 0, (h) 32/3.

5. Calcule

(a) $\iint_S xz\,dy \wedge dz + yz\,dz \wedge dx + x^2\,dx \wedge dy$, onde S é a semi-esfera $x^2+y^2+z^2=a^2$ $(a>0),\ z\geq 0$, orientada segundo a normal exterior; Resp. $3\pi a^4/4$. (b) $\iint_S x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy$, onde S é a parte do plano x+y+z=2 no primeiro octante, orientada de modo que sua normal satisfaça $\vec{n}\cdot\vec{j}>0$; Resp. 4. (c) $\iint_S x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy$, onde S é a parte do parabolóide $z=4-x^2-y^2$ contida no semiespaço $z\geq 2y+1$, orientada de modo que sua normal satisfaça $\vec{n}\cdot\vec{k}\geq 0$. Resp. 28π .