Polinômios ortogonais

1- Os dados seguintes referem-se às produções de grãos, em Kg/parcela, de um experimento de adubação de milho instalado segundo um DBC. Os tratamentos foram: as adubações com 0, 25, 50, 75 e 100 Kg/ha de adubo fosfatado.

BLOCOS	0	25	50	75 100		Totais de Blocos
	8,38	7,15	10,07	9,55	9,14	44,29
II	5,77	9,78	9,73	8,98	10,17	44,43
III	4,90	9,99	7,92	10,24	9,75	42,80
IV	4,54	10,70	9,48	8,66	9,50	42,88
Totais de	23,59	37,62	37,20	37,43	38,56	174,40
Tratamentos	23,39	37,02	31,20	37,43	30,30	174,40

a) Fazer a Análise de Variância considerando um delineamento casualizado em blocos

Considerando o modelo estatístico

$$y_{ij} = \mu + A_i + B_j + \varepsilon_{ij}$$
, com $i = 1, ..., 5 e j = 1, ..., 4$

em que: y_{ij} é a produção de grãos de milho da parcela do j-ésimo bloco que recebeu a i-ésima adubação; μ é uma constante inerente a todas as observações; A_i é o efeito da i-ésima adubação; B_j é o efeito do j-ésimo bloco e ε_{ij} é o erro experimental associado à produção de grãos de milho da parcela do j-ésimo bloco que recebeu a i-ésima adubação, independente e identicamente distribuído de uma Normal com média zero e variância constante σ^2 .

Soma de Quadrado Total

$$SQTot = \sum_{i=1}^{5} \sum_{j=1}^{4} y_{ij}^{2} - \frac{\left(\sum_{i=1}^{5} \sum_{j=1}^{4} y_{ij}\right)^{2}}{n} =$$

$$= (8,38^{2} + \dots + 9,50^{2}) - \frac{(174,4)^{2}}{20} = 1581,8516 - 1520,7680 =$$

$$SQTot = 61,0836$$

Soma de Quadrado de Blocos

$$SQBloco = \frac{1}{5} \sum_{j=1}^{4} y_{.j}^{2} - \frac{\left(\sum_{i=1}^{5} \sum_{j=1}^{4} y_{ij}\right)^{2}}{n}$$

$$= \frac{1}{5} (44,29^{2} + \dots + 42,88^{2}) - \frac{(174,4)^{2}}{20} = 1521,2327 - 1520,7680 =$$

$$SQBloco = 0,4647$$

Soma de Quadrado de Tratamentos

$$SQTrat = \frac{1}{4} \sum_{i=1}^{5} y_{i}^{2} - \frac{\left(\sum_{i=1}^{5} \sum_{j=1}^{4} y_{ij}\right)^{2}}{n}$$

$$= \frac{1}{4} (23,59^{2} + \dots + 38,56^{2}) - \frac{(174,4)^{2}}{20} = 1560,8678 - 1520,7680 =$$

$$SQTrat = 40,0998$$

Soma de Quadrado de Resíduo

$$SQRes = SQTotal - SQBloco - SQTrat = 20,5191$$

Quadro da ANAVA

Fonte de	Graus de	SQ	OM	Fc
Variação	Liberdade	302	QIVI	10
Bloco	j-1=3	0,4647	0,1549	0,091
Tratamento	i-1=4	40,0998	10,0249	5,863
Resíduo	(i-1)(j-1)=12	20,5191	1,7099	
Total	ij-1=19	61,0836		

#qf(alfa,glreg,glres,lower.tail=F)

Tratamento

qf(0.05,4,12,lower.tail=F)

Ft= 3,259167

Como Fc > Ft rejeita-se a hipótese H0 e concluímos que existe efeito de tratamento sobre a produção de grãos de milho.

b) Desdobrar os graus de liberdade de tratamento (gl=4) em função dos polinômios ortogonais

Quadro da ANAVA

Fonte de Variação	Graus de Liberdade	SQ	QM	Fc
Bloco	j-1=3	0,4647 0,1549		0,091
Tratamento	i-1=4	40,0998	10,0249	5,863
R. Linear	1	. = = = = = = = = = = = = = = = = = = =		
R. Quadrática	1			
R. Cúbica	1			
R. 4º grau	1			
Resíduo	(i-1)(j-1)=12	20,5191	1,7099	
Total	ij-1=19	61,0836		

Para encontrar as somas de quadrados de regressões utilizam-se os coeficientes da tabela do Pimentel

Totais de		Coeficientes					
tratamentos		C1 Linear	C2 Quadrática C3 Cúbica		C4 4° grau		
<i>y</i> _{1.} 23,59		-2	2 -1		1		
$y_{2.}$	27/2		-1	2	-4		
$y_{3.}$	27.20		-2	0	6		
$y_{4.}$	37,43	1	-1	-2	-4		
$y_{5.}$	38,56	2	2	1	1		
K		10	14	14 10			
M		1	1 5/6		35/12		

Regressão Linear

$$SQRLin = \frac{\left(\sum_{i=1}^{5} c_1 y_{i.}\right)^2}{rK_1}$$

$$SQRLin = \frac{[-2(23.59) - 1(37.62) + 0(37.20) + 1(37.43) + 2(38.56)]^2}{4(10)}$$

$$SQRLin = \frac{885,0625}{40} = 22,1266$$

Regressão Quadrática

$$SQRQuad = \frac{\left(\sum_{i=1}^{5} c_2 y_i\right)^2}{rK_2}$$

$$SQRQuad = \frac{[2(23,59) - 1(37,62) - 2(37,20) - 1(37,43) + 2(38,56)]^2}{4(14)}$$

$$SQRQuad = \frac{632,5225}{56} = 11,2950$$

Regressão Cúbica

$$SQRCub = \frac{\left(\sum_{i=1}^{5} c_3 y_i\right)^2}{rK_3}$$

$$SQRCub = \frac{[-1(23,59) + 2(37,62) + 0(37,20) - 2(37,43) + 1(38,56)]^2}{4(10)}$$

$$SQRCub = \frac{235,6225}{40} = 5,8906$$

Regressão 4º grau

$$SQR4grau = \frac{\left(\sum_{i=1}^{5} c_4 y_i\right)^2}{rK_4}$$

$$SQR4grau = \frac{\left[1(23,59) - 4(37,62) + 6(37,20) - 4(37,43) + 1(38,56)\right]^2}{4(70)}$$

$$SQR4grau = \frac{220,5225}{280} = 0,7876$$

Ouadro da ANAVA

Quadro da / II I/ II/ I					
Fonte de	Graus de	SQ	QM	Fc	
Variação	Liberdade	30	Qivi	10	
Bloco	3	0,4647	0,1549	0,091	
Tratamento	4	40,0998	10,0249	5,863	
R. Linear	1	22,1266	22,1266	12,9403	
R. Quadrática	1	11,2950	11,2950	6,6056	
R. Cúbica	1	5,8906	5,8906	3,4449	
R. 4° grau	1	0,7876	0,7876	0,4606	
Resíduo	12	20,5191	1,7099		
Total	19	61,0836			

Atenção: SQTrat = SQRLin + SQRQuad + SQRCub + SQR4grau

#qf(alfa,glreg,glres,lower.tail=F)

Tratamento

qf(0.05,1,12,lower.tail=F)

Ft= 4,747225

Conclusão: As regressões, linear e quadrática, foram significativas e se ajustam aos dados. Devemos considerar a de maior grau que foi significativa, ou seja, o modelo que melhor se ajusta aos dados é um polinômio de 2º grau ou uma equação quadrática.

c) Obtenção da equação de regressão

Para encontrar a equação, calculam-se os coeficientes dos componentes a partir do linear até o último grau significativo

Ex:

Linear significativa: $\hat{y} = \bar{y} + B_1 M_1 P_1$

Quadrática significativa: $\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2$

Cúbica significativa: $\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2 + B_3 M_3 P_3$

Grau K: $\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2 + B_3 M_3 P_3 + \dots + B_k M_k P_k$

Grau K:
$$\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2 + B_3 M_3 P_3 + \dots + B_k M_k P_k$$

Em que:

- i) \bar{y} é a média geral dos dados;
- ii) B_k são os coeficientes dos componentes linear, quadrático,...., dados por:

$$B_k = \frac{\left(\sum_{i=1}^5 c_k y_i\right)}{rK_k}$$

$$B_{1} = \frac{\left(\sum_{i=1}^{5} c_{1} y_{i.}\right)}{r K_{1}}$$

$$B_{2} = \frac{\left(\sum_{i=1}^{5} c_{2} y_{i.}\right)}{r K_{2}}$$

ATENÇÃO, é muito parecido com as fórmulas das somas de quadrados de regressão

$$SQRLin = \frac{\left(\sum_{i=1}^{5} c_1 y_{i.}\right)^2}{rK_1}$$

- iii) M_k são os multiplicadores dados na tabelas de polinômios;
- iv) P_k são os polinômios em função dos níveis do tratamento, dados por:

$$P_{1} = x$$

$$P_{2} = x^{2} - \frac{n^{2} - 1}{12}$$

$$P_{3} = x^{3} - \left(\frac{3n^{2} - 7}{20}x\right)$$

Em que:
$$x = \frac{X_i - \bar{X}}{q}$$

n é o número de níveis de tratamento= 5 doses de adubo

No exemplo temos que ajustar a equação quadrática, logo, a equação é dada por:

$$\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2$$

i)
$$\bar{y} = \frac{174.4}{20} = 8.72$$

ii)
$$B_1 = \frac{\left(\sum_{i=1}^5 c_1 y_i\right)}{rK_1} = \frac{29,75}{4(10)} = 0,74375$$

$$B_2 = \frac{\left(\sum_{i=1}^5 c_2 y_i\right)}{rK_2} = \frac{-25,15}{4(14)} = -0,44911$$

iii)
$$P_1 = x = \frac{X_i - \overline{X}}{q} = \frac{X_i - 50}{25}$$

$$P_2 = x^2 - \frac{n^2 - 1}{12} = \left(\frac{X_i - 50}{25}\right)^2 - \frac{5^2 - 1}{12} = \frac{X_i^2}{625} - \frac{100X_i}{625} + \frac{2500}{625} - 2$$

$$P_2 = \frac{X_i^2}{625} - \frac{100X_i}{625} + \frac{2500}{625} - \frac{1250}{625} = \frac{X_i^2}{625} - \frac{100X_i}{625} + \frac{1250}{625}$$

Montando a equação

$$\hat{y} = \bar{y} + B_1 M_1 P_1 + B_2 M_2 P_2$$

$$\hat{y} = 8.72 + 0.74375(1) \left(\frac{X_i - 50}{25}\right) - 0.44911(1) \left(\frac{X_i^2}{625} - \frac{100X_i}{625} + \frac{1250}{625}\right)$$

$$\hat{y} = 8.72 + 0.02975X_i - 1.4875 - 0.0007186X_i^2 + 0.07186X_i - 0.89822$$

$$\hat{y} = 6.33 + 0.10161X_i - 0.0007186X_i^2$$

Exercícios

1- Um experimento foi instalado segundo um delineamento em quadrado latino no qual foi avaliado a digestibilidade aparente de carboidratos totais (%) em função da porcentagem de proteína na ração (A=7% de proteína; B=9,5%; C=12%; D=14,5%; E=17%). Foi utilizado o controle do efeito de animais diferentes (linhas) e de períodos diferentes (coluna).

ANIMAIS	PERÍODOS						
		II	III	IV	V		
B246	46(A)	60(B)	62(C)	69(D)	65(E)		
AT14	65(E)	69(A)	72(D)	64(B)	60(C)		
NN89	54(C)	80(D)	67(A)	71(E)	63(B)		
AG90	63(B)	72(C)	74(E)	66(A)	64(D)		
SS45	69(D)	85(E)	74(B)	72(C)	70(A)		

- 1.1. Apresente o modelo estatístico do experimento. Faça a análise de variância de acordo com o modelo
- 1.2. Faça a análise de regressão utilizando os polinômios ortogonais
- 2- Um experimento com bananas foi instalado visando a comparação de 4 lâminas de água. O delineamento foi o casualizado em blocos com 8 repetições. Os dados a seguir referem-se aos diâmetros de pseudocaules das plantas filhas. Apresente a análise de variância e análise de regressão caso seja necessário.

Blocos	20%	40%	60%	80%	Blocos	20%	40%	60%	80%
I	5	4	3	8	V	7	6	10	4
II	7	6	4	7	VI	8	5	12	7
III	8	5	5	9	VII	10	8	8	8
IV	10	9	6	13	VIII	12	7	11	6