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Bayesian methods for estimating
structural equation models

3.1 Introduction
In Chapter 2 we presented some basic SEMs and discussed how these models can be used
in practice. In substantive applications of these basic SEMs or their generalizations (to be
discussed in subsequent chapters) for coping with complex situations, it is important to intro-
duce sound statistical methods that give accurate statistical results. The traditional approach
for analyzing SEMs is that of covariance structure analysis. In this approach, the statistical
theory as well as the computational algorithms are developed on the basis of the sample
covariance matrix S and its asymptotic distribution. Under some standard assumptions, for
example that the random observations are i.i.d. normal, this approach works fine. As a result,
almost all classical commercial SEM software was developed on the basis of this approach
with the sample covariance matrix S. Unfortunately, under slightly more complex situations
that are common in substantive research, the covariance structure analysis approach based on
S is not effective and may encounter theoretical and computational problems. For instance,
in the presence of nonlinear terms of explanatory latent variables, outcome latent variables
and the related observed variables in yi are not normally distributed. Hence, S is not suit-
able for modeling nonlinear relationships; and the application of the covariance structure
analysis approach via some unnatural methods, for example the product-indicator method,
produces inferior results. See Lee (2007) for further discussion of the disadvantages of using
the covariance structure analysis approach to analyze subtle SEMs and data structures that
are common in substantive research. In this chapter, we will introduce an attractive Bayesian
approach which can be effectively applied to analyze not only the standard SEMs but also
useful generalizations of SEMs that have been developed in recent years.

The basic nice feature of a Bayesian approach is its flexibility in utilizing useful prior
information to achieve better results. In many practical problems, statisticians may have good
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prior information from some sources, for example the knowledge of the experts, and analyses
of similar data and/or past data. For situations without accurate prior information, some types
of noninformative prior distributions can be used in a Bayesian approach. In these cases, the
accuracy of Bayesian estimates is close to that of maximum likelihood (ML) estimates.

It is well known that the statistical properties of the ML approach are asymptotic. Hence,
they are valid for situations with large sample sizes. In the context of some basic SEMs, several
studies (e.g. Boomsma, 1982; Chou et al., 1991; Hu et al., 1992; Hoogland and Boomsma,
1998) showed that the statistical properties of the ML approach are not robust to small sample
sizes. In contrast, as pointed out by many important articles in Bayesian analyses of SEMs
(see Scheines et al., 1999; Ansari and Jedidi, 2000; Dunson, 2000; Lee and Song, 2004),
the sampling-based Bayesian methods depend less on asymptotic theory, and hence have the
potential to produce reliable results even with small samples.

Recently, Bayesian methods have been developed with various Markov chain Monte Carlo
(MCMC) algorithms. Usually, a sufficiently large number of observations are simulated from
the joint posterior distribution through these MCMC algorithms. Means as well as quantiles
of this joint posterior distribution can be estimated from the simulated observations. These
quantities are useful for making statistical inferences. For example, the Bayesian estimates
of the unknown parameters and the latent variables can be obtained from the corresponding
sample means of observations simulated from the posterior distribution. Moreover, from these
estimates, the estimated residuals which are useful for assessing the goodness of fit of the
proposed model and for detecting outliers can be obtained. Finally, various model comparison
statistics that are closely related to the Bayesian approach, such as the Bayes factor, give more
flexible and natural tools for model comparison than the classical likelihood ratio test (see
Kass and Raftery, 1995; Lee, 2007). We will give a detailed discussion on model comparison
in Chapter 4.

Basic statistical inferences of SEMs include estimation of the unknown parameters and
latent variables, assessment of the goodness of fit of the proposed model, and model compar-
ison. The objective of this chapter is to provide an introduction to the Bayesian approach to
conducting statistical inferences of SEMs. It is not our intention to provide full coverage of
the general Bayesian theory. Readers may refer to other excellent books such as Box and Tiao
(1973), and Gelman et al. (2003) for more details. Section 3.2 of this chapter presents the
basic ideas of the Bayesian approach to estimation, including the prior distribution. Posterior
analyses through applications of some MCMC methods are considered in Section 3.3. An
application of the MCMC methods is presented in Section 3.4. Section 3.5 describes how to
use the WinBUGS software to obtain Bayesian estimation and to conduct simulation studies.
Some technical details are given in the appendices.

3.2 Basic concepts of the Bayesian estimation
and prior distributions

The Bayesian approach is recognized in the statistics literature as an attractive approach
in analyzing a wide variety of models (Berger, 1985; Congdon, 2003). To introduce this
approach for SEMs, let M be an arbitrary SEM with a vector of unknown parameters θ, and let
Y = (y1, . . . , yn) be the observed data set of raw observations with a sample size n. In a non-
Bayesian approach, θ is not considered as random. In a Bayesian approach, θ is considered
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to be random with a distribution (called a prior distribution) and an associated (prior) density
function, say, p(θ|M). We give here a simple example to show the rationale for regarding an
unknown parameter as random. Suppose that we wish to estimate the mean of systolic blood
pressure, say µ. It is not necessary to assume that µ is fixed with a certain value; instead, µ

is allowed to vary randomly, for example with a higher (or lower) probability at some values.
Hence, it is more reasonable to treat µ as random with a prior distribution and a prior density
p(µ). See Berger (1985) and the references therein for theoretical and practical rationales for
treating θ as random.

For simplicity, we use p(θ) to denote p(θ|M). Bayesian estimation is based on the observed
data Y and the prior distribution of θ. Let p(Y, θ|M) be the probability density function of
the joint distribution of Y and θ under M. The behavior of θ under the given data Y is
fully described by the conditional distribution of θ given Y. This conditional distribution is
called the posterior distribution of θ. Let p(θ|Y, M) be the density function of the posterior
distribution, which is called the posterior density function. The posterior distribution of θ or its
density plays the most important role in the Bayesian analysis of the model. Based on a well-
known identity in probability, we have p(Y, θ|M) = p(Y|θ, M)p(θ) = p(θ|Y, M)p(Y|M).
As p(Y|M) does not depend on θ, and can be regarded as a constant with fixed Y, we have

p(θ|Y, M) ∝ p(Y|θ, M)p(θ), or

log p(θ|Y, M) = log p(Y|θ, M) + log p(θ) + constant. (3.1)

Note that p(Y|θ, M) can be regarded as the likelihood function because it is the probability
density of y1, . . . , yn conditional on the parameter vector θ. It follows from (3.1) that the pos-
terior density function incorporates the sample information through the likelihood function
p(Y|θ, M), and the prior information through the prior density function p(θ). Note also that
p(Y|θ, M) depends on the sample size, whereas p(θ) does not. When the sample size be-
comes arbitrarily large, log p(Y|θ, M) could be very large and hence log p(Y|θ, M) dominates
log p(θ). In this situation, the prior distribution of θ plays a less important role, and the log-
arithm of posterior density function log p(θ|Y, M) is close to the log-likelihood function
log p(Y|θ, M). Hence, Bayesian and ML approaches are asymptotically equivalent, and the
Bayesian estimates have the same optimal properties as the ML estimates. When the sample
sizes are small or moderate, the prior distribution of θ plays a more substantial role in Bayesian
estimation. Hence, in substantive research problems where the sample sizes are small or mod-
erate, prior information on the parameter vector θ incorporated into the Bayesian analysis is
useful for achieving better results (see below for the utilization of useful prior information in
the analysis). For many problems in biomedical and behavioral sciences, researchers may have
good prior information from the subject experts, from analyses of similar or past data, or from
some other sources. As more accurate results can be obtained by incorporating appropriate
prior information in the analysis through the prior distribution of θ, the selection of p(θ) is
an important issue in Bayesian analysis. In the following sections and chapters, the symbol
M will be suppressed if the context is clear; for example, p(θ|Y) will denote the posterior
density of θ under M, and [θ|Y] will denote the posterior distribution of θ under M.

3.2.1 Prior distributions
The prior distribution of θ represents the distribution of possible parameter values, from
which the parameter θ has been drawn. Basically, there are two kinds of prior distributions,
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noninformative and informative. Noninformative prior distributions are associated with
situations when the prior distributions have no population basis. They are used when we
have little prior information, and hence the prior distributions play a minimal role in the pos-
terior distribution of θ. The associated prior densities are chosen to be vague, diffuse, flat, or
noninformative, for example a density that is proportional to a constant or has a huge variance.
In this case, the Bayesian estimation is unaffected by information external to the observed data.
For an informative prior distribution, we may have useful prior knowledge about this distribu-
tion, either from closely related data or from subjective knowledge of experts. An informative
prior distribution usually has its own parameters, which are called hyperparameters.

A commonly used informative prior distribution in the general Bayesian approach for
statistical problems is the conjugate prior distribution. We consider the univariate binomial
model in order to motivate this kind of prior distribution. Considered as a function of θ , the
likelihood of an observation y is of the form

p(y|θ ) =
(

n
y

)
θ y(1 − θ )n−y.

If the prior density of θ is of the same form, it can be seen from (3.1) that the posterior density
will also be of this form. More specifically, consider the following prior density of θ :

p(θ ) ∝ θα−1(1 − θ )β−1, (3.2)

which is a beta distribution with hyperparameters α and β. Then,

p(θ |y) ∝ p(y|θ )p(θ )

∝ θ y(1 − θ )n−yθα−1(1 − θ )β−1

= θ y+α−1(1 − θ )n−y+β−1, (3.3)

which is a beta distribution with parameters y + α and n − y + β. We see that p(θ ) and
p(θ |y) are of the same form. The property that the posterior distribution follows the same
parametric form as the prior distribution is called conjugacy, and the prior distribution is
called a conjugate prior distribution (Gelman et al., 2003). One advantage of this kind of prior
distribution is that it provides a manageable posterior distribution for developing the MCMC
algorithm for statistical inference.

If the hyperparameters in the conjugate prior distributions are unknown, then they may be
treated as unknown parameters and thus have their own prior distributions in a full Bayesian
analysis. These hyperprior distributions again have their own hyperparameters. As a result, the
problem will become very tedious. Hence, in developing the Bayesian methods for analyzing
SEMs, we usually assign fixed known values to the hyperparameters in the conjugate prior
distributions.

3.2.2 Conjugate prior distributions in Bayesian analyses of SEMs
In the field of SEMs, almost all previous work in Bayesian analysis has used conjugate
prior distributions with the given hyperparameter values; see Lee (2007) and the references
therein. It has been shown that these distributions work well for many SEMs. Therefore, in
this book, we will use the conjugate prior distributions in our Bayesian analyses. In general,
it has been shown that for a univariate normal distribution, the conjugate prior distributions
of the unknown mean and variance are normal and inverted gamma, respectively (see Gelman
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et al., 2003; Lee, 2007). This fact motivates the selection of conjugate prior distributions for
the parameters in SEMs, which are basically the regression coefficients related to the mean
vector of a multivariate normal distribution, and variance and covariance matrix related to the
residual errors and latent vector, respectively.

Without loss of generality, we illustrate the selection of prior distributions in the context
of a nonlinear SEM with fixed covariates in the structural equation. More specifically, we first
consider the following measurement equation and structural equation for the model:

yi = µ + "ωi + εi, (3.4)

ηi = Bdi + &ηi + 'F(ξi) + δi, (3.5)

where yi is a p × 1 vector of observed variables, µ is a vector of intercepts, ωi = (ηT
i , ξT

i )T

is a vector of latent variables which is partitioned into a q1 × 1 vector of outcome latent
variables ηi and a q2 × 1 vector of explanatory latent variables ξi, εi and δi are residual errors,
di is an r × 1 vector of fixed covariates, ", B,&, and ' are parameter matrices of unknown
regression coefficients, and F(·) is a given vector of differentiable functions of ξi. Similarly
to the model described in Chapter 2, the distributions of ξi, εi, and δi are N[0,*], N[0,+ε],
and N[0,+δ], respectively; and the assumptions as given in Chapter 2 are satisfied. In this
model, the unknown parameters are µ,", B,&, and ' which are related to the mean vectors
of yi and ηi; and *,+ε , and +δ which are the covariance matrices. Now consider the prior
distributions of the parameters µ,", and +ε that are involved in the measurement equation.
Let "T

k be the kth row of ", and ψεk be the kth diagonal element of +ε . It can be shown (see
Lee, 2007) that the conjugate type prior distributions of µ and ("k,ψεk) are

ψεk
D= IG[α0εk,β0εk] or equivalently ψ−1

εk
D= Gamma[α0εk,β0εk],

µ
D= N[µ0,,0], and ["k|ψεk] D= N

[
"0k,ψεkH0yk

]
, (3.6)

where IG[·, ·] denotes the inverted gamma distribution, α0εk,β0εk, and elements in µ0,"0k,,0,
and H0yk are hyperparameters, and ,0 and H0yk are positive definite matrices. For simplicity
of notation, we rewrite the structural equation (3.5) as

ηi = "ωG(ωi) + δi, (3.7)

where "ω = (B,&,') and G(ωi) = (dT
i , ηT

i , F(ξi)
T )T . Let "T

ωk be the kth row of "ω, and
ψδk be the kth diagonal element of +δ . Based on reasoning similar to that used earlier, the
conjugate type prior distributions of * and ("ωk,ψδk) are:

*
D= IWq2

[
R−1

0 , ρ0
]
, or equivalently *−1 D= Wq2 [R0, ρ0],

ψδk
D= IG[α0δk,β0δk] or equivalently ψ−1

δk
D= Gamma[α0δk,β0δk],

["ωk|ψδk] D= N["0ωk,ψδkH0ωk], (3.8)

where Wq2 [R0, ρ0] is a q2-dimensional Wishart distribution with hyperparameters ρ0 and a
positive definite matrix R0, IWq2 [R−1

0 , ρ0] is a q2-dimensional inverted Wishart distribution
with hyperparameters ρ0 and a positive definite matrix R−1

0 , α0δk,β0δk, and elements in "0ωk
and H0ωk are hyperparameters, and H0ωk is a positive definite matrix. Note that the prior
distribution of *−1 (or *) is a multivariate extension of the prior distribution of ψ−1

δk (or ψδk).



P1: OTA/XYZ P2: ABC
JWST189-c03 JWST189-Song June 14, 2012 11:8 Printer Name: Yet to Come Trim: 244mm × 168mm

BASIC CONCEPTS OF THE BAYESIAN ESTIMATION AND PRIOR DISTRIBUTIONS 39

For clarity, the gamma, inverted gamma, Wishart, and inverted Wishart distributions as well
as their characteristics are given in Appendix 3.1.

In specifying conjugate prior distributions, we assign values to their hyperparameters.
These preassigned values (prior inputs) represent the available prior knowledge. In general, if
we are confident of having good prior information about a parameter, then it is advantageous
to select the corresponding prior distribution with a small variance; otherwise the prior
distribution with a larger variance should be selected. We use the prior distributions given
in (3.6) to illustrate this. If we have confidence that the true "k is not too far away from
the preassigned hyperparameter value "0k, then H0yk should be taken as a matrix with small
variances (such as 0.5I). The choice of α0εk and β0εk is based on the same general rationale
and the nature of ψεk in the model. First, we note that the distribution of εk is N[0,ψεk].
Hence, if we think that the variation of εk is small (i.e. "T

k ωi is a good predictor of yik), then
the prior distribution of ψεk should have a small mean as well as a small variance. Otherwise,
the prior distribution of ψεk should have a large mean and/or a large variance. This gives
some idea in choosing the hyperparameters α0εk and β0εk in the inverted gamma distribution.
Note that for the inverted gamma distribution, the mean is equal to β0εk/(α0εk − 1), and
the variance is equal to β2

0εk/{(α0εk − 1)2(α0εk − 2)}. Hence, we may take α0εk = 9 and
β0εk = 4 for a situation where we have confidence that "T

k ωi is a good predictor of yik in the
measurement equation. Under this choice, the mean of ψεk is 4/8 = 0.5, and the variance
of ψεk is 42/{(9 − 1)2(9 − 2)} = 1/28. For a situation with little confidence, we may take
α0k = 6 and β0εk = 10, so that the mean of ψεk is 2.0 and the variance is 1.0. The above ideas for
choosing preassigned hyperparameter values can similarly be used in specifying "0ωk,α0δk,
and β0δk in the conjugate prior distributions of "ωk and ψδk; see (3.8). We now consider the
choice of R0 and ρ0 in the prior distribution of *. It follows from Muirhead (1982, p.97) that
the mean of * is R−1

0 /(ρ0 − q2 − 1). Hence, if we have confidence that * is not too far away
from a known matrix *0, we can choose R−1

0 and ρ0 such that R−1
0 = (ρ0 − q2 − 1)*0. Other

values of R−1
0 and ρ0 may be considered for situations without good prior information.

We now discuss some methods for obtaining "0k, "0ωk, and *0. As mentioned before,
these hyperparameter values may be obtained from subjective knowledge of experts in the
field, and/or analysis of past or closely related data. If this kind of information is not available
and the sample size is small, we may consider using the following noninformative prior
distributions:

p(",+ε ) ∝ p(ψε1, . . . ,ψεp) ∝
p∏

k=1

ψ−1
εk ,

p("ω,+δ ) ∝ p(ψδ1, . . . ,ψδq1 ) ∝
q1∏

k=1

ψ−1
δk ,

p(*) ∝ |*|−(q2+1)/2. (3.9)

In (3.9), the prior distributions of the unknown parameters in " and "ω are implicitly
taken to be proportional to a constant. Note that no hyperparameters are involved in these
noninformative prior distributions. Bayesian analysis on the basis of the above noninformative
prior distributions is basically close to the Bayesian analysis with conjugate prior distributions
given by (3.6) and (3.8) with very large variances. If the sample size is large, one possible
method for obtaining "0k, "0ωk, and *0 is to use a portion of the data, say one-third or less,
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to conduct an auxiliary Bayesian estimation with noninformative priors to produce initial
Bayesian estimates. The remaining data are then used to conduct the actual Bayesian analysis
with the initial Bayesian estimates as hyperparameter values in relation to "0k, "0ωk, and
*0. For situations with moderate sample sizes, Bayesian analysis may be done by applying
data-dependent prior inputs that are obtained from an initial estimation with the whole data
set. Although the above methods are reasonable, we emphasize that we are not routinely
recommending them for every practical application. In general, the issue of choosing prior
inputs should be carefully approached on a problem-by-problem basis. Moreover, under
situations without useful prior information, a sensitivity analysis should be conducted to
see whether the results are robust to prior inputs. This can be done by perturbing the given
hyperparameter values or considering some ad hoc prior inputs.

3.3 Posterior analysis using Markov
chain Monte Carlo methods

The Bayesian estimate of θ is usually defined as the mean or the mode of the posterior
distribution [θ|Y]. In this book, we are mainly interested in estimating the unknown parameters
via the mean of the posterior distribution. Theoretically, it could be obtained via integration.
For most situations, the integration does not have a closed form. However, if we can simulate
a sufficiently large number of observations from [θ|Y] (or p(θ|Y)), we can approximate
the mean and other useful statistics through the simulated observations. Hence, to solve the
problem, it suffices to develop efficient and dependable methods for drawing observations
from the posterior distribution. For most nonstandard SEMs, the posterior distribution [θ|Y]
is complicated. It is difficult to derive this distribution and simulate observations from it. A
major breakthrough for posterior simulation is the idea of data augmentation proposed by
Tanner and Wong (1987). The strategy is to treat latent quantities as hypothetical missing
data and to augment the observed data with them so that the posterior distribution based on
the complete data set is relatively easy to analyze. This strategy has been widely adopted in
analyzing many statistical models (e.g. Rubin, 1991; Albert and Chib, 1993; Dunson, 2000).
It is particularly useful for SEMs which involve latent variables (see Lee, 2007). The feature
that makes SEMs different from the common regression model and the simultaneous equation
model is the existence of random latent variables. In many situations, the presence of latent
variables causes major difficulties in the analysis of the model. However, if the random latent
variables are given, SEMs will become familiar regression models that can be handled without
much difficulty.

Hence, the above mentioned strategy based on data augmentation provides a useful ap-
proach to cope with the problem that is induced by latent variables. By augmenting the
observed variables in complicated SEMs with the latent variables that are treated as hypothet-
ical missing data, we can obtain the Bayesian solution based on the complete data set. More
specifically, instead of working on the intractable posterior density p(θ|Y), we will work on
p(θ,-|Y), where - is the set of latent variables in the model. For most cases, p(θ,-|Y)

is still not in closed form and it is difficult to deal with it directly. However, on the basis
of the complete data set (-, Y), the conditional distribution p(θ|-, Y) is usually standard,
and the conditional distribution p(-|θ, Y) can also be derived from the definition of the
model without much difficulty. As a result, we can apply some MCMC methods to simulate
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observations from p(θ,-|Y) by drawing observations iteratively from their full conditional
densities p(θ|-, Y) and p(-|θ, Y). Following the terminology in MCMC methods, we may
call p(θ|-, Y) and p(-|θ, Y) conditional distributions if the context is clear. Note that as
- is given in p(θ|-, Y), the derivation of this conditional distribution is possible. A useful
algorithm for this purpose is the following Gibbs sampler (Geman and Geman, 1984).

In the model M, suppose the parameter vector θ and the latent matrix - are respectively
decomposed into the following components: θ = (θ1, . . . , θa) and - = (-1, . . . ,-b). The
Gibbs sampler is an MCMC algorithm which performs an alternating conditional sampling at
each of its iteration. It cycles through the components of θ and -, drawing each component
conditional on the values of all the other components. More specifically, at the jth iteration
with current values θ( j) = (θ

( j)
1 , . . . , θ

( j)
a ) and -( j) = (-

( j)
1 , . . . ,-

( j)
b ), it simulates in turn

θ
( j+1)
1 from p

(
θ1|θ( j)

2 , . . . , θ( j)
a ,-( j), Y

)
,

θ
( j+1)
2 from p

(
θ2|θ( j+1)

1 , . . . , θ( j)
a ,-( j), Y

)
,

...
...

θ( j+1)
a from p

(
θa|θ( j+1)

1 , . . . , θ
( j+1)
a−1 ,-( j), Y

)
,

-
( j+1)
1 from p

(
-1|θ( j+1),-

( j)
2 , . . . ,-

( j)
b , Y

)
,

-
( j+1)
2 from p

(
-2|θ( j+1),-

( j+1)
1 , . . . ,-

( j)
b , Y

)
,

...
...

-
( j+1)
b from p

(
-b|θ( j+1),-

( j+1)
1 , . . . ,-

( j+1)
b−1 , Y

)
. (3.10)

There are a+b steps in the jth iteration of the Gibbs sampler. At each step, each component in θ
and - is updated conditionally on the latest values of the other components. We may simulate
the components in - first, then the components in θ; or vice versa. For basic linear SEMs,
the full conditional distribution in (3.10) is usually normal, gamma, or inverted Wishart.
Simulating observations from these is straightforward and fast. For nonstandard conditional
distributions, the Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953; Hastings,
1970) may be used for efficient simulation. A brief description of the MH algorithm is given
in Appendix 3.2.

It has been shown (Geman and Geman, 1984) that under mild regularity conditions, the
joint distribution of (θ( j),-( j)) converges to the desired posterior distribution [θ,-|Y] after
a sufficiently large number of iterations, say J. It should be noted that if the iterations have
not proceeded long enough, the simulated observations may not be representative of the
posterior distribution. Moreover, even if the algorithm has reached approximate convergence,
observations obtained in the early iterations should be discarded because they still do not
belong to the desired posterior distribution. The required number of iterations for achieving
convergence of the Gibbs sampler, that is, the burn-in iterations J, can be determined by plots
of the simulated sequences of the individual parameters. At convergence, parallel sequences
generated with different starting values should mix well together. Examples of sequences
from which convergence looks reasonable, and sequences that have not reached convergence
are presented in Figure 3.1. A minor problem with iterative simulation draws is their within-
sequence correlation. In general, statistical inference from correlated observations is less
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bb[5] chains 1:3

iteration

1 1000 2000 3000 4000

-0.5

0.0

0.5

1.0

1.5

(a)

bb[15] chains 1:3

iteration

1 1000 2000 3000 4000

-2.0

-1.0

0.0

1.0

(b)

Figure 3.1 Sample traces of chains from which: (a) convergence looks reasonable; (b)
convergence is not reached.

precise than that from the same number of independent observations. To obtain a less correlated
sample, observations may be collected in cycles with indices J + s, J + 2s, . . . , J + T s for
some spacing s (Gelfand and Smith, 1990). However, in most practical applications a small
s will be sufficient for many statistical analyses such as getting estimates of the parameters
(see Albert and Chib, 1993). In the numerical illustrations of the remaining chapters, we will
use s = 1.

Statistical inference of the model can then be conducted on the basis of a simulated sample
of observations from p(θ,-|Y), namely, {(θ(t),-(t)) : t = 1, . . . , T ∗}. The Bayesian estimate
of θ as well as the numerical standard error estimate can be obtained from

θ̂ = T ∗−1
T ∗∑

t=1

θ(t), (3.11)

V̂ar(θ|Y) = (T ∗ − 1)−1
T ∗∑

t=1

(θ(t) − θ̂)(θ(t) − θ̂)T . (3.12)

It has been shown (Geyer, 1992) that θ̂ tends to E(θ|Y) as T ∗ tends to infinity. Other statistical
inference on θ can be carried out based on the simulated sample, {θ(t) : t = 1, . . . , T ∗}. For
instance, the 2.5% and 97.5% quantiles of the sampled distribution of an individual parameter
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can give a 95% posterior credible interval and convey skewness in its marginal posterior
density. The total number of draws, T ∗, that is required for accurate statistical analysis
depends on the complexity of the posterior distribution. For most simple SEMs, 3000 draws
after convergence are sufficient. Different choices of sufficiently large T ∗ would produce close
estimates, although they may not be exactly equal.

As the posterior distribution of θ given Y describes the distributional behaviors of θ with
the given data, the dispersion of θ can be assessed through Var(θ|Y), with an estimate given
by (3.12), based on the sample covariance matrix of the simulated observations. Let θk be
the kth element of θ. The positive square root of the kth diagonal element in V̂ar(θ|Y) can
be taken as the estimate of the standard deviation of θk. Although this estimate is commonly
taken as the standard error estimate and provides some information about the variation of θ̂k,
it may not be appropriate to construct a ‘z-score’ for hypothesis testing. In general Bayesian
analysis, the issue of hypothesis testing is formulated as a model comparison problem, and is
handled by some model comparison statistics such as the Bayes factor. See Chapter 4 for a
more detailed discussion.

For any individual yi, let ωi be the vector of latent variables, and E(ωi|yi) be the posterior
mean. A Bayesian estimate ω̂i can be obtained through {-(t), t = 1, . . . , T ∗} as follows:

ω̂i = T ∗−1
T ∗∑

t=1

ω(t)
i , (3.13)

where ω(t)
i is the ith column of -(t). This gives a direct Bayesian estimate that is not expressed

in terms of the structural parameter estimates. Hence, in contrast to the classical methods in
estimating latent variables, no sampling errors of the estimates are involved in the Bayesian
method. It can be shown (Geyer, 1992) that ω̂i is a consistent estimate of E(ωi|yi). These
estimates ω̂i can be used for outlier and residual analyses, and the assessment of goodness
of fit of the measurement equation or the structural equation, particularly in the analysis of
complicated SEMs. See examples in Lee (2007) or other chapters in this book. It should be
noted that as the data information for estimating ω̂i is only given by the single observation yi,
ω̂i is not an accurate estimate of the true latent variable ωi0; see the simulation study reported
in Lee and Shi (2000) on the estimation of factor scores in a factor analysis model. However,
the empirical distribution of the Bayesian estimates {ω̂1, . . . , ω̂n} is close to the distribution
of the true factor scores {ω10, . . . ,ωn0}; see Shi and Lee (1998).

3.4 Application of Markov chain Monte Carlo methods
In this section, we illustrate the implementation of MCMC methods through their application
to some SEMs described in Chapter 2. First, we consider the following linear SEM with fixed
covariates. Its measurement equation for a p × 1 observed random vector yi measured on an
individual i is given by

yi = Aci + "ωi + εi, i = 1, . . . , n, (3.14)

in which A and " are unknown parameter matrices, ci is an r1 × 1 vector of fixed covariates,
ωi is a q × 1 latent random vector, and εi is a random vector of residual errors with distribu-
tion N[0,+ε], where +ε is diagonal and εi is independent of ωi. The structural equation is
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defined as

ηi = Bdi + &ηi + 'ξi + δi, (3.15)

where di is an r2 × 1 vector of fixed covariates; ωi = (ηT
i , ξT

i )T , ηi and ξi being q1 × 1 and
q2 × 1 latent vectors, respectively; B, &, and ' are unknown parameter matrices; and ξi and
δi are independently distributed as N[0,*] and N[0,+δ], respectively, where +δ is a diagonal
covariance matrix. To simplify notation, equation (3.15) is rewritten as

ηi = "ωvi + δi, (3.16)

where "ω = (B,&,') and vi = (dT
i , ηT

i , ξT
i )T . See Section 2.3.1 for a more detailed discus-

sion of this model, such as the required assumptions and identification conditions.
Let Y = (y1, . . . , yn), C = (c1, . . . , cn), and D = (d1, . . . , dn) be the data matrices;

and let - = (ω1, . . . ,ωn) be the matrix of latent vectors, and θ be the structural pa-
rameter vector that contains all the unknown parameters in {A,", B,&,',*,+ε,+δ} =
{A,","ω,*,+ε,+δ}. Our main objective is to use MCMC methods to obtain the Bayesian
estimates of θ and -. To this end, a sequence of random observations from the joint poste-
rior distribution [θ,-|Y] will be generated via the Gibbs sampler which is implemented as
follows: At the jth iteration with current value θ( j):

A. Generate a random variate -( j+1) from the conditional distribution [-|Y, θ( j)].
B. Generate a random variate θ( j+1) from the conditional distribution [θ|Y,-( j+1)], and

return to step A if necessary.

Here θ has six components that correspond to unknown parameters in A,","ω,*, +ε ,
and +δ , while - has only one component. Conjugate prior distributions for parameters in
various components of θ can be similarly obtained as before; see equations (3.6) and (3.8).
For readers who are interested in developing their own computer programs, full conditional
distributions for implementing step A and B of the Gibbs sampler are presented in Appendix
3.3. These full conditional distributions are the familiar normal, gamma, and inverted Wishart
distributions. Simulating observations from them is fast and straightforward. For applied
researchers, we will discuss the use of the freely available WinBUGS software (Spiegelhalter
et al., 2003) to obtain the Bayesian results in Section 3.5.

As we discussed at the beginning of Section 3.3, the main difference between SEMs
and the familiar regression model is the presence of latent variables in SEMs. Since latent
variables are random rather than observed, classical techniques in regression cannot be applied
in estimating parameters in SEMs. The idea of data augmentation is used to solve the problem.
We augment -, the matrix containing all latent variables, with the observed data Y and work
on the joint posterior distribution [θ,-|Y]. In step B of the Gibbs sampler, we need to
simulate θ from [θ|Y,-], the conditional distribution of θ given Y and -. It is important to
note that once - is given rather than random, the SEM becomes the familiar regression model.
Consequently, the conditional distribution [θ|Y,-] can be derived and the implementation of
Gibbs sampler is possible.

The above strategy based on data augmentation is very useful for developing Bayesian
methods in the analysis of various complex SEMs with complicated data structures; see
detailed discussions in subsequent chapters. Here, we present an application of this strategy
to the analysis of nonlinear SEMs for illustration.
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Consider a generalization of linear SEMs with fixed covariates to nonlinear SEMs with
fixed covariates by extending the structural equation (3.15) to a nonlinear structural equation
as follows:

ηi = Bdi + &ηi + 'F(ξi) + δi, (3.17)

where F(ξi) is a vector-valued nonlinear function of ξi, and the definitions of other random
vectors and parameter matrices are the same as before. The distributions of the nonlinear terms
of ξi in F(ξi) are not normal and hence induce serious difficulties in the use of traditional
methods such as the covariance structure analysis approach, and of existing commercial
structural equation modeling software. In contrast, the nonlinear terms of ξi can be easily
handled using the Bayesian approach with data augmentation. First note that the Gibbs
sampler is similarly implemented with steps A and Bb as before, although [-|θ, Y] and
[θ|Y,-] are slightly different. The nonlinear terms of ξi induce no difficulties in deriving
these conditional distributions. In fact, [-|θ, Y] can be derived on the basis of the distribution
of the latent variables and the definition of the model. For [θ|Y,-], as - is given, the
nonlinear SEM again becomes the familiar regression model. The conditional distributions
for the implementation of the MCMC methods in nonlinear SEMs are presented in Appendix
3.4. We note that the differences between the conditional distributions corresponding to linear
and nonlinear SEMs are minor. Hence, we regard nonlinear SEMs as basic SEMs.

3.5 Bayesian estimation via WinBUGS
The freely available WinBUGS (Windows version of Bayesian inference Using Gibbs
Sampling) software is useful for producing reliable Bayesian statistics for a wide range
of statistical models. WinBUGS relies on the use of MCMC techniques, such as the Gibbs
sampler (Geman and Geman, 1984) and the MH algorithm (Metropolis et al., 1953; Hastings,
1970). It has been shown that under broad conditions, this software can provide simulated
samples from the joint posterior distribution of the unknown quantities, such as parameters
and latent variables in the model. As discussed in previous sections, Bayesian estimates of
the unknown parameters and latent variables in the model can be obtained from these samples
for conducting statistical inferences.

The advanced version of the program is WinBUGS 1.4, developed by the Medical Research
Council (MRC) Biostatistics Unit (Cambridge, UK) and the Department of Epidemiology and
Public Health of the Imperial College School of Medicine at St. Mary’s Hospital (London). It
can be downloaded from the website: http://www.mrc-bsu.cam.ac.uk/bugs/. The WinBUGS
manual (Spiegelhalter et al., 2003), which is available online, gives brief instructions on
WinBUGS; see also Lawson et al. (2003, Chapter 4) for supplementary descriptions.

We illustrate the use of WinBUGS through the analysis of an artificial example that is
based on the following nonlinear SEM with a linear covariate (see Lee et al., 2007; Lee,
2007). For easy application of the program, we use the following scalar representation of the
model. Let yi j

D= N[µ∗
i j,ψ j], where

µ∗
i1 = µ1 + ηi, µ∗

i j = µ j + λ j1ηi, j = 2, 3,

µ∗
i4 = µ4 + ξi1, µ∗

i j = µ j + λ j2ξi1, j = 5, 6, 7, and

µ∗
i8 = µ8 + ξi2, µ∗

i j = µ j + λ j3ξi2, j = 9, 10, (3.18)
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where the µ j are intercepts, and the ηs and ξs are the latent variables. The structural equation
is reformulated by defining the conditional distribution of ηi given ξi1 and ξi2 as N[νi,ψδ],
where

νi = b1di + γ1ξi1 + γ2ξi2 + γ3ξi1ξi2 + γ4ξ
2
i1 + γ5ξ

2
i2, (3.19)

in which di is a fixed covariate coming from a t distribution with 5 degrees of freedom. The
true population values of the unknown parameters in the model were taken to be:

µ1 = . . . = µ10 = 0.0, λ21 = λ52 = λ93 = 0.9, λ31 = λ62 = λ10,3 = 0.7,

λ72 = 0.5,ψε1 = ψε2 = ψε3 = 0.3,ψε4 = . . . = ψε7 = 0.5,ψε8 = ψε9 = ψε10 = 0.4,

b1 = 0.5, γ1 = γ2 = 0.4, γ3 = 0.3, γ4 = 0.2, γ5 = 0.5, and

φ11 = φ22 = 1.0,φ12 = 0.3,ψδ = 0.36. (3.20)

Based on the model formulation and these true parameter values, a random sample of con-
tinuous observations {yi, i = 1, . . . , 500} was generated, which gave the observed data set
Y. The following hyperparameter values were taken for the conjugate prior distributions in
equations (3.6) and (3.8):

µ0 = (0.0, · · · , 0.0)T ,,0 = I10,α0εk = α0δ = 9,β0εk = β0δ = 4,

elements in "0k and "0ωk are taken to be the true values,

H0yk = I10, H0ωk = I6, ρ0 = 4, R0 = *−1
0 , (3.21)

where *0 is the matrix with true values of φ11,φ22, and φ12. These hyperparameter values
represent accurate prior inputs. The WinBUGS code and data are respectively given in the
following website:

www.wiley.com/go/medical_behavioral_sciences
We observed that the WinBUGS program converged in less than 4000 iterations. Plots

of some simulated sequences of observations for monitoring convergence are presented in
Figure 3.2. Based on equations (3.11) and (3.12), Bayesian estimates of the parameters
and their standard error estimates as obtained from 6000 iterations after the 4000 burn-in
iterations are presented in Table 3.1. We observe that the Bayesian estimates (EST) are close
to the true values, and that the standard error estimates (SE) are reasonable. WinBUGS also
produces estimates of the latent variables {ω̂i = (η̂i, ξ̂i1, ξ̂i2)

T , i = 1, . . . , n}. Histograms that
correspond to the sets of latent variable estimates ξ̂i1 and ξ̂i2 are displayed in Figure 3.3.
We observe from these histograms that the corresponding empirical distributions are close to
the normal distributions. The elements in the sample covariance matrix of {ξ̂i, i = 1, . . . , n}
are s11 = 0.902, s12 = 0.311, and s22 = 0.910, and hence this sample covariance matrix is
close to the true covariance matrix of ξi; see (3.20). The residuals can be estimated via θ̂ and
ω̂i = (η̂i, ξ̂i1, ξ̂i2)

T for i = 1, . . . , n as follows:

ε̂i1 = yi1 − µ̂1 − η̂i, ε̂i j = yi j − µ̂ j − λ̂ j1η̂i, j = 2, 3,

ε̂i4 = yi4 − µ̂4 − ξ̂i1, ε̂i j = yi j − µ̂ j − λ̂ j2ξ̂i1, j = 5, 6, 7,

ε̂i8 = yi8 − µ̂8 − ξ̂i2, ε̂i j = yi j − µ̂ j − λ̂ j3ξ̂i2, j = 9, 10,

δ̂i = η̂i − b̂1di − γ̂1ξ̂i1 − γ̂2ξ̂i2 − γ̂3ξ̂i1ξ̂i2 − γ̂4ξ̂
2
i1 − γ̂5ξ̂

2
i2.
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Figure 3.2 From top to bottom, plots represent three chains of observations corresponding
to µ1, λ21, γ1, φ12 and ψε4, generated by different initial values.
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Table 3.1 Bayesian estimates obtained from WinBUGS for the artificial example.

Par True value EST SE Par True value EST SE

µ1 0.0 0.022 0.069 ψε1 0.3 0.324 0.032
µ2 0.0 0.065 0.062 ψε2 0.3 0.285 0.027
µ3 0.0 0.040 0.052 ψε3 0.3 0.284 0.022
µ4 0.0 0.003 0.058 ψε4 0.5 0.558 0.050
µ5 0.0 0.036 0.056 ψε5 0.5 0.480 0.045
µ6 0.0 0.002 0.047 ψε6 0.5 0.554 0.041
µ7 0.0 0.004 0.042 ψε7 0.5 0.509 0.035
µ8 0.0 0.092 0.053 ψε8 0.4 0.382 0.035
µ9 0.0 0.032 0.050 ψε9 0.4 0.430 0.035
µ10 0.0 −0.000 0.044 ψε10 0.4 0.371 0.029
λ21 0.9 0.889 0.022 b1 0.5 0.525 0.075
λ31 0.7 0.700 0.019 γ1 0.4 0.438 0.059
λ52 0.9 0.987 0.053 γ2 0.4 0.461 0.034
λ62 0.7 0.711 0.046 γ3 0.3 0.304 0.045
λ72 0.5 0.556 0.040 γ4 0.2 0.184 0.060
λ93 0.9 0.900 0.042 γ5 0.5 0.580 0.050
λ10,3 0.7 0.766 0.038 φ11 1.0 1.045 0.120

φ12 0.3 0.302 0.057
φ22 1.0 1.023 0.089
ψδ 0.36 0.376 0.045

Some estimated residual plots, ε̂i2, ε̂i3, ε̂i8, and δ̂i, against case number are presented in Figure
3.4. The plots of estimated residuals δ̂i versus ξ̂i1 and ξ̂i2 are presented in Figure 3.5, and those
of ε̂i2 versus ξ̂i1, ξ̂i2, and η̂i are presented in Figure 3.6. Other residual plots are similar. The
interpretation of these residual plots is similar to that in regression models. We observe that
the plots lie within two parallel horizontal lines that are centered at zero, and no linear or
quadratic trends are detected. This roughly indicates that the proposed measurement equation
and structural equation are adequate. Moreover, based on θ̂ and -̂, we can compute the
estimate of the proportion of the variance of y that can be explained by the measurement
equation, using exactly the same method as in analyzing a regression model. Similarly, the
proportion of the variance of η that can be explained by the structural equation can also be
estimated.

WinBUGS is rather flexible in the analysis of SEMs. In this example, it is applied to
analyze nonlinear SEMs with covariates. In the program setup (see the above mentioned
website), it only requires a single program statement for the structural equation given by
(3.19). In fact, even with more complicated quadratic or interaction terms of the explanatory
latent variables and fixed covariates, one program statement is sufficient. Hence, nonlinear
SEMs with covariates can be easily analyzed via WinBUGS. This is why we regard nonlinear
SEMs as basic SEMs.

WinBUGS is an interactive program, and it is not convenient to use it directly to do a
simulation study. However, WinBUGS can be run in batch mode using scripts, and the R
package R2WinBUGS (Sturtz et al., 2005) uses this feature and provides tools to directly call
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Figure 3.3 Histograms of the latent variables (a) ξ̂i1 and (b) ξ̂i2.

WinBUGS after the manipulation in R. Furthermore, it is possible to work on the results after
importing them back into R. The implementation of R2WinBUGS is mainly based on the R
function ‘bugs(· · · )’, which takes data and initial values as input. It automatically writes a
WinBUGS script, calls the model, and saves the simulation for easy access in R.

To illustrate the applications of WinBUGS together with R2WinBUGS, we present a
simulation study based on the settings of the artificial example described above; see equations
(3.18)–(3.20). The sample size was again taken to be 500, and the conjugate prior distributions
with hyperparameter values as given in (3.21) were used. Based on 100 replications, the
simulation results reported in Table 3.2 were obtained. In the simulation study, we use R
to generate the data sets, and input these data sets into WinBUGS to obtain the Bayesian
estimates from the WinBUGS outputs. We then use R to store and analyze the Bayesian
estimates and the associated results. The WinBUGS and R codes for the simulation study are
presented in Appendices 3.5 and 3.6, respectively.
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Figure 3.4 Estimated residual plots: (a) ε̂i2, (b) ε̂i3, (c) ε̂i8, and (d) δ̂i.
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Figure 3.5 Plots of estimated residuals δ̂i versus (a) ξ̂i1, (b) ξ̂i2.
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Figure 3.6 Plots of estimated residuals ε̂i2 versus (a) ξ̂i1, (b) ξ̂i2, and (c) η̂i.
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Table 3.2 Bayesian estimates obtained from WinBUGS for the artificial
example, based on 100 replications.

Par AB RMS Par AB RMS

µ1 0.009 0.068 ψε1 0.008 0.027
µ2 0.001 0.064 ψε2 0.010 0.028
µ3 0.003 0.050 ψε3 0.004 0.021
µ4 0.008 0.058 ψε4 0.012 0.046
µ5 0.000 0.055 ψε5 0.000 0.047
µ6 0.005 0.046 ψε6 0.002 0.038
µ7 0.005 0.041 ψε7 0.009 0.036
µ8 0.002 0.051 ψε8 0.012 0.037
µ9 0.001 0.048 ψε9 0.001 0.032
µ10 0.001 0.037 ψε10 0.006 0.031
λ21 0.006 0.021 b1 0.001 0.030
λ31 0.001 0.022 γ1 0.019 0.056
λ52 0.021 0.063 γ2 0.000 0.066
λ62 0.016 0.047 γ3 0.003 0.071
λ72 0.015 0.043 γ4 0.021 0.048
λ93 0.004 0.046 γ5 0.018 0.062
λ10,3 0.003 0.037 φ11 0.046 0.107

φ21 0.017 0.053
φ22 0.088 0.040
ψδ 0.013 0.040

Note: ‘AB’ and ‘RMS’ denote the averages of the absolute bias and the root mean
square values, respectively.
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Appendix 3.1 The gamma, inverted gamma, Wishart, and
inverted Wishart distributions and their
characteristics

Let θ and W denote an unknown parameter and unknown covariance matrix, respectively; and
let p(·), E(·), and Var(·) denote the density function, expectation, and variance, respectively.

1. Gamma distribution: θ
D= Gamma[α,β]

p(θ ) = βα

/(α)
θα−1e−βθ ,

E(θ ) = α/β, Var(θ ) = α/β2.

2. Inverted gamma distribution: θ
D= IG[α,β]

p(θ ) = βα

/(α)
θ−(α+1)e−β/θ ,

E(θ ) = β

α − 1
, Var(θ ) = β2

(α − 1)2(α − 2)
.

3. Relation between gamma and inverted gamma distributions

If θ
D= IG[α,β], then θ−1 D= Gamma[α,β].

4. Wishart distribution: W D= Wq[R0, ρ0]

p(W) =
[

2ρ0q/2πq(q−1)/4
q∏

i=1

/

(
ρ0 + 1 − i

2

)]−1

×|R0|−ρ0/2 × |W|(ρ0−q−1)/2 × exp
{
−1

2
tr
(
R−1

0 W
)}

,

E(W) = ρ0R0.

5. Inverted Wishart distribution: W D= IWq[R−1
0 , ρ0]

p(W) =
[

2ρ0q/2πq(q−1)/4
q∏

i=1

/

(
ρ0 + 1 − i

2

)]−1

×|R0|−ρ0/2 × |W|−(ρ0+q+1)/2 × exp
{
−1

2
tr
(
R−1

0 W−1)
}

,

E(W) =
R−1

0

ρ0 − q − 1
.

6. Relation between Wishart and inverted Wishart distributions

If W D= IW
[
R−1

0 , ρ0
]
, then W−1 D= W [R0, ρ0].
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Appendix 3.2 The Metropolis–Hastings algorithm
Suppose we wish to simulate observations, say {Xj, j = 1, 2, . . .}, from a conditional distri-
bution with target density p(·). At the jth iteration of the Metropolis–Hastings algorithm with
a current value Xj, the next value Xj+1 is chosen by first sampling a candidate point Y from a
proposal distribution q(·|Xj) which is easy to sample. This candidate point Y is accepted as
Xj+1 with probability

min
(

1,
p(Y )q(Xj|Y )

p(Xj)q(Y |Xj)

)
.

If the candidate point Y is rejected, then Xj+1 = Xj and the chain does not move.
The proposal distribution q(·|·) can have any form and the stationary distribution of the

Markov chain will be the target distribution with density p(·). In most analyses of SEMs
considered in this book, we will take q(·|X ) to be a normal distribution with mean X and a
fixed covariance matrix.
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Appendix 3.3 Conditional distributions [-|Y, θ] and [θ|Y, -]
Conditional Distribution [-|Y, θ]

We first note that for i = 1, . . . , n, the ωi are conditionally independent given θ, and the
yi are also conditionally independent given (ωi, θ). Hence,

p(-|Y, θ) ∝
n∏

i=1

p(ωi|θ) p(yi|ωi, θ). (3.A1)

This implies that the conditional distributions of ωi given (yi, θ) are mutually independent for
different i, and p(ωi|yi, θ) ∝ p(ωi|θ)p(yi|ωi, θ). Let &0 = I − & and the covariance matrix
of ωi be

,ω =
[

&−1
0 ('*'T + +δ )&

−T
0 &−1

0 '*

*'T &−T
0 *

]

.

It can be shown that

[ωi|θ] D= N
[(

&−1
0 Bdi

0

)
,,ω

]
,

and[yi|ωi, θ] D= N[Aci + "ωi,+ε]. Thus,

[ωi|yi, θ] D= N
[
,∗−1"T +−1

ε (yi − Aci) + ,∗−1
,−1

ω

(
&−1

0 Bdi
0

)
,,∗−1

]
(3.A2)

where ,∗ = ,−1
ω + "T +−1

ε ". We see that the conditional distribution [ωi|yi, θ] is a normal
distribution.

Conditional Distribution [θ|Y,-]
The conditional distribution of θ given (Y,-) is proportional to p(θ)p(Y,-|θ). We

note that as - is given, the equations defined in (3.14) and (3.15) are linear models with
fixed covariates. Let θy be the unknown parameters in A,", and +ε associated with the
measurement equation, and θω be the unknown parameters in B,&,',*, and +δ associated
with the structural equation. It is assumed that the prior distribution of θy is independent of the
prior distribution of θω, that is, p(θ) = p(θy)p(θω). Moreover, as p(Y|-, θ) = p(Y|-, θy)

and p(-|θ) = p(-|θω), it can be shown that the marginal conditional densities of θy and θω

given (Y,-) are proportional to p(Y|-, θy)p(θy) and p(-|θω)p(θω), respectively. Hence,
these conditional densities can be treated separately.

Consider first the marginal conditional distribution of θy. Let "y = (A,") with gen-
eral elements λyk j, j = 1, . . . , r1 + q, k = 1, . . . , p, and ui = (cT

i ,ωT
i )T . It follows that

yi = "yui + εi. This simple transformation reformulates the model with fixed covariate ci
as the original factor analysis model. The positions of the fixed elements in "y are identified
via an index matrix Ly with the following elements:

lyk j =
{

0, if λyk j is fixed,

1, if λyk j is free; for j = 1, . . . , r1 + q and k = 1, . . . , p.

Let ψεk be the kth diagonal element of +ε , and "T
yk be the row vector that contains the

unknown parameters in the kth row of "y. The following commonly used conjugate type prior
distributions are used. For any k %= h, we assume that the prior distribution of (ψεk,"yk) is
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independent of (ψεh,"yh), and

ψ−1
εk

D= Gamma[α0εk, β0εk], and ["yk|ψεk] D= N["0yk,ψεkH0yk], k = 1, . . . , p, (3.A3)

where α0εk,β0εk,"
T
0yk = (AT

0k,"
T
0k), and the positive definite matrix H0yk are hyper-

parameters whose values are assumed to be given from the prior information of previous
studies or other sources.

Let U = (u1, . . . , un) and Uk be the submatrix of U such that all the rows corresponding
to lyk j = 0 are deleted; and let Y∗T

k = (y∗
1k, . . . , y∗

nk) with

y∗
ik = yik −

r1+q∑

j=1

λyk jui j(1 − lyk j),

where uij is the jth element of ui. Then, for k = 1, . . . , p, it can be shown (see Lee, 2007,
Appendix 4.3) that

[
ψ−1

εk |Y,-
] D= Gamma[n/2 + α0εk,βεk],

[
"yk|Y,-,ψ−1

εk

] D= N[ayk,ψεkAyk], (3.A4)

where Ayk = (H−1
0yk + UkUT

k )−1, ayk = Ayk(H−1
0yk"0yk + UkY∗

k ), and

βεk = β0εk + 1
2

(
Y∗T

k Y∗
k − aT

ykA−1
yk ayk + "T

0ykH−1
0yk"0yk

)
.

Since ["yk,ψ
−1
εk |Y,-] equals [ψ−1

εk |Y,-]["yk|Y,-,ψ−1
εk ], it can be obtained via (3.A4).

This gives the conditional distribution in relation to θy.
Now consider the conditional distribution of θω, which is proportional to p(-|θω)p(θω).

Let -1 = (η1, . . . , ηn) and -2 = (ξ1, . . . , ξn). Since the distribution of ξi only involves *,
p(-2|θω) = p(-2|*). Under the assumption that the prior distribution of * is independent
of the prior distributions of B,&,', and +δ , we have

p(-|θω)p(θω) = [p(-1|-2, B,&,',+δ )p(B,&,',+δ )][p(-2|*)p(*)].

Hence, the marginal conditional densities of (B,&,',+δ ) and * can be treated separately.
Consider a conjugate type prior distribution for * with *

D= IWq2 [R−1
0 , ρ0] or *−1 D=

Wq2 [R0, ρ0], with hyperparameters ρ0 and R−1
0 or R0.

To derive p(*|-2), we first note that it is proportional to p(*)p(-2|*). As ξi are
independent, we have

p(*|-2) ∝ p(*)

n∏

i=1

p(ξi|θ).

Moreover, since the distribution of ξi given * is N(0,*), we have

p(*|-2) ∝
[
|*|−(ρ0+q2+1)/2 exp

{
−1

2
tr
[
R−1

0 *−1]
}] [

|*|−n/2 exp

{

−1
2

n∑

i=1

ξT
i *−1ξi

}]

= |*|−(n+ρ0+q2+1)/2 exp
{
−1

2
tr
[
*−1(-2-

T
2 + R−1

0

)]}
. (3.A5)

Since the right-hand side of (3.A5) is proportional to the density function of an inverted
Wishart distribution (Zellner, 1971), it follows that the conditional distribution of * given -2
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is given by

[*|-2] D= IWq2

[(
-2-

T
2 + R−1

0

)
, n + ρ0

]
(3.A6)

Recall that ηi = "ωvi + δi, where "ω = (B,&,') with general elements λωk j for k =
1, . . . , q1, and let vi = (dT

i , ηT
i , ξT

i )T = (dT
i ,ωT

i )T be an (r2 + q1 + q2) × 1 vector. The model
ηi = "ωvi + δi is similar to yi = "yui + εi considered before. Hence, the derivations for the
conditional distributions corresponding to θω are similar to those corresponding to θy. Let
V = (v1, . . . , vn), Lω be the index matrix with general elements lωk j defined similarly to
Ly to indicate the fixed known parameters in "ω; ψδk be the kth diagonal element of +δ;
and "T

ωk be the row vector that contains the unknown parameters in the kth row of "ω. The
prior distributions of "ωk and ψ−1

δk are similarly selected as the following conjugate type
distributions:

ψ−1
δk

D= Gamma[α0δk,β0δk], and ["ωk|ψδk] D= N["0ωk,ψδkH0ωk], k = 1, . . . , q1, (3.A7)

where α0δk,β0δk,"0ωk, and H0ωk are given hyperparameters. Moreover, it is assumed that, for
h %= k, (ψδk,"ωk) and (ψδh,"ωh) are independent. Let Vk be the submatrix of V such that all
the rows corresponding to lωk j = 0 are deleted; and let .T

k = (η∗
1k, . . . , η

∗
nk) where

η∗
ik = ηik −

r2+q∑

j=1

λωk jvi j(1 − lωk j).

Then, it can be shown that

[ψ−1
δk |-] D= Gamma[n/2 + α0δk,βδk] and ["ωk|-,ψ−1

δk ] D= N[aωk,ψδkAωk], (3.A8)

where Aωk = (H−1
0ωk + VkVT

k )−1, aωk = Aωk(H−1
0ωk"0ωk + Vk.k), and

βδk = β0δk + 1
2

(
.T

k .k − aT
ωkA−1

ωk aωk + "T
0ωkH−1

0ωk"0ωk
)
.

The conditional distribution [θω|-] = [B,&,',+δ|-] can be obtained through (3.A8).
In this appendix, we use "T

yk and "T
ωk to denote the row vectors that contain the unknown

parameters in the kth rows of "y and "ω, respectively. However, in the subsequent chapters
we sometimes assume for simplicity that all the elements in the kth rows of "y and "ω are
unknown parameters. Under these assumptions, "T

yk and "T
ωk simply denote the kth rows of

"y and "ω, respectively.
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Appendix 3.4 Conditional distributions [-|Y, θ] and [θ|Y, -]
in nonlinear SEMs with covariates

Conditional Distribution [-|Y, θ]
First note that the measurement equation of a nonlinear SEM with covariates is the same

as given in equation (3.14), while the structural equation is defined as in equation (3.17).
Again to simplify notation, equation (3.17) is rewritten as

ηi = "ωG(ωi) + δi, (3.A9)

where "ω = (B,&,') and G(ωi) = (dT
i , ηT

i , F(ξi)
T )T . Similar reasoning can be used to

derive the conditional distribution [-|Y, θ]. It can be shown on the basis of the definition and
assumptions that

p(-|Y, θ) =
n∏

i=1

p(ωi|yi, θ) ∝
n∏

i=1

p(yi|ωi, θ)p(ηi|ξi, θ)p(ξi|θ). (3.A10)

As the ωi are mutually independent, and yi are also mutually independent given ωi, p(ωi|yi, θ)

is proportional to

exp
{

−1
2
ξT

i *−1ξi − 1
2
(yi − Aci − "ωi)

T +−1
ε (yi − Aci − "ωi)

−1
2
(ηi − "ωG(ωi))

T +−1
δ (ηi − "ωG(ωi))

}
. (3.A11)

This distribution is nonstandard and complex. Hence, the MH algorithm is used to generate
observations from the target density p(ωi|yi, θ) as given in (3.A11). In this algorithm, we
choose N[0, σ 2,ω] as the proposal distribution, where ,−1

ω = ,−1
δ + "T +−1

ε " and ,−1
δ is

given by

,−1
δ =




&T

0 +−1
δ &0 −&T

0 +−1
δ '/

−/T 'T +−1
δ &0 *−1 + /T 'T +−1

δ '/





in which &0 = I − & and / = [∂F(ξi)/∂ξi]T |ξi=0. Let p(·|ω, σ 2,ω) be the proposal density
corresponding to N[ω, σ 2,ω]. The MH algorithm for our problem is implemented as fol-
lows: At the rth iteration with the current value ω(r)

i , a new candidate ωi is generated from
p(·|ω(r)

i , σ 2,ω), and this new candidate is accepted with probability

min

{

1,
p(ωi|yi, θ)

p(ω(r)
i |yi, θ)

}

.

The variance σ 2 is chosen such that the acceptance rate is approximately 0.25 or more (see
Gelman et al., 1996).
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Conditional Distribution [θ|Y,-]
When - is given, the structural equation (see (3.17)) is just a multiple regression equation,

which is slightly different from the linear regression equation (see (3.15)) associated with the
linear SEMs. Hence, the components of the conditional distribution [θ|-, Y] involved in the
Gibbs sampler in analyzing nonlinear SEMs are very similar to those in analyzing linear
SEMs. To obtain [θ|Y,-] for nonlinear SEMs, we only need to replace ξi by F(ξi) in the
corresponding conditional distributions that are derived for linear SEMs and are presented in
Appendix 3.3.
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Appendix 3.5 WinBUGS code
model {

for (i in 1:N) {
for (j in 1:10) { y[i,j]˜dnorm(mu[i,j], psi[j]) }
mu[i,1]<-u[1]+eta[i]
mu[i,2]<-u[2]+lam[1]*eta[i]
mu[i,3]<-u[3]+lam[2]*eta[i]
mu[i,4]<-u[4]+xi[i,1]
mu[i,5]<-u[5]+lam[3]*xi[i,1]
mu[i,6]<-u[6]+lam[4]*xi[i,1]
mu[i,7]<-u[7]+lam[5]*xi[i,1]
mu[i,8]<-u[8]+xi[i,2]
mu[i,9]<-u[9]+lam[6]*xi[i,2]
mu[i,10]<-u[10]+lam[7]*xi[i,2]

#structural equation
eta[i] ˜dnorm(nu[i], psd)

nu[i]<-b*d[i]+gam[1]*xi[i,1]+gam[2]*xi[i,2]+gam[3]*xi[i,1]*xi[i,2]
+gam[4]*xi[i,1]*xi[i,1]+gam[5]*xi[i,2]*xi[i,2]

xi[i,1:2] ˜dmnorm(zero[1:2], phi[1:2,1:2])
} #end of i

#prior distribution
lam[1] ˜dnorm(0.9,psi[2]) lam[2] ˜dnorm(0.7,psi[3])
lam[3] ˜dnorm(0.9,psi[5]) lam[4] ˜dnorm(0.7,psi[6])
lam[5] ˜dnorm(0.5,psi[7]) lam[6] ˜dnorm(0.9,psi[9])
lam[7] ˜dnorm(0.7,psi[10])

b ˜dnorm(0.5, psd) gam[1] ˜dnorm(0.4,psd)
gam[2] ˜dnorm(0.4,psd) gam[3] ˜dnorm(0.3,psd)
gam[4] ˜dnorm(0.2,psd) gam[5] ˜dnorm(0.5,psd)

for (j in 1:10) {
psi[j] dgamma(9,4) sgm[j]<-1/psi[j]
u[j] ˜dnorm(0,1)

}

psd dgamma(9,4) sgd<-1/psd

phi[1:2,1:2] dwish(R[1:2,1:2], 4)
phx[1:2,1:2]<-inverse(phi[1:2,1:2])

} #end of model
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Appendix 3.6 R2WinBUGS code
library(mvtnorm) #Load mvtnorm package
library(R2WinBUGS) #Load R2WinBUGS package

N=500 #Sample size
BD=numeric(N) #Fixed covariate in structural equation
XI=matrix(NA, nrow=N, ncol=2) #Explanatory latent variables
Eta=numeric(N) #Outcome latent variables
Y=matrix(NA, nrow=N, ncol=8) #Observed variables

#The covariance matrix of xi
phi=matrix(c(1, 0.3, 0.3, 1), nrow=2)

#Estimates and standard error estimates
Eu=matrix(NA, nrow=100, ncol=10); SEu=matrix(NA, nrow=100, ncol=10)
Elam=matrix(NA, nrow=100, ncol=7); SElam=matrix(NA, nrow=100, ncol=7)
Eb=numeric(100); SEb=numeric(100)
Egam=matrix(NA, nrow=100, ncol=5); SEgam=matrix(NA, nrow=100, ncol=5)
Esgm=matrix(NA, nrow=100, ncol=10); SEsgm=matrix(NA, nrow=100, ncol=10)
Esgd=numeric(100); SEsgd=numeric(100)
Ephx=matrix(NA, nrow=100, ncol=3); SEphx=matrix(NA, nrow=100, ncol=3)

R=matrix(c(1.0, 0.3, 0.3, 1.0), nrow=2)

parameters=c(’’u’’, ’’lam’’, ’’b’’, ’’gam’’, ’’sgm’’, ’’sgd’’, ’’phx’’)

init1=list(u=rep(0,10), lam=rep(0,7), b=0, gam=rep(0,5), psi=rep(1,10),
psd=1, phi=matrix(c(1, 0, 0, 1), nrow=2))

init2=list(u=rep(1,10), lam=rep(1,7), b=1, gam=rep(1,5), psi=rep(2,10),
psd=2, phi=matrix(c(2, 0, 0, 2), nrow=2))

inits=list(init1, init2)

eps=numeric(10)

for (t in 1:100) {
#Generate Data
for (i in 1:N) {

BD[i]=rt(1, 5)

XI[i,]=rmvnorm(1, c(0,0), phi)

delta=rnorm(1, 0, sqrt(0.36))
Eta[i]=0.5*BD[i]+0.4*XI[i,1]+0.4*XI[i,2]+0.3*XI[i,1]*XI[i,2]

+0.2*XI[i,1]*XI[i,1]+0.5*XI[i,2]*XI[i,2]+delta

eps[1:3]=rnorm(3, 0, sqrt(0.3))
eps[4:7]=rnorm(4, 0, sqrt(0.5))
eps[8:10]=rnorm(3, 0, sqrt(0.4))
Y[i,1]=Eta[i]+eps[1]
Y[i,2]=0.9*Eta[i]+eps[2]
Y[i,3]=0.7*Eta[i]+eps[3]
Y[i,4]=XI[i,1]+eps[4]
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Y[i,5]=0.9*XI[i,1]+eps[5]
Y[i,6]=0.7*XI[i,1]+eps[6]
Y[i,7]=0.5*XI[i,1]+eps[7]
Y[i,8]=XI[i,2]+eps[8]
Y[i,9]=0.9*XI[i,2]+eps[9]
Y[i,10]=0.7*XI[i,2]+eps[10]

}

#Run WinBUGS
data=list(N=500, zero=c(0,0), d=BD, R=R, y=Y)

model<-bugs(data,inits,parameters,
model.file=’’C:/Simulation/model.txt’’,
n.chains=2,n.iter=10000,n.burnin=4000,n.thin=1,
bugs.directory=’’C:/Program Files/WinBUGS14/’’,
working.directory=’’C:/Simulation/’’)

#Save Estimates
Eu[t,]=model$mean$u; SEu[t,]=model$sd$u
Elam[t,]=model$mean$lam; SElam[t,]=model$sd$lam
Eb[t]=model$mean$b; SEb[t]=model$sd$b
Egam[t,]=model$mean$gam; SEgam[t,]=model$sd$gam
Esgm[t,]=model$mean$sgm; SEsgm[t,]=model$sd$sgm
Esgd[t]=model$mean$sgd; SEsgd[t]=model$sd$sgd
Ephx[t,1]=model$mean$phx[1,1]; SEphx[t,1]=model$sd$phx[1,1]
Ephx[t,2]=model$mean$phx[1,2]; SEphx[t,2]=model$sd$phx[1,2]
Ephx[t,3]=model$mean$phx[2,2]; SEphx[t,3]=model$sd$phx[2,2]

}
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