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Basic concepts and applications
of structural equation models

2.1 Introduction
Structural equation models (SEMs) are a flexible class of models that allow complex model-
ing of correlated multivariate data for assessing interrelationships among observed and latent
variables. It is well known in the fields of social and psychological sciences that this class
of models subsumes many widely used statistical models, such as regression, factor analysis,
canonical correlations, and analysis of variance and covariance. Traditional methods for ana-
lyzing SEMs were mainly developed in psychometrics, and have been extensively applied in
behavioral, educational, social, and psychological research in the past twenty years. Recently,
SEMs have begun to attract a great deal of attention in public health, biological, and medical
sciences. Today, due to strong demand in various disciplines, there are more than a dozen
SEM software packages, such as AMOS, EQS6, LISREL, and Mplus. Among the various
ways to specify SEMs in these software packages, we choose the key idea of the LISREL
(Jöreskog and Sörbom, 1996) formulation in defining the basic model through a measure-
ment equation and a structural equation. The main reasons for this choice are as follows: (i)
The measurement and structural equations are very similar to the familiar regression models,
hence more direct interpretation can be achieved and the common techniques in regression
such as outlier and residual analyses can be employed. (ii) It makes a clear distinction between
observed and latent variables. (iii) It directly models raw individual observations with latent
variables, hence it can be naturally generalized to handle complex situations, and results in
a direct estimation of latent variables. (iv) The development of statistical methodologies for
subtle SEMs is more natural and comparatively easier.

In practical SEM applications, from the objective of a substantive study researchers usually
know which are the outcome latent variables, and which are the explanatory latent variables of
interest. In certain cases, a latent variable can be naturally defined by some observed variables;
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for example, the latent variable ‘blood pressure’ is naturally formed by combining systolic and
diastolic blood pressures. In other cases, researchers may need to carefully select observed
variables in order to measure latent variables of interest to them. Substantive knowledge of
the related study is important in making the decision. Hence, in practice, applied researchers
of SEMs usually have prior information on which observed variables should be used to define
a specific latent variable. This kind of information is useful in formulating the measurement
equation which relates latent variables to their corresponding observed variables. From the
above discussion, it is clear that the measurement equation in SEMs is a confirmatory tool
rather than an exploratory tool. Basically, the measurement equation can be regarded as a
confirmatory factor analysis model. The effects of explanatory latent variables on outcome
latent variables are assessed through the structural equation in the model. The use of this
equation is very similar to the application of the regression model, except that here latent
variables are involved. At this stage, we may need to compare several structural equations,
and select the most appropriate one. This is done by model comparison via reliable model
comparison statistics.

The first objective of this chapter is to introduce the basic concepts of SEMs through
models with a linear or a nonlinear structural equation. The second objective is to illustrate
how to apply these models to substantive research. Illustrative examples with real medical
studies will be presented.

2.2 Linear SEMs
Linear SEMs are formulated with a measurement equation and a structural equation with
linear terms of explanatory latent variables. Under the assumption that the observed variables
are continuous, and independently and identically normally distributed, the linear SEM is the
most basic SEM.

Let y = (y1, . . . , yp)
T be a p × 1 vector of observed variables that have been selected for

the analysis, and let ω = (ω1, . . . ,ωq)
T be a q × 1 vector of latent variables that are expected

to be formed from the observed variables in y. The link between the observed variables and all
the latent variables in ω is defined by the following measurement equation: for j = 1, . . . , p,

yj = µj + λ j1ω1 + . . . + λjqωq + εj, (2.1)

where µj is an intercept, the λjk are unknown coefficients that relate yj and ωk, and εj is
the residual error. In factor analysis terminology, the λjk are called factor loadings. Now,
according to the objective of the underlying substantive research, we have the following
partition of ω = (ηT , ξT )T , where η and ξ are q1 × 1 and q2(= q − q1) × 1 random vectors
which respectively contain the outcome and explanatory latent variables in ω. The effects of
ξ = (ξ1, . . . , ξq2 )

T on η = (η1, . . . , ηq1 )
T are assessed by the following structural equation:

for j = 1, . . . , q1,

ηj = γ j1ξ1 + . . . + γ jq2ξq2 + δj, (2.2)

where the γjk are unknown coefficients that represent the effects of ξk on ηj, and δj is the residual
error. Equations (2.1) and (2.2) define the most basic linear SEM. These two equations can
be rewritten in matrix notation: the measurement equation as

y = µ + $ω + ε, (2.3)
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and the structural equation as

η = &ξ + δ, (2.4)

where y is a p × 1 random vector of observed variables, µ is a p × 1 vector of intercepts, $
is a p × q unknown matrix of factor loadings, & is a q1 × q2 unknown matrix of regression
coefficients, and ε and δ are p × 1 and q1 × 1 random vectors of measurement (residual)
errors, respectively.

2.2.1 Measurement equation
Most applications of SEMs are related to the study of interrelationships among latent variables.
In particular, they are useful for examining the effects of explanatory latent variables on
outcome latent variables of interest. For such situations, researchers usually have in mind
what observed variables should be selected from the whole data set for the analysis, and how
these observed variables are grouped to form latent variables. The purpose of the measurement
equation in an SEM is to relate the latent variables in ω to the observed variables in y. It
represents the link between observed and latent variables, through the specified factor loading
matrix $. The vector of measurement error, ε, is used to take the residual errors into account.

The most important issue in formulating the measurement equation is to specify the
structure of the factor loading matrix, $, based on the knowledge of the observed variables in
the study. Any element of $ can be a free parameter or a fixed parameter with a preassigned
value. The positions and the preassigned values of fixed parameters are decided on the basis
of the prior knowledge of the observed variables and latent variables, and they are also
related to the interpretations of latent variables. We give here a simple example by way of
illustration.

Consider a study concerning the effects of blood pressure and obesity on kidney disease
of type 2 diabetic patients. From its objective, we are interested in three latent variables,
namely one outcome latent variable for kidney disease, and two explanatory latent variables
for blood pressure and obesity. Based on the related medical knowledge, plasma creatine (PCr)
and urinary albumin creatinine ratio (ACR) are measured to obtain the observed variables to
form the latent variable ‘kidney disease (KD)’; systolic blood pressure (SBP) and diastolic
blood pressure (DBP) are measured to form latent variable ‘blood pressure (BP)’; and body
mass index (BMI) and waist–hip ratio (WHR) are measured to form the latent variable
‘obesity (OB)’. From clear interpretation of BP, and the meaning of the observed variables,
BP should only relate to SBP and DBP, but not to other observed variables. This rationale
also applies to latent variables KD and OB. Thus, the system of measurement equations is
defined as:

PCr = µ1 + λ11KD + ε1,

ACR = µ2 + λ21KD + ε2,

SBP = µ3 + λ32BP + ε3,

DBP = µ4 + λ42BP + ε4,

BMI = µ5 + λ53OB + ε5,

WHR = µ6 + λ63OB + ε6,

(2.5)
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or, in matrix notation,




PCr
ACR
SBP
DBP
BMI
WHR




=





µ1

µ2

µ3

µ4

µ5

µ6




+





λ11 0 0
λ21 0 0
0 λ32 0
0 λ42 0
0 0 λ53

0 0 λ63








KD
BP
OB



 +





ε1

ε2

ε3

ε4

ε5

ε6




(2.6)

or

y = µ + $ω + ε,

where y, µ, $, ω, and ε are defined as in (2.3). The interpretations of µj and λjk are the same as
the interpretations of the intercept and regression coefficient in a regression model. It is clear
from (2.5) or (2.6) that λjk is the coefficient linking the observed variable yj with the latent
variable ωk. For instance, PCr and KD are linked via λ11. From the structure of $, we know
that KD is only linked with PCr and ACR, BP is only linked to SBP and DBP, and OB is only
linked with BMI and WHR. As a result, the interpretation of the latent variables, KD, BP, and
OB, is clear. This specific structure of $ is called a non-overlapping structure. In applications
of SEMs, factor loading matrices with non-overlapping structures are frequently used. In
most situations, it is not necessary, or even not advisable, to use a more general structure for
$. For example, if λ12 in the above defined factor loading matrix $ (see equation (2.6)) is
not zero, then BP is also related to PCr. Hence, BP cannot be interpreted as blood pressure,
and the effect of blood pressure on kidney disease cannot be clearly assessed. To achieve
a better interpretation, we use $ with a non-overlapping structure in all real applications
presented in this book. In other applications with more observed and latent variables, we need
to appropriately define a specific loading matrix to formulate their relationships. From the
above discussion, we recognize that the measurement equation is a confirmatory tool with a
specifically defined loading matrix.

2.2.2 Structural equation and one extension
Recall that the latent variables identified through the measurement equation are made up of a
q1 × 1 vector of outcome latent variables and a q2(= q − q1) × 1 vector of explanatory latent
variables. The choices of the outcome and explanatory latent variables, and thus the values
of q1 and q2, are based on the objective of the substantive study. In the kidney disease study,
it is clear from its objective that KD is the outcome latent variable, and BP and OB are the
explanatory latent variables; hence, q1 = 1 and q2 = 2. The structural equation (2.2) or (2.4)
is essentially a regression type model which regresses η on ξ. For example, the structural
equation of the kidney disease study might be:

KD = γ1BP + γ2OB + δ. (2.7)

This equation is linear in the variables and linear in the parameters. The interpretations of
γ1 and γ2 are the same as in a regression model. Hence, they represent the magnitude of the
expected changes in KD for a one-unit change in BP and OB, respectively. The outcome latent
variables are only partially explained by the explanatory latent variables; the unexplained part
is taken into account by the residual error δ.
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Sometimes SEMs are called ‘causal’ models, and they have been used to achieve causality.
We wish to emphasize that the structural equation is just a regression model with latent
variables. Great care should be taken in using this regression type model to achieve causality.
See Bollen (1989) for more discussion on this issue.

A slight extension of structural equation (2.4) that is particularly useful in business and
social-psychological research is given by

η = (η + &ξ + δ, (2.8)

where ( is a q1 × q1 matrix of unknown coefficients, such that I − ( is nonsingular and
the diagonal elements of ( are zero; the definitions of &, ξ, and δ are the same as before.
Depending on the application, elements in ( and & can be fixed to preassigned values. This
structural equation allows some outcome latent variables to depend on the other outcome
latent variables through an appropriately defined (. For example, we wish to study the effects
of BP and OB on KD, as well as a disease A that is represented by an outcome latent variable
ηA. Moreover, suppose that it is also of interest to examine the possible effect of KD on disease
A. To tackle this problem, the following structural equation can be used:

(
KD
ηA

)
=

(
0 0
π 0

)(
KD
ηA

)
+

(
γ1 γ2

γ3 γ4

)(
BP
OB

)
+

(
δ

δA

)
. (2.9)

Here, η = (KD, ηA)T , π is the unknown coefficient that represents the effect of KD on disease
A, and & is the parameter matrix with elements γi. The relationship of KD with BP and OB
is again given by equation (2.7), while the relationship of disease A with KD, BP, and OB is
given by

ηA = πKD + γ3BP + γ4OB + δA. (2.10)

By allowing elements in ( and & to be fixed at any preassigned values, structural equation
(2.8) achieves considerable flexibility in handling rather complex relationships among latent
variables. More general structural equations with fixed covariates and nonlinear terms of latent
variables will be discussed in Sections 2.3. and 2.4.

2.2.3 Assumptions of linear SEMs
Like most statistical models, the standard linear SEMs involve some assumptions. In practical
applications of SEMs, it is important to make sure that these assumptions are valid. Let
{yi, i = 1, . . . , n} be the observed data set with a sample size n, where yi can be modeled via
the linear SEM with latent variables ηi and ξi, and measurement errors εi and δi, as defined
by the measurement equation (2.3) and the structural equation (2.8). For i = 1, . . . , n, the
assumptions of the model are as follows:

Assumption A1: The random vectors of residual errors εi are independently and identi-
cally distributed (i.i.d.) according to N[0,)ε], where )ε is a diagonal
covariance matrix.

Assumption A2: The random vectors of explanatory latent variables ξi are i.i.d. according
to N[0,*], where * is a general covariance matrix.

Assumption A3: The random vectors of residual errors δi are i.i.d. according to N[0,)δ],
where )δ is a diagonal covariance matrix.

Assumption A4: δi is independent of ξi, and εi is independent of ωi and δi.
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These assumptions introduce three unknown parameter matrices, namely *,)ε , and )δ .
As ηi is a linear combination of ξi and δi, the observations of ηi are also i.i.d. according to a
normal distribution with a covariance matrix that depends on (,&,*, and )δ . As a result,
based on Assumptions A2 and A3 and the linear structural equation, the ωi are i.i.d. according
to a normal distribution. Moreover, these assumptions also implicitly restrict yi to be i.i.d.
according to a normal distribution.

2.2.4 Model identification
Model identification is an issue relevant to all SEMs. In general, consider an SEM with
a measurement equation and a structural equation which are formulated with an unknown
parameter vector θ. The traditional definition of identification is based on ,(θ), the population
covariance matrix of the observed variables in y. The model is said to be identified if, for any
θ1 and θ2, ,(θ1) = ,(θ2) implies θ1 = θ2 (see Bollen, 1989). This definition is difficult to
apply to a complex SEM whose ,(θ) is very complicated or even impossible to derive. For
almost all existing SEMs, the parameters involved in the measurement equation are different
from those involved in the structural equation, which are respectively defined by distinctive
θ and θ∗ that have no common elements. Hence, we consider a definition of identification
on the basis of the fundamental measurement equation m(θ) and structural equation s(θ∗).
We regard the measurement equation as identified if, for any θ1 and θ2, m(θ1) = m(θ2)

implies θ1 = θ2. Similarly, we regard the structural equation as identified if, for any θ∗
1 and

θ∗
2, s(θ∗

1) = s(θ∗
2) implies θ∗

1 = θ∗
2. Moreover, we regard the SEM as identified if both of its

measurement equation and structural equation are identified. General necessary and sufficient
conditions to guarantee the identifiability of an SEM are difficult to find. Hence, in practical
applications of SEMs, we are mainly concerned with the sufficient conditions for achieving
an identified model. For most SEMs, such sufficient conditions are usually available, and the
issue is approached on a problem-by-problem basis.

Consider linear SEMs. The measurement equation is not identified without imposing some
identification condition. This is because, for any nonsingular matrix M, we have

y = µ + $ω + ε = µ + $MM−1ω + ε (2.11)

= µ + $∗ω∗ + ε,

where $∗ = $M, and ω∗ = M−1ω, which is a random vector of latent variables with dis-
tribution N[0, M−1*+(M−1)T ], where *+ is the covariance matrix of ω. To identify the
measurement equation, we have to impose restrictions on $ and/or *+, such that the only
nonsingular matrix M that satisfies the imposed conditions is the identity matrix. A simple
and common method is to use a $ with the non-overlapping structure. Consider an illustrative
example with p = 10 observed variables and q = 3 latent variables, in which the first four
observed variables are related to ω1, and the next and the last three observed variables are
related to ω2 and ω3, respectively. A non-overlapping structure of $ is given by:

$T =




1 λ21 λ31 λ41 0 0 0 0 0 0
0 0 0 0 1 λ62 λ72 0 0 0
0 0 0 0 0 0 0 1 λ93 λ10,3



,

where the 1 and 0 elements are known parameters with fixed values, and the other λ jk are
unknown parameters. The fixed value 1 is used to introduce a scale to the corresponding latent
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variable. In the above $, λ11 is fixed at 1 to introduce a scale to ω1. The choice of λ11 is for
convenience only; we can fix λ21 at 1 and let λ11 be an unknown parameter. Similarly, we
can fix λ62 (or λ72) and λ93 (or λ10,3) at 1, and let λ52 and λ83 be unknown parameters. Based
on the objective of the underlying confirmatory study about the target latent variables, and
the meaning of the observed variables, we can have a clear idea about the positions of the
parameters fixed as 0; see Section 2.2.1.

There are other methods to identify the measurement equation. For instance, we may allow
λ11, λ52, and/or λ83 in the above defined $ to be unknown parameters, and fix the diagonal
elements of *+ as 1. This method restricts the variances of latent variables to the value 1;
hence *+ is a correlation matrix. As this method is not convenient for identifying an SEM
with a structural equation, and induces complication in the Bayesian analysis (see Chapter
3), we use the first identification method to identify the measurement equation throughout
this book. After obtaining the estimates of $ and *+, say $̂ and *̂

+
, we can get another

set of equivalent estimates $̂
∗
(= $̂M) and *̂

∗
(= M−1*̂

+
(M−1)T ) that satisfy the same

measurement equation via a nonsingular matrix M; see equation (2.11).
For almost all applications of SEMs, the structural equation is identified with the identified

measurement equation and latent variables. If necessary, the above simple method (via fixing
appropriate parameters) for identifying the measurement equation can be used to identify the
structural equation.

2.2.5 Path diagram
A path diagram is a pictorial representation of the measurement and structural equations. It is
useful for presenting and discussing the related SEM. In practical applications, it is worthwhile
to draw the path diagram related to the hypothesized SEM for effective communication of the
basic conceptual ideas behind the real study. We first use the example discussed in Sections
2.2.1 and 2.2.2 to illustrate the relation between a path diagram and the measurement and struc-
tural equations. The following conventions (see Jöreskog and Sörbom, 1996) are assumed:

(i) Observed variables such as x- and y-variables are enclosed in rectangles or squares.
Latent variables such as ξ - and η-variables are enclosed in ellipses or circles. Residual
errors such as δ- and ε-variables are included in the path diagram but are not enclosed.

(ii) A one-way arrow between two variables indicates a postulated direct influence of
one variable on another. A two-way arrow between two variables indicates that these
variables may be correlated.

(iii) The coefficient associated with each arrow indicates the corresponding parameter.

(iv) All direct influences of one variable on another are included in the path diagram.
Hence the nonexistence of an arrow between two variables means that these two
variables are assumed not directly related.

Sometimes two-way arrows between two correlated variables and/or residual errors are not
drawn for clarity. Moreover, the means (intercepts) may not be presented in the diagram.

Following the above conventions, the path diagram for the SEM with measurement equa-
tion (2.6) and structural equation (2.7) is presented in Figure 2.1.

In applying SEMs to a complex study with nontrivial relationships among variables, it is
worthwhile to first draw the path diagram that can clearly display the conceptual ideas behind
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γ  1
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λ63

λ21

λ11

λ32

KD 

SBP ε  3

ACR ε  2

PCr ε  1
ε  4

ε  5

ε  6 WHR 

BMI 

DBP 

OB

BP
δ 

Figure 2.1 Path diagram representing the model defined by (2.6) and (2.7).

the real situation and then formulate the measurement and structural equations of the model
on the basis of the path diagram.

2.3 SEMs with fixed covariates
In the basic linear SEMs, y = (y1, . . . , yp)

T on the left-hand side of the measurement equation
(see equation (2.3)) contains only observed variables in the model. These observed variables
are related to the latent variables in ω through the loading matrix $. In order to develop
better models, it is often desirable to incorporate explanatory observed variables on the right-
hand sides of the measurement and structural equations. In the SEM field these explanatory
observed variables are regarded as fixed covariates. Accommodation of fixed covariates into
the measurement equation provides additional information about the latent exposure and
thus reduces estimation uncertainty for the latent variables. For the structural equation, fixed
covariates give more ingredients to account for the outcome latent variables, in addition to
the explanatory latent variables. Hence, the residual errors in both equations can be reduced
by incorporating fixed covariates.

2.3.1 The model
SEMs with fixed covariates are defined as follows. For an observed p × 1 random vector y,
the measurement equation is given by:

y = Ac + $ω + ε, (2.12)
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where A is a p × r1 matrix of unknown coefficients, c is an r1 × 1 vector of fixed covariates
(with their values observed), and $,ω, and ε are defined exactly as in Section 2.2. A simple
example with one intercept and one fixed covariate c2 is:




y1
...

yp



 =




a11 a12

...
...

ap1 ap2




[

1
c2

]
+




λ11 · · · λ1q

...
. . .

...
λp1 · · · λpq








ω1
...

ωq



 +




ε1
...
εp



, (2.13)

or

y j = a j1 + a j2c2 + λ j1ω1 + . . . + λ jqωq + ε j, j = 1, . . . , p.

If c2 = 0, and letting µ j = a j1, equation (2.13) reduces to equation (2.3). The structural
equation is defined by:

η = Bd + (η + &ξ + δ, (2.14)

where B is a q1 × r2 matrix of unknown coefficients, d is an r2 × 1 vector of fixed covariates,
and (,&, and δ are defined exactly as in Section 2.2. Note that c and d may have common
elements; and (2.14) reduces to (2.8) if d = 0. A simple example with one outcome latent
variable η, two covariates d1 and d2, three explanatory latent variables ξ1, ξ2, and ξ3, and
) = 0 is given by:

η = b1d1 + b2d2 + γ1ξ1 + γ2ξ2 + γ3ξ3 + δ,

where B = (b1, b2) and & = (γ1, γ2, γ3).
The assumptions of SEMs with fixed covariates are the same as Assumptions A1–A4

given in Section 2.2.3. As fixed covariates are observed values, the distributions of ωi and
yi are still normal. Similarly to the basic linear SEMs, SEMs with fixed covariates can be
identified by fixing appropriate parameters at given values.

2.3.2 An artificial example
The purpose of this artificial example is to illustrate the flexibility in incorporating fixed
covariates in SEMs. After researchers have decided their main objective, it is desirable to use
a path diagram to obtain a clear picture of the hypothesized model. For a complicated model
with many fixed covariates and latent variables, the path diagram representing the whole
model will be rather involved. For clarity, it is worth using one path diagram to represent
the measurement equation, and another path diagram to represent the structural equation.
Moreover, if the context is clear, the residual errors can be ignored in the path diagrams.

Suppose that the main objective is to study diabetic kidney disease, with emphasis on
assessing effects of blood pressure, obesity, lipid control as well as some covariates on that
disease. Based on known medical knowledge, data on the observed variables {PCr, ACR,
SBP, DBP, BMI, WHR} = (y1, . . . , y6) were collected in order to form the latent variables
‘kidney disease (KD)’, ‘blood pressure (BP)’ and ‘obesity (OB)’; see also Section 2.2.1. Data
from observed variables {non-high-density lipoprotein cholesterol (non-HDL-C), low-density
lipoprotein cholesterol (LDL-C), plasma triglyceride (TG)} = (y7, y8, y9) were collected to
measure the latent variable ‘lipid control (LIP)’. The relationships of the aforementioned
observed and latent variables can be assessed through measurement equation (2.3) with
an appropriate non-overlapping loading matrix $. Now, if we know from the real study
that smoking and daily alcohol intake may be helpful in relating these observed and latent
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variables, then ‘smoking (c1)’ and ‘alcohol (c2)’ can be accommodated in the measurement
equation as follows:





y1

y2

y3

y4

y5

y6

y7

y8

y9





=





a11 a12

a21 a22

a31 a32

a41 a42

a51 a52

a61 a62

a71 a72

a81 a82

a91 a92





[
c1

c2

]
+





λ11 0 0 0
λ21 0 0 0
0 λ32 0 0
0 λ42 0 0
0 0 λ53 0
0 0 λ63 0
0 0 0 λ74

0 0 0 λ84

0 0 0 λ94









KD
BP
OB
LIP



 +





ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9





. (2.15)

To study various explanatory effects on the key outcome latent variable KD, we can incorporate
fixed covariates ‘age (d1)’ and ‘gender (d2)’ into the structural equation as follows:

KD = b1age + b2gender + γ1BP + γ2OB + γ3LIP + δ, (2.16)

where b1 and b2, γ1, γ2, and γ3 are unknown regression coefficients. The path diagram related
to this model is presented in Figure 2.2. Note that the same fixed covariates c1 and c2 appear
on both the left- and right-hand sides of the path diagram. Moreover, paths related to the
residual errors and correlations among latent variables are not presented.

2.4 Nonlinear SEMs
Nonlinear SEMs are formulated with a measurement equation that is basically the same as
in linear SEMs, and a structural equation that is nonlinear in the explanatory latent variables.
The theoretical motivation for this generalization is natural; it is similar to the extension
of simple regression with latent variables to multiple regression with latent variables. From
a practical point of view, the development of nonlinear SEMs is motivated by the fact that
nonlinear relations among latent variables are important for establishing more meaningful and
correct models in some complicated situations; see Schumacker and Marcoulides (1998) and
references therein on the importance of interaction and quadratic effects of latent variables
in social and psychological research. In biomedical research, the importance of interaction
effects has been increasingly recognized. In the study of pathogenesis of complex diseases,
it is necessary to consider the gene–gene and gene–environment interactions (Chen et al.,
1999). In the case of diabetic kidney disease, there are interactions among glucose, lipid,
and hemodynamic pathways in the activation of the renin angiotensin system (Fioretto et al.,
1998; Parving et al., 1996).

2.4.1 Basic nonlinear SEMs
Let y,µ,$, ε,ω, η, and ξ denote random vectors and parameters with the same definitions as
in Section 2.2. The measurement equation of nonlinear SEMs is defined as

y = µ + $ω + ε, (2.17)

which has exactly the same form as in (2.3). The structural equation is formulated as

η = (η + &F(ξ) + δ, (2.18)
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Figure 2.2 Path diagram representing the model defined by (2.15) and (2.16). The residual
errors have been omitted.

where (,&, and δ are defined the same as before, and F(ξ) = ( f1(ξ), . . . , ft (ξ))
T is a t × 1

vector-valued function with nonzero, known, and linearly independent differentiable functions
f1, . . . , ft , and t ≥ q2.

Let {yi, i = 1, . . . , n} be the observed data set with a sample size n, where the yi are
modeled via a nonlinear SEM with latent variables ηi and ξi, and measurement errors εi and
δi. The assumptions of the model for developing related statistical methods are the same as
Assumptions A1–A4 given in Section 2.2.3. Note that, due to the presence of the nonlinear
terms of ξ in F(ξ), the distributions of ωi and yi are no longer normal. In other words, nonlinear
SEMs do not assume that ωi and yi are normal.

Similar to linear SEMs, the measurement equation of nonlinear SEMs can be identified
by fixing appropriate parameters (particularly those in $) at some given values. To achieve an
identified structural equation, the choice of F(ξ) in the structural equation is not completely
arbitrary. For example, the following obvious cases are not allowed: F1(ξ) = (ξ1, ξ2, ξ

2
1 , ξ 2

1 )T

and F2(ξ) = (ξ1, ξ2, ξ1ξ2, 0)T . They should be modified as F1(ξ) = (ξ1, ξ2, ξ
2
1 )T and
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F2(ξ) = (ξ1, ξ2, ξ1ξ2)
T , respectively. An example of identified structural equations is:

(
η1

η2

)
=

(
0 π

0 0

)(
η1

η2

)
+

(
γ11 γ12 0 0 0
γ21 γ22 γ23 γ24 γ25

)





ξ1

ξ2

ξ 2
1

ξ1ξ2

ξ 2
2




+

(
δ1

δ2

)
.

The interpretation of the parameter matrices $,(, and & is basically the same as before; that
is, they can be interpreted as regression coefficients in regression models. More care is needed
to interpret the mean vector of y. Let $T

k be the kth row of $. For k = 1, . . . , p, it follows
from equation (2.3) that E(yk) = µk + $T

k E(ω). Although E(ξ) = 0, it follows from equation
(2.18) that E(η) %= 0 if F(ξ) is a vector-valued nonlinear function of ξ and E(F(ξ)) %= 0. Hence
E(ω) %= 0 and E(yk) %= µk. Let $T

k = ($T
kη,$

T
kξ ) be a partition of $T

k that corresponds to the
partition of ω = (ηT , ξT )T . Because E(ξ) = 0 and E(η) = [(I − ()−1&]E(F(ξ)), it follows
from (2.17) that

E(yk) = µk + $T
kηE(η) + $T

kξ E(ξ) = µk + $T
kη[(I − ()−1&]E(F(ξ)). (2.19)

As F(ξ) is usually not very complicated in most practical applications, E(F(ξ)) is not very
complex and thus the computation of E(yk) is not difficult.

2.4.2 Nonlinear SEMs with fixed covariates
Linear SEMs with fixed covariates can be naturally generalized to nonlinear SEMs with fixed
covariates through the following measurement and structural equations:

y = Ac + $ω + ε, (2.20)

η = Bd + (η + &F(ξ) + δ, (2.21)

where the definitions of the random vectors and the parameter matrices are the same as in
Sections 2.2. and 2.3. In this model, the measurement equation is the same as in (2.12), while
the structural equation can be regarded as a natural extension of equations (2.14) and (2.18).
As a simple example, we consider a continuation of the artificial example as described in
Section 2.3.2. Suppose that we wish to study various interactive effects of the explanatory
latent variables BP, OB, and LIP on KD. To achieve our goal, we consider a model with its
measurement equation given in (2.15), while the structural equation is formulated as

KD = b1d1 + b2d2 + γ1BP + γ2OB + γ3LIP + γ4(BP × OB) + γ5(BP × LIP)

+ γ6(OB × LIP) + δ. (2.22)

In this formulation, B = (b1, b2), d = (d1, d2)
T ,& = (γ1, γ2, γ3, γ4, γ5, γ6), and F(ξ) =

(BP, OB, LIP, BP × OB, BP × LIP, OB × LIP)T .
While the structural equation (2.21) can include nonlinear terms of ξ in predicting η, it

does not accommodate nonlinear terms of ξ and d simultaneously. A simple extension of the
structural equation to cope with the above consideration is

η = (η + $ωG(d, ξ) + δ, (2.23)
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where G(d, ξ) = (g1(d, ξ), . . . , gt (d, ξ))T is a vector-valued function with nonzero, known,
and linearly independent differentiable functions. A special case of this general structural
equation is the one defined by (2.21) with $ω = (B,&) and G(d, ξ) = (dT , F(ξ)T )T . The
assumptions of this nonlinear SEM with nonlinear terms of covariates are the same as Assump-
tions A1–A4 given in Section 2.2.3. Moreover, identification of the model can be achieved via
a method similar to that described in Section 2.2.4. Again, care should be taken to interpret
the mean of y. Using the same notation as in Section 2.4.1, we have

E(yk) = AT
k c + $T

kη[(I − ()−1$ω]E[G(d, ξ)], (2.24)

where AT
k is the kth row of A. The artificial example presented above is again used to

illustrate the key idea of incorporating nonlinear terms of fixed covariates and explanatory
latent variables in the structural equation. The measurement equation is again defined by
(2.15), while the structural equation can be formulated as

KD = b1d1 + b2d2 + γ1BP + γ2OB + γ3LIP + γ4(BP × OB) + γ5(BP × LIP)

+ γ6(OB × LIP) + γ7(d1 × BP) + γ8(d1 × OB) + γ9(d2 × OB)

+γ10(d2 × LIP) + δ.
(2.25)

Note that more complex product terms of d1, d2, BP, OB, and LIP can be assessed via other
appropriately defined structural equations. The path diagram corresponding to structural
equation (2.25) is presented in Figure 2.3. For clarity, and because the measurement equation
is the same as before, Figure 2.3 does not include the observed variables in y, and fixed
covariates c1 and c2.

b2b1 γ10

γ9 

γ8 

γ7 

γ6 
γ5 γ4 

γ1 

BP × LIP 

γ2 

γ3 

 
KD 

 
d1 

 
d2 

OB

d1 × OB 

d2 × OB

d2 × LIP 
BP 

LIP 

BP × OB OB × LIP 

d1 × BP 

Figure 2.3 Path diagram representing structural equation (2.25). The residual error has been
omitted.
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In general, as the fixed covariates in d may come from arbitrary distributions that result in
continuous or discrete data, and the functions fj in G(d, ξ) are differentiable functions which
include any product terms as special cases, the nonlinear SEM defined by (2.20) and (2.23)
(or (2.21)) can handle a wide range of situations.

2.4.3 Remarks
Due to the nonnormal distributions associated with the nonlinear terms of latent variables,
development of statistical methods for inference based on the traditional approach of covari-
ance structure analysis encounters certain difficulties. Several approaches have been proposed
in the past; examples are the product-indicator method (e.g. Jaccard and Wan, 1995), the
moment-based method (Wall and Amemiya, 2000), and the latent moderated structural equa-
tions (Klein and Moosbrugger, 2000) approaches. Most of these approaches used unnatural or
technically involved techniques to handle the nonnormality problem. Hence, nonlinear SEMs
have been regarded as complicated models. In the next chapter, we will discuss the application
of the Bayesian approach to the analysis of SEMs. Using the Bayesian approach, the develop-
ment of statistical methods for analyzing nonlinear SEMs is essentially the same as for linear
SEMs. Hence, we regard nonlinear SEMs as standard models rather than complicated models.

2.5 Discussion and conclusions
Real analyses of most complicated studies (e.g. complex diseases) usually involve a large
number of observed and latent variables of interest. Although the emphasis is on assessing
the effects of explanatory latent variables on the key outcome latent variables, some particular
explanatory latent variables may be significantly related to other explanatory latent variables
and/or fixed covariates. For instance, in the artificial example discussed in Section 2.3.2,
although KD is the key outcome latent variable, the explanatory latent variables BP and OB,
as well as the fixed covariates, age (d1) and gender (d2), are also expected to have effects on
the latent variable LIP. To provide a more concrete illustration, suppose that we are interested
in assessing the SEM with the corresponding path diagram presented in Figure 2.4. Compared
to the SEM presented in Figure 2.2, we also have: (i) two additional observed genetic variables
GV1 and GV2 which correspond to a latent variable LGV, (ii) a path from LGV to LIP, (iii) a
path from OB to LIP, and (iv) a path from age (d1) to LIP.

The measurement equation is defined by:
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(2.26)
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Figure 2.4 Path diagram representing the model defined by (2.26) and (2.27). The residual
errors have been omitted.

To formulate the structural equation associated with this path diagram, LIP is treated as an
outcome latent variable. More specifically, the structural equation is defined as:

(
KD
LIP

)
=

(
b1 b2

b3 0

)(
d1

d2

)
+

(
0 π1

0 0

)(
KD
LIP

)
+

(
γ1 γ2 0
0 γ3 γ4

)


BP
OB

LGV



 +
(

δ1

δ2

)
.

(2.27)

Hence, through an appropriate formulation of the structural equation, SEMs provide con-
siderable flexibility in assessing various kinds of relationships among latent variables and
covariates. Here, as OB has a direct effect on LIP, which itself also has a direct effect on KD,
OB has an indirect effect (π1 × γ3) on KD. Hence, the total effect of OB on KD is γ2 + π1γ3.
Given the flexibility in formulating different structural equations, the above modeling con-
cerning LIP can be considered for explanatory latent variables BP and OB.

In general, latent variables involved in the study of complex situations commonly have in-
terrelationships with other observed and latent variables similar to those discussed above.
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There is a temptation to develop a comprehensive SEM that takes into account all the
interrelationships of the observed and latent variables. From a practical point of view, the
following issues have to be carefully considered in the development of a comprehensive
model:

(i) Due to the large amount of observed variables and latent variables, the size of the
comprehensive SEM and the number of its unknown parameters are large. It is
important to make sure the sample size of the available data set is large enough to
yield accurate statistical results.

(ii) The data structures associated with complex situations are usually complicated.
Researchers may encounter mixed types of continuous, ordered and unordered cat-
egorical data with missing entries, and hierarchical or heterogeneous structures.
Although Bayesian methods (to be introduced in next chapter) are efficient and can
be applied to handle such complex data, if the size of the proposed SEM and the num-
ber of parameters are large, we may encounter difficulties in achieving convergence
of the related computing algorithm and thus in obtaining statistical results.

(iii) Researchers need to make sure that the hypothesized model can be analyzed under
the proposed SEM framework. In this chapter, the most general SEM is the nonlin-
ear SEM with fixed covariates defined by equations (2.20) and (2.23). This model
has limitations. Note that the vector-valued function G(d, ξ) for assessing nonlin-
ear terms of d and ξ does not involve any outcome latent variables in η. Hence,
once a latent variable is treated as an outcome latent variable, nonlinear terms of
this latent variable and interactive effects between this latent variable and other ex-
planatory latent variables (or fixed covariates) cannot be used to predict the other
outcome latent variables. For instance, consider the previous artificial example re-
lated to the SEM with structural equation (2.27). In this model, as LIP is treated
as an outcome variable, it is an element in η. Hence, it cannot be accommodated
in G(d, ξ), and nonlinear effects of LIP on the key outcome variable KD cannot
be assessed.

Ideally, establishing a comprehensive model that simultaneously takes into account all the
interrelationships among all observed variables, latent variables, as well as fixed covariates
is desirable. In practice, however, if the comprehensive model involves a large number of
variables and unknown parameters, and the underlying data structure is complex, one may
encounter serious difficulties in developing such a comprehensive model. In these situations,
it is advantageous to separate the comprehensive model into submodels, and then conduct the
SEM analysis for each submodel. Of course, among the submodels, the one that involves the
key outcome variables of main interest is the most important.

For example, in the analysis of the above artificial example, the comprehensive SEM
that treats LIP as an outcome latent variable and accommodates its nonlinear effects in the
structural equation associated with the path diagram in Figure 2.4 can be separated into
two submodels. One is the SEM represented by measurement equation (2.15), and structural
equation (2.25) with main focus on the outcome latent variable KD. In this submodel, LIP
is only treated as an explanatory latent variable (no paths from d1, BP, and OB to LIP; see
Figure 2.3). Hence, its nonlinear effects BP × LIP, OB × LIP, and d2× LIP on KD can be
assessed. To further assess the relationships among LIP and the other covariates and/or latent
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variables, the following submodel is used. The measurement equation is defined by
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. (2.28)

The structural equation is given by

LIP = b3d1 + γ4OB + γ5LGV + δ. (2.29)

A path diagram representing the submodel defined by (2.28) and (2.29) is given in Fig-
ure 2.5. Here, LIP is treated as an outcome latent variable. Based on the estimates of the path
coefficients γ3 in the submodel associated with Figure 2.3, and γ4 in the submodel defined by
equations (2.28) and (2.29) (see also Figure 2.5), we can get some idea about the indirect effect
of OB on KD via γ̂3 × γ̂4. However, as γ̂3 and γ̂4 are not simultaneously estimable through a
single model, the estimate of this indirect effect is not optimal and should be interpreted with
care. It should also be noted that there are two sets of estimates for the common parameters in
these two submodels. One set of estimates is obtained through the analysis of the submodel
defined by (2.15) and (2.25), while the other set of estimates is obtained through analysis of
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Figure 2.5 Path diagram representing the submodel defined by (2.28) and (2.29). The resid-
ual errors have been omitted.
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the submodel defined by (2.28) and (2.29). However, the differences between these two sets
of estimates are very small; and in practice, they would not result in different interpretations
of the results. Hence, this issue is not important. The tradeoff of these disadvantages in using
submodels is the possibility of assessing various nonlinear effects in relation to LIP through
the submodel associated with Figure 2.3. In practice, the choice between the different ap-
proaches in applying SEMs heavily depends on the objective of the real study. For instance,
if assessing the nonlinear effect of LIP on KD is more important, it may be worthwhile to use
submodels in the analysis.

In the analysis of SEMs, sound statistical methods that seriously take into consideration
the structures of the hypothesized model and data should be used. Parameter estimates should
be obtained via valid statistical procedures. It is necessary to develop rigorous goodness
of fit and model comparison statistics for assessing the goodness of fit of the hypothesized
model to the sample data and for comparing competing models. In the next chapter, we will
introduce the Bayesian approach with optimal statistical properties for estimation, goodness
of fit analysis, and model comparison.

In this chapter, we have discussed the basic SEMs, namely the linear SEMs and nonlinear
SEMs with fixed covariates, and their applications to the analysis of practical data. While
these SEMs are helpful for analyzing real data sets related to biomedical research, they have
limitations which are mainly induced by their underlying assumptions. There is a need to
develop more subtle generalizations of these models to overcome the limitations. Based on the
requirements of substantive research, certain generalizations will be discussed in subsequent
chapters. Given the developments of the basic models and their generalizations, SEMs provide
efficient tools with great flexibility for analyzing multivariate data in behavioral, educational,
medical, social, and psychological sciences.
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