

Referências

- D. Skoog, D. West, J. Holler, S. Crouch. Fundamentos de Química Analítica, Thomson, 9ed.
- D. Skoog, D. West, J. Holler, S. Crouch. Fundamentos de Química Analítica, Thomson, 9ed.
- Daniel C. Harris, Análise Química Quantitativa, Editora LTC, 9ed.
- ▶ Vogel, A. I. Análise Química Quantitativa, LTC, 6a ed.
- G. D. Christian. Analytical chemistry. John Wiley & Sons, 7ed.

Complementar:

M. F. M. Tavares, Química Nova, 19/2 (1996) 173.

2

Eletroforese capilar

- ✓ Eletroforese: separação baseado nas velocidades de migração diferenciais de compostos iônicos ou ionizáveis sob ação de um campo elétrico.
- ✓ Até o aparecimento da eletroforese capilar (EC), as separações eram realizadas em um meio plano estabilizado como papel ou um gel poroso semissólido.
- ✓ No início dos anos 1980, os cientistas começaram a verificar a viabilidade de realizar as mesmas separações com microamostras em tubos capilares de sílica fundida (resultados promissores em termos de resolução, velocidade e potencial para automação) → EC tornou-se uma ferramenta importante para a solução de problemas analíticos envolvendo separações.

4

Eletroforese - Histórico

► Eletroforese em escala macro, as separações são feitas em papel ou gel (Arne Tiselius – 1930).

A técnica foi pioneira na década de 1930 pelo químico biofísico sueco A. Tiselius, que recebeu o Prêmio Nobel em 1948 por seu trabalho em eletroforese e "descobertas relativas à natureza complexa das proteínas séricas".

▶ Eletroforese em escala micro ou nano, as separações são feitas em tubo capilar (James W. Jorgenson - 1981) → viabilidade do uso como técnica analítica instrumental.

5

Fonte: M. F. M. Tavares, Química Nova, 19/2 (1996) 173.

5

Eletroforese - Histórico

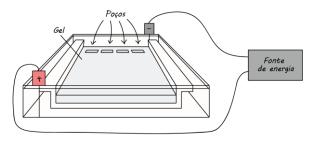
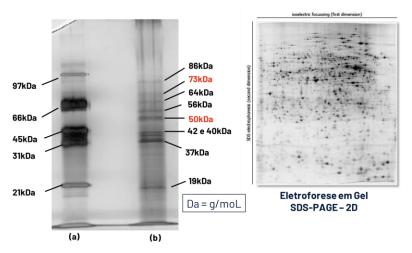


Diagrama de Eletroforese em Gel (escala macro)

SDS-PAGE (Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis)

- A combinação do SDS-PAGE elimina a influência da estrutura e carga e as proteínas separam em função da diferença do peso molecular.
- Separação de proteínas (5 < MM < 250 kDA)</p>

https://www.youtube.com/ watch?v=hdmQaAycafc



6

Fonte: https://pt.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-electrophores is/a/gel-electrophores is/a/g

Eletroforese - Histórico

SDS-PAGE-1D

- (a) padrão de proteínas de baixo peso molecular
- (b) amostra de água de coco

7

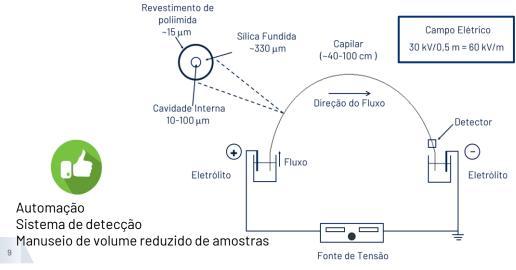
7

Eletroforese - Histórico

Problemas da eletroforese em escala macro

- ➤ Baixa capacidade de dissipar calor causado pela passagem de corrente através do meio condutor (aquecimento por efeito Joule).
- Calor é dissipado nas extremidades do recipiente gerando gradientes de temperatura.
- Gradientes de temperatura induzem gradientes de densidade que podem provocar convecções.
- > Fluxos convectivos servem para misturar bandas.
- Mobilidade é dependente da temperatura.

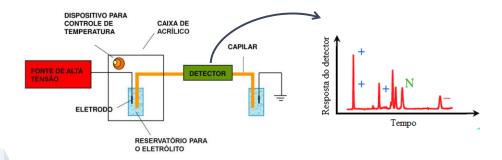
8


Fonte: M. F. M. Tavares, Química Nova, 19/2 (1996) 173.

Q

Eletroforese capilar - Diagrama

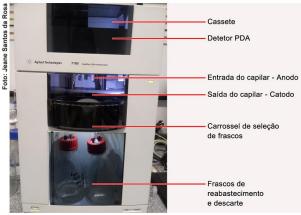
➤ Solução para o problema do efeito Joule: utilização de tubos com dimensões capilares → favorece a dissipação do calor



9

Eletroforese capilar - Instrumentação

- ✓ Capilar de sílica fundida preenchido com um tampão;
- ✓ Diâmetro interno entre 10 e 100 µm;
- ✓ Comprimento de 40 a 100 cm;
- ✓ Dois reservatórios de tampão que também contêm eletrodos de platina;
- ✓ Introdução da amostra em uma das extremidades e a detecção na outra;
- ✓ Potencial de 5 a 30 kV cc é aplicado entre os eletrodos.



10

Eletroforese capilar - Instrumento

11

Fonte: https://www.lumexinstruments.com/br/eletroforese_capilar/capel-205.php e https://ainfo.cnptia.embrapa.br/digital/bitstream/item/195077/1/Doc-133-CGPE-15106-CP-18-18-27mar2019.pdf

11

Eletroforese capilar

Sample Injection

4 NaCl and 6 NaBrO₃ molecules

12

https://www.youtube.com/watch?v=wStV1rFjH0o

Eletroforese capilar - Coluna Capilar

- ➤ Sílica fundida (alta pureza) → importante por gerar o fluxo eletrosmótico
 - > permite dimensões precisas
 - > alta constante dielétrica
 - baixa condutividade elétrica
 - > alta condutividade térmica
 - > boa resistência mecânica
 - > maleabilidade
 - > boa resistência química
 - > alta transmitância óptica (190-900 nm)
- > Vidro
- Teflon

13

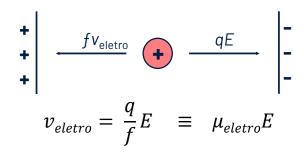
13

Eletroforese capilar - Princípios

Quais os princípios que regem a separação eletroforética?

- ► Mobilidade eletroforética
- ► Mobilidade eletrosmótica

- Os componentes de uma solução são separados pela aplicação de uma voltagem de ponta a ponta de um tubo capilar de sílica fundida.
- Jons diferentes têm mobilidades diferentes e migram através do capilar em velocidades diferentes.
- Quando um íon de carga q (C) está sob ação de um campo elétrico E (V/m), a força que atua sobre o íon é qE (Newtons).
- ➤ A força de retardo (atrito) é dada pelo produto da velocidade do íon (v_{eletroforética}) e coeficiente de atrito (f).


15

15

Eletroforese capilar - Princípios

- ightharpoonup A mobilidade eletroforética (μ_{eletro}) é a constante de proporcionalidade (q/f) estabelecida entre a velocidade do íon (ν_{eletro}) e a intensidade do campo elétrico (E).
- ightharpoonup A mobilidade eletroforética ($\mu_{\text{eletro}} = \mathbf{q}/f$) é proporcional a carga e inversamente proporcional ao atrito.

16

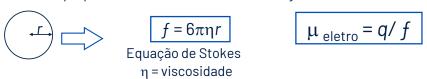
E é a força do campo elétrico em volts por centímetro; V é a voltagem aplicada; L, o comprimento do tubo entre os dois eletrodos; μ_{eletro} é a mobilidade eletroforética

Eletroforese capilar - Separações Eletroforéticas

A **mobilidade eletroforética** é **proporcional** à **carga do íon** e inversamente proporcional à força de retardo por fricção sobre o íon (determinada pelo tamanho e formato do íon e pela viscosidade do meio).

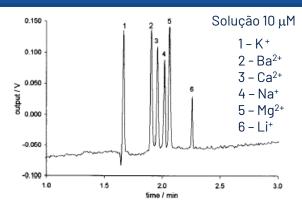
- ✓ O campo elétrico atua em íons: se duas espécies diferem na carga ou nas forças de atrito enquanto se movem através do tampão, elas são separadas. Espécies neutras não são afetadas pelo campo*.
- ✓ Para íons de mesmo tamanho, ↑ carga ↑ força motriz e ↑ taxa de migração. Razão carga/tamanho combina esses dois efeitos.
- ✓ Em contraste com a CLAE, apenas uma fase está envolvida na separação eletroforética.

17


Eletroforese capilar - Princípios

➤ Em moléculas de mesmo tamanho, a mobilidade aumenta com a carga (considerando mesmo solvente e mesma temperatura)

$$\begin{split} HO_2C & \overbrace{CO_2} \\ CO_2H & -O_2C & CO_2 \\ CO_2H & -O_2C & CO_2 \\ \mu_{ep} &= -2.54 \times 10^{-8} \frac{m^2}{V \cdot s} & \mu_{ep} &= -4.69 \times 10^{-8} \frac{m^2}{V \cdot s} \\ & (\text{solvent is } H_2O \text{ at } 25^\circ\text{C}) \end{split} \quad \mu_{ep} &= -5.95 \times 10^{-8} \frac{m^2}{V \cdot s} \end{split}$$


➤ É inversamente proporcional ao coeficiente de atrito (f)

18

Eletroforese capilar - Eletroferograma

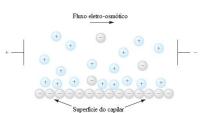
Raio do íon: Li+ (r = 78 pm) K+ (r = 136 pm) Ba²⁺ (r = 138 pm)

Íons	Mobilidade (m²/s.V)	
K ⁺	$7,62 \times 10^{-8}$	
Ba ²⁺	$6,59 \times 10^{-8}$	
Ca ²⁺	$6,12 \times 10^{-8}$	
Na⁺	$5,19 \times 10^{-8}$	
Li+	$4,01 \times 10^{-8}$	

19

19

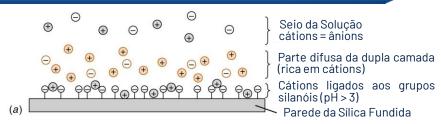
Eletroforese capilar - Mobilidade de Íons



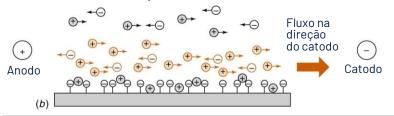
ĺons	Mobilidade (m²/s.V)	Íons	Mobilidade (m²/s.V)
H ⁺	$36,30 \times 10^{-8}$	0H⁻	20,50 x 10 ⁻⁸
Rb ⁺	7.92×10^{-8}	Fe(CN) ₆ 4-	11,45 x 10 ⁻⁸
K ⁺	$7,62 \times 10^{-8}$	Fe(CN) ₆ 3-	$10,47 \times 10^{-8}$
NH_4^+	$7,61 \times 10^{-8}$	SO ₄ ²⁻	$8,27 \times 10^{-8}$
La ³⁺	$7,21 \times 10^{-8}$	Br⁻	$8,13 \times 10^{-8}$
Ba ²⁺	$6,59 \times 10^{-8}$	 -	$7,96 \times 10^{-8}$
Ag+	$6,42 \times 10^{-8}$	CI-	7.91×10^{-8}
Ca ²⁺	$6,12 \times 10^{-8}$	NO_3^-	$7,40 \times 10^{-8}$
Cu ²⁺	$5,56 \times 10^{-8}$	CIO ₄ -	$7,05 \times 10^{-8}$
Na⁺	$5,19 \times 10^{-8}$	F-	$5,70 \times 10^{-8}$
Li+	$4,01 \times 10^{-8}$	HCO ₃ -	$4,61 \times 10^{-8}$
		$CH_3CO_2^-$	$4,24 \times 10^{-8}$

20

- Característica particular EC: fluxo eletrosmótico
- Causa: dupla camada elétrica que se desenvolve na interface sílica/solução.
- ➤ Em pH > 3, a parede interna do capilar de sílica encontra-se carregada negativamente (ionização dos grupos silanóis (Si-OH) da superfície.
- Os cátions do tampão congregam-se em uma dupla camada elétrica adjacente à superfície negativa do capilar de sílica.
- Os cátions na camada difusa externa à dupla camada são atraídos para o cátodo, e uma vez que estão solvatados, arrastam o solvente com eles.



21


21

Eletroforese capilar - Princípios

Quando um campo elétrico é imposto tangencialmente à superfície, forças elétricas atuam nas cargas da camada difusa, causando movimento unilateral de íons em direção ao eletrodo de carga oposta. Durante a migração, íons transportam moléculas de água, induzindo um fluxo de solução como um todo (fluxo eletrosmótico).



22

Fluxo líquido da solução com um **perfil plano** através do tubo: fluxo origina-se em suas paredes.

Contraste com o **perfil laminar (parabólico)** observado em fluxos gerados por pressão na CLAE.

Perfil é essencialmente plano: o fluxo eletrosmótico não contribui significativamente para o alargamento de banda, como o fluxo gerado por pressão o faz em CL.

23

Eletroforese capilar - Princípios

- ✓ A vazão do fluxo eletrosmótico é geralmente maior que a velocidade de migração eletroforética dos íons individuais.
- ✓ **Resultado**: torna-se efetivamente a **bomba de fase móvel** da ECZ.
- ✓ Mesmo que os analitos migrem de acordo com as suas cargas dentro do capilar, a vazão eletrosmótica é normalmente suficiente para arrastar todas as espécies positivas, neutras e mesmo negativas para a mesma extremidade do capilar.
- ✓ 0 eletroferograma resultante mostra-se como um cromatograma, porém com picos mais estreitos.

24

 \triangleright A **mobilidade eletrosmótica** (μ_{eo}) é a constante de proporcionalidade entre a velocidade eletrosmótica (ν_{eo}) e a intensidade do campo elétrico aplicado (E).

$$v_{eo} = \mu_{eo} E$$

Como a velocidade eletrosmótica (v_{eo}) pode ser estimada?

 $v_{eo} = rac{distância~entre~o~injetor~e~o~detector}{tempo~de~migração~de~uma~molécula~neutra}$

- Diretamente proporcional à densidade de carga na superfície da sílica
- → pH < 7 (a eletrosmose diminui) → Si-O- → Si-OH (diminuição da densidade de carga superficial)
 </p>
- > pH = 9 (tampão borato) o fluxo eletrosmótico é ~2 mm/s
- > pH = 3 (tampão citrato) o fluxo eletrosmótico é ~0.2 mm/s

25

25

Eletroforese capilar - Princípios

Mobilidade Eletrosmótica

- > Inversamente proporcional à força iônica do meio
- > Força iônica alta (a eletrosmose diminui)
- espessura da camada difusa íons solvatados ~ 10 nm (μ = 1 mM) ~ 0,3 nm (μ = 1 M)
- O fluxo eletrosmótico uniforme contribui para a alta resolução da eletroforese capilar
- ➤ Fluxo de íons no capilar causa aquecimento Joule que causa mudança na uniformidade e consequente dispersão
- Em condições normais o canal central do capilar está 0,02 a 0,3 K mais quente do que a parede
 - Viscosidade menor na região mais quente
 - Causa perturbação do fluxo eletrosmótico

Capilar fino (diâmetro 50µm) maior dissipação do calor Maior diâmetro do capilar → maior gradiente de temperatura

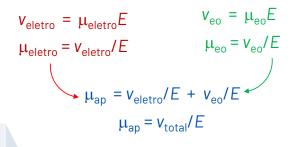
26

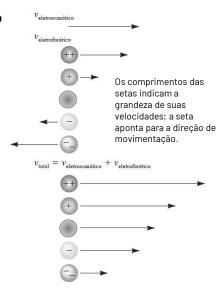
Mobilidade Aparente

ightharpoonup A mobilidade aparente (μ_{ap}) de um íon é a soma da mobilidade eletroforética e da mobilidade eletrosmótica da solução.

$$\mu_{ap} = \mu_{eletro} + \mu_{eo}$$

- ightharpoonup Cátion do analito movendo-se na mesma direção do fluxo eletrosmótico (μ_{eletro} e μ_{eo}) tem o mesmo sinal, portanto $\mu_{ap} > \mu_{eletro}$.
- ightharpoonup Ânion do analito movendo-se na direção oposta ao fluxo eletrosmótico (μ_{eletro} e μ_{eo}) tem sinais opostos
 - \triangleright pH ≥ 7 a eletrosmose transporta os ânions para o catodo ($\mu_{eletro}(-) < \mu_{eo}$).
 - > pH < 7 a eletrosmose é menos intensa e os ânions podem não alcançar o detector $(\mu_{eletro}(-)>\mu_{eo})$ → inverter polaridade da corrente.


27


Eletroforese capilar - Princípios

Velocidades na presença do fluxo eletrosmótico

A eletrosmose é frequentemente desejável em certos tipos de EC, mas não em outros → pode ser minimizado por recobrimento da parede interna do capilar com um reagente como o trimetilclorosilano para eliminar os grupos silanóis da superfície.

28

- ightharpoonup O soluto se movendo pela coluna tende a se dispersar numa forma gaussiana com desvio padrão δ .
- Quanto mais tempo um soluto passa no capilar, mais largo se torna o sinal.
- A resolução entre picos adjacentes de um eletroferograma é a diferença entre os tempos de migração (Δt) dividida pela largura média dos picos na linha de base (w_{méd}.)

$$R_{S} = \frac{\Delta t_{R}}{\overline{W}_{m\acute{e}d}} = \frac{0.589\Delta t_{R}}{\overline{W}_{1/2m\acute{e}d}} = \frac{\sqrt{N}}{4} \frac{\Delta \mu_{ap}}{\overline{\mu_{ap}}}$$

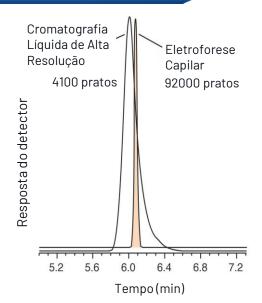
29

29

Eletroforese capilar - Pratos Teóricos

Equação de van Deemter

Cromatografia coluna empacotada


$$ABC \neq 0$$

> Cromatografia coluna capilar

$$A = 0$$

> Eletroforese Capilar

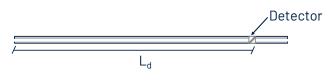
$$AC = 0$$

30

Eletroforese capilar - Pratos Teóricos

✓ Embora a eletroforese capilar não seja um procedimento cromatográfico, as separações são geralmente descritas de maneira similar à cromatografia. O número de pratos, por exemplo:

$$N=rac{\mu V}{2D}$$
 em que D é o coeficiente de difusão do soluto (cm²/s)


- ✓ Resolução aumenta com o número de pratos → altas voltagens para se obter separações com uma alta resolução.
- ✓ Ao contrário da situação em cromatografia, o número de pratos não aumenta com o comprimento da coluna.
- ✓ Tipicamente, o número de pratos em eletroforese capilar é de 100.000 a 200.000 com as voltagens usuais aplicadas, em comparação com as 5.000 a 20.000 típicas para a CLAE.

31

31

Eletroforese capilar - Pratos Teóricos

$$N = 16t_{R}^{2}/w^{2}$$

$$W = 4\sigma$$

$$\downarrow$$
Desvio-padrão da banda
$$N = t_{R}^{2}/\sigma^{2} \longrightarrow N = L_{d}^{2}/\sigma^{2}$$

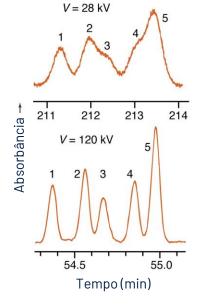
$$\downarrow$$

$$V_{total} = L_{d}/t$$

$$t = L_{d}/\mu_{ap}E$$

$$E = V/L_{t}$$

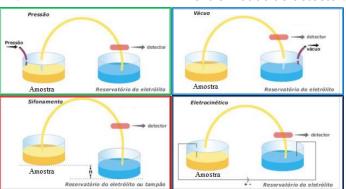
$$N = \frac{\mu_{ap} V L_{d}}{2D L_{t}}$$


32

Eletroforese capilar - Resolução

$$N = \frac{\mu_{ap} V L_d}{2D L_t}$$

- ► Maior N melhor a separação
- ▶ Para uma razão constante de L_d/L_t, N é independe do comprimento do capilar
- ► Maior E maior N
- ► Fatores que afetam a resolução
 - ✓ Variância devido à injeção ou à detecção
 - ✓ Aquecimento do capilar
 - ✓ Interação do analito na parede do capilar
 - ✓ Mobilidade dos íons do soluto
 - ✓ Mobilidade eletrosmótica


33 33

Eletroforese capilar - Introdução da amostra

✓ Injeção sob pressão

✓ Vácuo pode ser aplicado no tubo, na extremidade do detector.

Adaptado de Queiroz, S.C.N.; Jardim, I.C.S.F. Eletroforese Capilar, Chemkeys, 2011.

 Elevação do frasco acima do nível do capilar para forçar a amostra para dentro do tubo (sifonação).

✓ Eletrocinético

Eletroforese capilar - Introdução da amostra

Injeção hidrodinâmica

- Frasco de amostra é pressurizado na entrada do capilar ou faz-se um vácuo na saída (ΔP conhecido)
- > Frasco de amostra é elevado em relação ao outro (sifonagem)

$$\Delta P = \rho g \Delta h$$

Cálculo do volume injetado é dado por:

$$V = \frac{\Delta P \pi d^4 t}{128 \eta L_t}$$

 ΔP = diferença de pressão entre as extremidades do capilar d = diâmetro interno do capilar t = tempo de injeção η = viscosidade da amostra

L_t = comprimento do capilar

Pode ocorrer alargamento devido ao perfil de velocidade parabólico característico do fluxo induzido por pressão

35

35

Eletroforese capilar - Introdução da amostra

Injeção eletrocinética

- Usa-se um campo elétrico para direcionar a amostra para o capilar (combinação das velocidades eletroforéticas e eletrosmótica)
- Cálculo do número de mols de cada íon em t segundos é dado por:

$$n = \mu_{ap} E \frac{\kappa_t}{\kappa_a} t \pi r^2 C$$

 μ_{ap} = mobilidade aparente (μ_{ap} = $\,\mu_{eletro}$ + $\,\mu_{eo}$)

E = campo elétrico aplicado (V/m)

r = raio do capilar

C = concentração da amostra (mol/l)

t = tempo de injeção

 κ_t/κ_a = razão entre as condutividades do analito no tampão e amostra

Problemas associados

mobilidade diferentes dos analitos amostra injetada não tem a mesma composição da amostra original

Mais indicada para eletroforese capilar em gel (transferência por volume é impossível)

36

Eletroforese capilar - Condicionamento do Capilar

- Condicionamento do capilar
 - ✓ Lavagem com NaOH 1 M e 0,1 M (~15 min cada)
- Para uso em pH elevado (pH ~9)
 - ✓ Lavagem com NaOH 0,1 M (~2 min)
 - ✓ Lavagem com água deionizada
 - ✓ Lavagem com tampão de corrida
- Para uso em pH baixo (pH ~2,5)
 - ✓ Lavagem com ácido fosfórico 1 M
 - ✓ Lavagem com água deionizada
 - ✓ Lavagem com o tampão de corrida

Tabela 1. Sistemas tampão comumente usados em eletroforese capila	Tabela 1.	Sistemas tampã	comumente	usados em	eletroforese	capilar
---	-----------	----------------	-----------	-----------	--------------	---------

Sistema Tampão	pK_a	Sistema Tampão	pK_a	Sistema Tampão	pK _a
Fosfato	2,12	Imidazol	7,00	HEPPSO	8,00
Citrato	3,06	MOPS	7,20	TRICINA	8,15
Formiato	3,75	Fosfato	7,21	Hidrocloreto de amido-glicina	8,20
Succinato	4,19	TES	7,50	Glicilglicina	8,25
Citrato	4,74	HEPES	7,55	TRIS	8,30
Acetato	4,75			BICINA	8,35
Citrato	5,40			Morfolina	8,49
Succinato	5,57			Borato	9,24
MES	6,15			CHES	9,50
ADA	6,60			CHAPSO	9,60
BIS-TRIS propano	6,80			CAPS	10,40
PIPES	6.80			Fosfato	12,32
ACES	6,90				
MOPSO	6.90				

ACES: ácido 2-[(2-amino-2-oxoetti)]amino] etanossulfônico; ADA; ácido N-[2-acetamido]-2-iminodiacético; BICINA: N.N-bis[2-hidroxietti]]amino] etanossulfônico; BIS-TRIS: 1.3, bis[tris[hidroximetil]-metilamino] propano; CAPS; ácido 3-[ciclohexilamino]-1-propanossulfônico; CHAPSO; sulfonato de 3-[(3-colamidopropil)-dimetilamonio]-2-idiroxi-1-propano; CHES: ácido 6-1[S-colamidopropil)-dimetilamonio]-2-idiroxi-1-propano; CHES: ácido 6-N-2-hidroxietti]piperazina. N-2-etanossulfônico; HEPPSO: ácido N-2-hidroxietti]piperazina. N-2-etanossulfônico; HEPPSO: ácido N-2-hidroxietti]piperazina. N-2-bis-acido 3-[N-morfolino]-2-hidroxietti]piperazina. N-

37

37

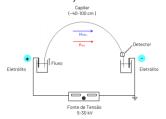
Eletroforese capilar - Aditivos

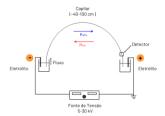
Tabela 2. Aditivos de eletrolito	comumente empregados em eletroforese capilar.	
Aditivo	Função e/ou Efeito	
Ácidos sulfônicos	Agentes de pareamento iônico e modificadores da carga superficial.	
Aminas	Bloqueiam sítios ativos na superfície do capilar. Reduzem adsorção e assimetria de pico	
Anfólitos	Reduzem a interação soluto-capilar, melhoram a resolução e simetria de pico.	
Ciclodextrinas	Usados nas separações quirais e como complexantes auxiliares na separação de compostos neutros.	
Éter coroa	Usados nas separações quirais e como complexantes auxiliares na separação de metais.	
Glicóis	Reduzem a adsorção soluto-capilar, auxiliam na solubilidade de solutos orgânicos e reduzem o fluxo eletroosmótico.	
Metais de transição	Modificam a mobilidade de certos solutos, afetam a resolução.	
Polímeros de celulose	Agentes modificadores do fluxo eletroosmótico.	
Sais inorgânicos	Reduzem o fluxo eletroosmótico, alteram a conformação de proteínas e previnem a adsorção soluto-capilar.	
Solventes orgânicos	Aumentam a solubilidade de solutos orgânicos. Reduzem interação soluto-capilar. Agentes modificadores do fluxo eletroosmótico.	
Tensoativos catiônicos	Revertem o fluxo eletroosmótico.	
Uréia	Aumenta a solubilidade das proteínas.	

- Indicações:
 - ✓ para alterar mobilidade do soluto
 - ✓ modificar o fluxo eletrosmótico
 - ✓ solubilizar soluto ou compostos da matriz
 - √ reduzir a interação de certos solutos com a parede do capilar

Fonte: M. F. M. Tavares, Química Nova, 20/5 (19967) 494

38


Eletroforese capilar - Separações


- Separações possíveis com a eletroforese capilar
 - √ espécies iônica
 - √ espécies neutras
 - √ isômeros ópticos
 - √ isótopos naturais
 - ✓ Macromoleculas
- Possibilitou a determinação da sequência das bases adenina (A), citosina (C), guanina (G) e timina (T) no DNA, no estudo do genoma humano.

Montagem

determinação de Cátions

determinação de Ânions

39

39

Eletroforese capilar - Separações

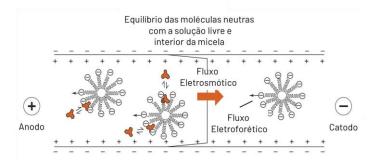
Montagem: determinação de Ânions

ightharpoonup Considerando que a mobilidade aparente (μ_{ap}) de um íon é a soma da mobilidade eletroforética e da mobilidade eletrosmótica da solução.

$$\mu_{ap} = \mu_{eletro} + \mu_{eo}$$

Para isso é importante que ocorra a inversão do fluxo eletrosmótico e, consequentemente, a mobilidade eletrosmótica da solução.

- ► Como inverter o fluxo eletrosmótico?
 - ▶ adição de surfactante catiônico
 - ▶ inversão da polaridade da parede
 - ► fluxo eletrosmótico do catodo para o anodo


40

Eletroforese capilar - Espécies neutras

Cromatografia Eletrocinética Micelar

- ► Separa espécies neutras e íons
- ► Surfactante dodecil sulfato de sódio (n-C₁₂H₂₅OSO₃-Na+)
 - ✓ Atinge a concentração micelar crítica

41

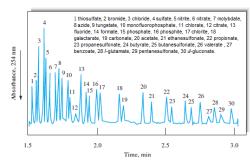
41

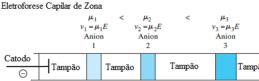
Eletroforese capilar - Espécies neutras

Cromatografia Eletrocinética Micelar

- Ausência de micelas, todas as moléculas neutras alcançam o detector no mesmo tempo t_n
- lacktriangle As micelas injetadas com a amostra alcançam o detector no tempo t_{mc}
- \blacktriangleright As moléculas neutras atingem o detector em um tempo entre t_{o} e t_{mc}
- Quanto maior o tempo em que uma molécula neutra permanecer no interior de uma micela, menor será o seu tempo de migração.
- Cátions e ânions interagem eletrostaticamente com as micelas, portanto o tempo de migração também será afetado

42


N K

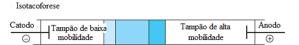

Eletroforese capilar - Separações

Modos de separação eletroforéticas: Eletroforese Capilar de Zona (ECZ); Isotacoforese; Focalização Isoelétrica.

Anodo

Eletroforese Capilar de Zona (ECZ): composição do tampão constante por toda a região de separação → campo aplicado faz com que os diferentes componentes iônicos migrem de acordo com sua mobilidade (separação em zonas) → regiões resolvidas com tampão entre elas

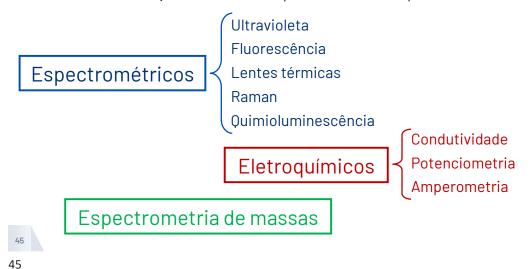
Cátions, Aníons, Proteínas, carboidratos,



43

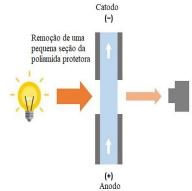
Eletroforese capilar - Separações

Isotacoforese: Amostra injetada entre dois tampões: um de maior mobilidade e um de menor → bandas do analito adjacentes umas às outras e não separadas por tampão → todas as bandas migram na mesma velocidade (iso). Em qualquer aplicação específica, cátions ou ânions podem ser separados, mas não os dois ao mesmo tempo.


Focalização eletroforética: separar espécies anfipróticas (aminoácidos e proteínas). Mistura de tampão que varia no pH ao longo do comprimento → uma extremidade na solução de base forte e outra na de ácido forte → aplicação do campo elétrico, migração dos H⁺ e OH⁻ na direção oposta. À medida que o analito migra, ele passa por regiões de pH mais baixos → protonação (diminuição da carga negativa até pH=pl, carga 0) → migração causa separação com banda localizada no pH do seu pl.

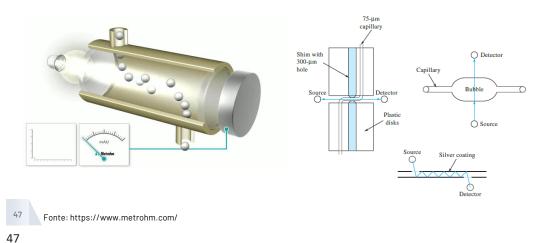
44

Eletroforese capilar - Detectores


Analitos separados se movem passando por um ponto comum, os detectores são similares no desenho e na função àqueles descritos para a CLAE → pequenas modificações são suficientes para acomodar os capilares

Eletroforese capilar - Detecção por Ultravioleta

- ✓ Absorção: mais comuns pela aplicabilidade mais ampla;
- ✓ Detecção realizada na coluna: revestimento de poliamida é removido em uma pequena seção → serve como célula detectora;
- ✓ Arranjos de diodo e dispositivos de carga acoplada → permitem coleta de espectro em menos de 1s;
- ✓ Detecção por absorbância indireta (espécies de baixa massa molecular e são difíceis de detectar sem derivatização): espécie cromófora é colocada no tampão de eletroforese → sinal constante devido essa espécie → como o analito desloca alguns íons, o sinal do detector diminui durante sua passagem;

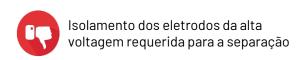


46

Eletroforese capilar - Detecção por Ultravioleta

Células para aumentar a sensibilidade dos métodos de absorção (comprimento do caminho) → extremidade do capilar é dobrada em forma de Z, que produz um comprimento de caminho de dez vezes o diâmetro capilar.

Eletroforese capilar - Detectores eletroquímicos


Condutividade e Amperometria

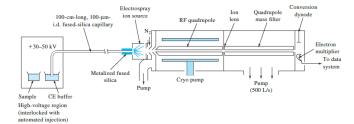
Célula para detecção amperométrica

Compartimento do tampão ET (Catodo da Eletroforese (aterrado) posicionamento posicionamento

Saída: isolamento pela inserção de uma junta porosa de vidro ou grafite entre a ponta do capilar e o segundo capilar contendo os eletrodos detectores

48

Eletroforese capilar - Detectores

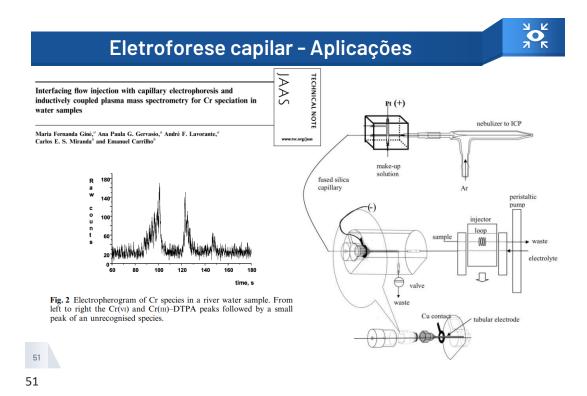

► Detecção por fluorescência

✓ sensível aos analitos que apresentam fluorescência ou derivados fluorescentes

► Detecção por espectrometria de massas

- √ muito sensível e permite determinação qualitativa e quantitativa
- √ acoplamento é crítico
- ✓ vazões muito pequenas tonam possível o acoplamento direto à fonte de ionização de um EM (ESI; MALDI; FAB; ICP/MS).

Amostra precisa ser vaporizada: uso de tampões voláteis



49

Eletroforese capilar - Detectores

Detectores para a Eletroforese Capilar		
Tipo de Detector	Limite de Detecção Representativo (atomols detectados)	
Espectrometria		
Absorção†	1-1,000	
Fluorescência	1-0,01	
Lentes térmicas†	10	
Raman†	1000	
Quimiluminescência†	1-0,0001	
Espectrometria de massas	1-0,01	
Eletroquímicos		
Condutividade†	100	
Potenciometria†	1	
Amperometria	0,1	

Cromatografia Iônica *versus* Eletroforese capilar

	Cromatografia iônica	Eletroforese capilar
Princípio de separação	Adsorção/dessorção - partição entre a fase móvel e a fase estacionária	Diferenças na velocidade do composto em um campo elétrico
Colunas	resinas	sílica fundida ou polímeros
Vazões I volume injetado	0,1 - 2,0 mL/min 1-50 uL	0,1 - 2,0 uL/min < 1-5 nL
LD(UV)	10 ⁻⁷ – 10 ⁻⁹ mol L ⁻¹	10 ⁻⁵ – 10 ⁻⁷ mol L ⁻¹
Pratos	>10.000	>100.000
Tempo de análise	10 - 40 minutos	5 – 15 minutos
Reprodutibilidade dos parâmetros de retenção	< 2%	< 5%
Precisão e exatidão	ca. 2%	ca. 2 - 5%
Preço	Maior	Menor (aumenta com MS)

Exercícios

- 1. O que é um fluxo eletrosmótico? Por que ocorre?
- 2. Por que o pH afeta a separação de aminoácidos em eletroforese?
- 3. Qual é o princípio de separação em eletroforese capilar de zona?
- 4. Cite três métodos diferentes para diminuir o fluxo eletrosmótico. Por que a direção do fluxo eletrosmótico muda quando um capilar de sílica é lavado com um surfactante catiônico?

