

Controle LQR

Filtro de Kalman

Controle LQG

Fechar

Desistir

POLI USP

PTC5611 - Controle Digital de Sistemas DinâmicosCap. 10: Introdução ao Controle Ótimo

Prof. Bruno Augusto Angélico

2021

Controle
Controle LQR
Filtro de Kalman
Controle LQG
Homepage
Página de Rosto
Página 2 de 78
Página 2 de 78 Voltar
Página 2 de 78 Voltar Full Screen
Página 2 de 78 Voltar Full Screen Fechar

Bruno A. Angélico PTC5611 Capítulo 10 - Introdução ao Controle Ótimo

- Controle ótimo não poder ser confundido como o controle ideal;
- Como em sistemas MIMO as matrizes $\mathbf{K} \in \mathbf{L}$ não são únicas, técnicas de controle ótimo podem ser utilizadas para utilizar de forma inteligente este "grau de liberdade".
- Assuntos do capítulo:
 - Controle Quadrático Ótimo Variante no Tempo com função custo quadrática para o problema de regulação;
 - LQR: forma estacionária do controle variante no tempo;
 - Filtro de Kalman;
 - Filtro de Kalman estacionário;
 - Controle LQG: LQR com FK estacionário.

Controle LQR

Filtro de Kalman

Controle LQG

Homepage Página de Rosto

Página 3 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

Controle Quadrático Ótimo Variante no Tempo

O Controle Ótimo Quadrático pode ser enunciado como segue.

$$\min_{\mathbf{u}} J = \frac{1}{2} \mathbf{x}^{\top}[N] \mathbf{S} \mathbf{x}[N] + \frac{1}{2} \sum_{n=0}^{N-1} \left(\mathbf{x}^{\top}[n] \mathbf{Q} \mathbf{x}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] \right)$$
(1)
sujeito a
$$\mathbf{x}[n+1] = \mathbf{\Phi} \mathbf{x}[n] + \mathbf{\Gamma} \mathbf{u}[n], \quad \mathbf{x}[0] = \mathbf{x}_i,$$
(2)

PTC5611

onde,

u

1.

- Q matriz $(k \times k)$ simétrica definida semi positiva;
- **R** matriz $(r \times r)$ simétrica definida positiva;
- **S** matriz $(k \times k)$ simétrica definida semi positiva;

Se o estado final for imposto, tal que $\mathbf{x}[N] = \mathbf{x}_f$, então o primeiro termo à direita de (1) é eliminado.

Controle LQR Filtro de Kalman

Controle LQG

Desistir

Bruno A. Angélico

PTC5611

A solução do problema de minimização de J pode ser feita de algumas formas diferentes, como por programação dinâmica, e o método de multiplicadores de Lagrange. Aqui será reproduzida a solução pelo método de multiplicadores de Lagrange.

Deseja-se minimizar o índice de desempenho descrito em (2) sujeito às restrições impostas em (1). Considere um vetor de multiplicadores de Lagrange $\lambda[n+1]$ para cada instante n. Assim, o seguinte índice de desempenho é definido

$$= \frac{1}{2} \mathbf{x}^{\top}(N) \mathbf{S} \mathbf{x}[N] + \frac{1}{2} \sum_{n=0}^{N-1} \left(\mathbf{x}^{\top}[n] \mathbf{Q} \mathbf{x}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] + \mathbf{\lambda}^{\top}[n+1] \left(-\mathbf{x}[n+1] + \mathbf{\Phi} \mathbf{x}[n] + \mathbf{\Gamma} \mathbf{u}[n] \right) \right)$$
(3)

Dando sequência ao procedimento de otimização, as seguintes

Bruno A. Angélico equações são obtidas: PTC5611

$$\frac{\partial L}{\partial \mathbf{u}[n]} = \mathbf{u}^{\top}[n]\mathbf{R} + \boldsymbol{\lambda}^{\top}[n+1]\boldsymbol{\Gamma} = 0 \qquad (4)$$

$$\frac{\partial L}{\partial \boldsymbol{\lambda}[n+1]} = -\mathbf{x}[n+1] + \boldsymbol{\Phi}\mathbf{x}[n] + \boldsymbol{\Gamma}\mathbf{u}[n] = 0 \qquad (5)$$

$$\frac{\partial L}{\partial \mathbf{x}[N]} = \mathbf{S}\mathbf{x}[N] - \boldsymbol{\lambda}[N] = 0 \qquad (6)$$

$$\frac{\partial L}{\partial \mathbf{x}[n]} = \mathbf{x}^{\top}[n]\mathbf{Q} - \boldsymbol{\lambda}^{\top}[n] + \boldsymbol{\lambda}^{\top}[n+1]\boldsymbol{\Phi} = 0 \qquad (7)$$
ue (5) é simplesmente a equação de estados, ou seja,
(\mathbf{x}[n+1] = \boldsymbol{\Phi}\mathbf{x}[n] + \boldsymbol{\Gamma}\mathbf{u}[n] \qquad (8)
to (6) especifica o valor final de $\boldsymbol{\lambda}[n]$. O termo $\boldsymbol{\lambda}[n]$ é frente denominado vetor adjunto e, por isso, (7) é denom-
5

Filtro de Kalman

Controle . . .

Controle LQR

Controle LQG

Homepage

Página de Rosto

Página 5 de 78

Voltar

Full Screen

Fechar

Note qu

Equaçã quenteme

Controle LQR

Controle . . .

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

Página <mark>6</mark> de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

PTC5611

inada equação adjunta, que pode ser escrita como uma equação de diferenças para trás, tal que:

$$\boldsymbol{\lambda}[n] = \boldsymbol{\Phi}^{\top} \boldsymbol{\lambda}[n+1] + \mathbf{Q} \mathbf{x}[n].$$
 (9)

A Equação (9) pode ainda ser reescrita como uma equação de diferenças para frente, ou seja,

$$\boldsymbol{\lambda}[n+1] = \boldsymbol{\Phi}^{-\top} \boldsymbol{\lambda}[n] - \boldsymbol{\Phi}^{-\top} \mathbf{Q} \mathbf{x}[n]$$
(10)

A solução de (4) é dada por:

$$\mathbf{u}[n] = -\mathbf{R}^{-1} \mathbf{\Gamma}^{\top} \boldsymbol{\lambda}[n+1]$$
(11)

Sobre as condições de contorno, $\mathbf{x}[0] = \mathbf{x}_i$ deve ser dado. Entretanto, $\boldsymbol{\lambda}[0]$ não é usualmente conhecido, sendo $\boldsymbol{\lambda}[N]$ a condição de contorno, dada por (6), ou seja,

$$\boldsymbol{\lambda}[N] = \mathbf{S}\mathbf{x}[N]. \tag{12}$$

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 7 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Com isso, o conjunto de equações que descreve a solução ótima do problema de otimização está completamente especificada, tal que,

$$\lambda[n] = \Phi^{\top}\lambda[n+1] + \mathbf{Q}\mathbf{x}$$
$$\mathbf{x}[n+1] = \Phi\mathbf{x}[n] + \Gamma\mathbf{u}[n]$$
$$\mathbf{u}[n] = -\mathbf{R}^{-1}\Gamma^{\top}\lambda[n+1]$$
$$\mathbf{x}[0] = \mathbf{x}_i$$
$$\lambda[N] = \mathbf{S}\mathbf{x}[N]$$

A solução desse problema com valor de contorno em dois pontos não é trivial. Um método denominado varredura de Bryson e Ho [?], consiste em assumir

$$\boldsymbol{\lambda}[n] = \mathbf{P}[n]\mathbf{x}[n]. \tag{13}$$

Com tal definição, o problema com valor de contorno em dois

7

em que

Bruno A. Angélico que é frequentemente escrita como

$$\mathbf{P}[n] = \mathbf{\Phi}^{\top} \mathbf{M}[n+1] \mathbf{\Phi} + \mathbf{Q}, \qquad (21)$$

PTC5611

Controle LQG

Controle . . .

Controle LQR

Homepage

$$\mathbf{M}[n+1] = \mathbf{P}[n+1] - \mathbf{P}[n+1]\mathbf{\Gamma} \left(\mathbf{R} + \mathbf{\Gamma}^{\top}\mathbf{P}[n+1]\mathbf{\Gamma}\right)^{-1}\mathbf{\Gamma}^{\top}\mathbf{P}[n+1]$$
(22)

A Equação (20) é denominada **Equação de Riccati**. De (12)

e (13) pode-se verificar que

$$\mathbf{P}[N] = \mathbf{S},\tag{23}$$

Voltar

Página 10 de 78

Full Screen

Fechar

Desistir

e portanto a solução é descrita pelas Equações recursivas (21) e (22), com a condição de contorno dada por (23). A recursão deve ser resolvida de trás para frente, pois a condição de contorno é um ponto final.

Controle LQR

Controle . . .

Filtro de Kalman

Controle LQG

em que, de (15),

A ação ótima de controle é dada por:

$$\mathbf{u}[n] = -\mathbf{K}[n]\mathbf{x}[n],$$

PTC5611

$$\mathbf{K}[n] = \left(\mathbf{R} + \boldsymbol{\Gamma}^{\top} \mathbf{P}[n+1] \boldsymbol{\Gamma}\right)^{-1} \boldsymbol{\Gamma}^{\top} \mathbf{P}[n+1] \boldsymbol{\Phi}$$

(25)

(24)

Os cálculos são resumidos no seguinte procedimento:

1. Faça
$$\mathbf{P}[N] = \mathbf{S} \in \mathbf{K}[N] = 0;$$

2. Faça $n = N;$
3. Calcule $\mathbf{M}[n] = \mathbf{P}[n] - \mathbf{P}[n]\mathbf{\Gamma} \left(\mathbf{R} + \mathbf{\Gamma}^{\top}\mathbf{P}[n]\mathbf{\Gamma}\right)^{-1}\mathbf{\Gamma}^{\top}\mathbf{P}[n];$
4. Calcule $\mathbf{K}[n-1] = \left(\mathbf{R} + \mathbf{\Gamma}^{\top}\mathbf{P}[n]\mathbf{\Gamma}\right)^{-1}\mathbf{\Gamma}^{\top}\mathbf{P}[n]\mathbf{\Phi};$
5. Armazene $\mathbf{K}[n-1];$
6. Calcule $\mathbf{P}[n-1] = \mathbf{\Phi}^{\top}\mathbf{M}[n]\mathbf{\Phi} + \mathbf{Q};$
7. Faça $n = n - 1;$

8. Vá para o passo 3.

Para uma dada condição inicial $\mathbf{x}[0] = \mathbf{x}_i$, para efetuar o cont-

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

onde

Bruno A. Angélico

role, utiliza-se os valores de
$$\mathbf{K}[n]$$
 armazenados e

$$\mathbf{x}[n+1] = \mathbf{\Phi}\mathbf{x}[n] + \mathbf{\Gamma}\mathbf{u}[n], \qquad (26)$$

$$\mathbf{u}[n] = -\mathbf{K}[n]\mathbf{x}[n] \tag{27}$$

PTC5611

Portanto, uma vez conhecido o modelo do sistema e as matrizes de peso \mathbf{S} , $\mathbf{Q} \in \mathbf{R}$, e a duração do problema N, os valores de $\mathbf{K}[n]$ devem ser previamente calculados e armazenados. Pode-se verificar que o custo ótimo é dado por

$$J_{\min} = \mathbf{x}^{\top}[0]\mathbf{P}[0]\mathbf{x}[0]$$
(28)

Full Screen

Página 12 de 78

Voltar

Exemplo 1: [Ogata DTCS] Considere um sistema descrito
por
$$\mathbf{x}[n+1] = \mathbf{\Phi}\mathbf{x}[n] + \mathbf{\Gamma}u[n]$$

12

Desistir

Fechar

Controle LQR

Controle LQG

Bruno A. Angélico onde, $\mathbf{\Phi} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{\Gamma} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}[0] = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ seguinte índice de desempenho Filtro de Kalman Homepage Página de Rosto onde, Página 13 de 78 lema clear all; clc; close all; Phi = [1 1;1 0]; Gamma = [1; 0]; Q = eye(2); R=1; Full Screen N = 8;Fechar 13

Determine a sequência ótima de controle u[n] que minimiza o

PTC5611

$$J = \frac{1}{2} \mathbf{x}^{\top}[8] \mathbf{S} \mathbf{x}[8] + \frac{1}{2} \sum_{n=0}^{7} \left(\mathbf{x}^{\top}[n] \mathbf{Q} \mathbf{x}[n] + u^{\top}[n] R u[n] \right),$$

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = 1, \quad \mathbf{S} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Solução: O seguinte *script* foi utilizado para resolver o prob-

Desistir

Voltar

Bruno A. Angélico

PTC5611

Table 1:	Resultados	do exem	plo <mark>1</mark> .

n	$\mathbf{P}[n]$	$\mathbf{K}[n]$	$\mathbf{x}[n]$	u[n]
0	$\begin{bmatrix} 3,7913 & 1,0000 \\ 1,0000 & 1,7913 \end{bmatrix}$	$\begin{bmatrix} 1,0000 & 0,7913 \end{bmatrix}$	$\begin{bmatrix} 1,0000\\ 0\end{bmatrix}$	-1
1	$\begin{bmatrix} 3,7911 & 0,9999 \\ 0,9999 & 1,7913 \end{bmatrix}$	$\begin{bmatrix} 0,9999 & 0,7913 \end{bmatrix}$	0,0000	-0,7913
2	$\begin{bmatrix} 3,7905 & 0,9997 \\ 0,9997 & 1,7911 \end{bmatrix}$	$\begin{bmatrix} 0,9997 & 0,7911 \end{bmatrix}$	$\begin{bmatrix} 0, 2087 \\ 0, 0000 \end{bmatrix}$	-0,2087
3	$\begin{bmatrix} 3,7877 & 0,9986 \\ 0,9986 & 1,7905 \end{bmatrix}$	$\begin{bmatrix} 0,9986 & 0,7905 \end{bmatrix}$	$\begin{bmatrix} 0,0001\\ 0,2087 \end{bmatrix}$	-0,1651
4	$\begin{bmatrix} 3,7740 & 0,9932 \\ 0,9932 & 1,7877 \end{bmatrix}$	$\begin{bmatrix} 0,9932 & 0,7877 \end{bmatrix}$	$\begin{bmatrix} 0,0437\\ 0,0001 \end{bmatrix}$	-0,0435
5	$\begin{bmatrix} 3,7097 & 0,9677 \\ 0,9677 & 1,7742 \end{bmatrix}$	$\begin{bmatrix} 0,9677 & 0,7742 \end{bmatrix}$	$\begin{bmatrix} 0,0003\\ 0,0437 \end{bmatrix}$	-0,0342
6	$\begin{bmatrix} 3,4286 & 0,8571 \\ 0,8571 & 1,7143 \end{bmatrix}$	$\begin{bmatrix} 0,8571 & 0,7143 \end{bmatrix}$	$\begin{bmatrix} 0,0099 \\ 0,0003 \end{bmatrix}$	-0,0087
7	$\begin{bmatrix} 2,5000 & 0,5000 \\ 0,5000 & 1,5000 \end{bmatrix}$	$\begin{bmatrix} 0,5000 & 0,5000 \end{bmatrix}$	$\begin{bmatrix} 0,0015\\ 0,0099 \end{bmatrix}$	-0,0057
8	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		$\begin{bmatrix} 0,0057 \\ 0,0015 \end{bmatrix}$	0

Controle LQR Filtro de Kalman

Controle . . .

Controle LQG

Homepage

Página de Rosto

44

•

Página 15 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico 2. Controle LQR

PTC5611

Controle...

Controle LQR

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

Full Screen

Fechar

Desistir

 $\mathbf{K}[n] \rightarrow \mathbf{K}_{ss}$

De fato, para um problema de tempo infinito (**regulador**), a solução com ganho constante é ótima. Tal solução **é denominada regulador linear quadrático** (LQR).

Para $N \to \infty,$ o índice de desempenho poder ser modificado para

$$J = \frac{1}{2} \sum_{n=0}^{\infty} \left(\mathbf{x}^{\top}[n] \mathbf{Q} \mathbf{x}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] \right)$$
(29)

O termo $\frac{1}{2}\mathbf{x}^{\top}(N)\mathbf{S}\mathbf{x}[N]$ não aparece neste representação, pois ao assumir estabilidade no regulador ótimo \mathbf{x}_{ss} converge para zero. Possível solução: resolver a Equação de Riccati na forma esta-

F

Controle . . .

Controle LQR

Filtro de Kalman

Controle LQG

Bruno A. Angélico PTC5611 cionária, denominada Equação Algébrica de Riccati:

$$\mathbf{P}_{ss} = \mathbf{\Phi}^{\top} \left(\mathbf{P}_{ss} - \mathbf{P}_{ss} \mathbf{\Gamma} \left(\mathbf{R} + \mathbf{\Gamma}^{\top} \mathbf{P}_{ss} \mathbf{\Gamma} \right)^{-1} \mathbf{\Gamma}^{\top} \mathbf{P}_{ss} \right) \mathbf{\Phi} + \mathbf{Q} \quad (30)$$

Devido ao fato da equação ser quadrada em \mathbf{P}_{ss} , há mais de uma solução. A solução escolhida deve ser definida positiva. Em muitos casos não é possível obter uma solução analítica de (27), o que exige métodos numérico para sua solução.

No MATLAB, há o comando **dlqr** que, de acordo com a notação utilizada aqui, possui a seguinte sintaxe:

[K,P,E] = dlqr(Phi,Gamma,Q,R,N).

Tal comando calcula a matriz de realimentação de estados \mathbf{K} , de forma que $u[n] = -\mathbf{K}\mathbf{x}[n]$ minimize o seguinte índice de desempenho:

$$J = \frac{1}{2} \sum_{n=0}^{\infty} \left(\mathbf{x}^{\top}[n] \mathbf{Q} \mathbf{x}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] + 2\mathbf{x}^{\top}[n] \mathbf{N} \mathbf{u}[n] \right),$$

Desistir

Fechar

Controle LQR

Filtro de Kalman

Controle LQG

Bruno A. Angélico para o sistema descrito por

$$\mathbf{x}[n+1] = \mathbf{\Phi}\mathbf{x}[n] + \mathbf{\Gamma}\mathbf{u}[n],$$

Por *default*, N = 0, valor este assumido quando o parâmetro é omitido. Adicionalmente, o comando retorna solução da Equação algébrica de Riccati, P, e os autovalores de malha fechada do sistema, E.

Em relação ao projeto do controlador LQR, ainda há uma questão em aberto? Como escolher as matrizes $\mathbf{Q} \in \mathbf{R}$?

A resposta para tal pergunta é um pouco decepcionante, pois requer uma certa quantidade de tentativa e erro.

Um aumento em \mathbf{Q} aumenta a velocidade de convergência da solução ao ponto de equilíbrio. Um aumento em \mathbf{R} reduz o esforço de controle considerado;

A regra de Bryson (ponto de partida), mencionada em [Franklin], sugere escolher \mathbf{Q} e \mathbf{R} diagonais, tais que:

18

PTC5611

Fechar

Bruno A. Angélico

Controle LQR

Filtro de Kalman

Controle LQG

$$Q_{ii} = \frac{1}{\text{Máxima variação aceitável para } x_i^2}, \ i = 1, 2, \dots, k.$$

 $R_{ii} = \frac{1}{\text{Máxima variação aceitável para } u_j^2}, \quad j = 1, 2, \dots, r.$

Como relacionar especificações de desempenho?

 ${\bf Q}$ e ${\bf R}$ são apenas fracamente conectadas com as especificações de desempenho.

Procedimento de *pincer* ("pinça") mencionado em [Franklin] \rightarrow polos de malha fechada no interior do círculo de raio $1/\alpha$, com $\alpha > 1$. Com isso, a resposta oscilatória decairá pelo menos com taxa igual a $1/\alpha^n$.

Suponha a seguinte função custo modificada:

Bruno A. Angélico

PTC5611

Controle LQR

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

Página 20 de 78

Voltar

Full Screen

Fechar

Desistir

•• ••

 $J = \sum_{n=0}^{\infty} \left[(\alpha^{n} \mathbf{x}[n])^{\top} \mathbf{Q}(\alpha^{n} \mathbf{x}[n]) + (\alpha^{n} \mathbf{u}[n])^{\top} \mathbf{R}(\alpha^{n} \mathbf{u}[n]) \right]$ $= \sum_{n=0}^{\infty} \left[\mathbf{z}[n]^{\top} \mathbf{Q} \mathbf{z}[n] + \mathbf{v}[n]^{\top} \mathbf{R} \mathbf{v}[n] \right]$ (31)

onde $\mathbf{z}[n] = \alpha^n \mathbf{x}[n]$ e $\mathbf{v}[n] = \alpha^n \mathbf{u}[n]$. Com isso,

$$\mathbf{z}[n+1] = \alpha^{(n+1)}\mathbf{x}[n+1] = \alpha^{(n+1)} \left(\mathbf{\Phi}\mathbf{x}[n] + \mathbf{\Gamma}\mathbf{u}[n]\right)$$
$$= \alpha \mathbf{\Phi}(\alpha^{n}\mathbf{x}[n]) + \alpha \mathbf{\Gamma}(\alpha^{n}\mathbf{u}[n])$$
$$= \alpha \mathbf{\Phi}\mathbf{z}[n] + \alpha \mathbf{\Gamma}\mathbf{v}[n]$$
(32)

Com isso, o problema de controle ótimo é reformulado, tal que a solução ótima é dada por $\mathbf{v}[n] = -\mathbf{K}\mathbf{z}[n]$, ou seja, $\alpha^n \mathbf{u}[n] = -\mathbf{K}(\alpha^n \mathbf{x}[n])$, ou ainda,

$$\mathbf{u}[n] = -\mathbf{K}\mathbf{x}[n] \tag{33}$$

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 21 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Portanto, utilizando a lei de controle da Equação (33), a trajetória resultante é ótima para a função custo definida em (31). Para garantir a estabilidade de $\mathbf{z}[n]$, o vetor $\mathbf{x}[n]$ precisa decair com taxa pelo menos igual a $1/\alpha^n$.

Suponha que seja definido o tempo de assentamento t_s para um estado x_j , tal que $x_j(0) = 1$ e $x_j(nT_s) \leq 0,01x_j(0)$. Considere que os demais estados são nulos para n = 0. Assim, ao considerar

$$x_j(nT_s) \approx x_j(0)(1/\alpha)^n,$$

conclui-se que

 $(1/\alpha)^n \le 0, 01 \Rightarrow \alpha \ge 100^{1/n} = 100^{T_s/t_s}$ (34)

Para aplicar o procedimento de *pincer* considerando o critério de 1% para o tempo de assentamento t_s e período de amostragem T_s , encontre o valor de α utilizando (34), e encontre a matriz **K** do LQR para as matrizes $\alpha \Phi \in \alpha \Gamma$.

Bruno A. Angélico

onde,

com

PTC5611

🖾 Exemplo 2: [Franklin] Considere um sistema com a seguinte equação de estados

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

Controle LQR

Controle . . .

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

▲
 ▲
 Página 22 de 78

Voltar

Full Screen

Fechar

 $\mathbf{A} = \begin{bmatrix} -0, 2 & 0, 1 & 1 \\ -0, 05 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0, 7 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{x}[0] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$

e a seguinte equação de saída

 $\mathbf{y} = \mathbf{C}\mathbf{x},$

 $\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

O projeto deve seguir as seguintes especificações:

1. Máxima frequência de amostragem igual a 5 Hz;

Controle LQR

Filtro de Kalman

Controle LQG

Homepage Página de Rosto

•• •

Página 23 de 78

d

Voltar

Full Screen

Fechar

Bruno A. Angélico PTC5611
2. Tempo de assentamento (1%) para x₁ menor do que 2,4,s;
3. Tempo de assentamento (1%) para x₂ menor do que 8 s;
4. Máximo desvio em x₁ menor do que 2 e em x₂ menor do que 1.

5. Máximo desvio em u_1 menor do que 5 e em u_2 menor do que 10.

Assume-se $T_s = 0, 2s$. Assim:

$$\mathbf{\hat{P}} = \begin{bmatrix} 0,9607 & 0,0196 & 0,1776 \\ -0,0098 & 0,9999 & -0,0009 \\ 0 & 0 & 0,8187 \end{bmatrix}, \quad \mathbf{\Gamma} = \begin{bmatrix} 0.0185 & 0.1974 \\ -0.0001 & 0.1390 \\ 0.1813 & 0 \end{bmatrix}$$

Para obtenção de α , considera-se a restrição mais forte: $\alpha \not = 100^{0,2/2,4} = 1,4678$. As matrizes **Q** e **R** são obtidas a partir das

Bruno A. Angélico restrições 4 e 5:

Controle... Controle LQR

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

A

A

Página 24 de 78

Voltar

Full Screen

Fechar

es 4 e 5: $\mathbf{Q} = \begin{bmatrix} 1/2^2 & 0 & 0 \\ 0 & 1/1^2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} 1/5^2 & 0 \\ 0 & 1/10^2 \end{bmatrix} \checkmark$

PTC5611

O seguinte código em Matlab foi utilizado:

```
clear all; clc; close all;
fs=5; Ts=1/fs;
A = [-0.2 \ 0.1 \ 1; \ -0.05 \ 0 \ 0; \ 0 \ 0 \ -1]; B = [0 \ 1; 0 \ 0.7; \ 1 \ 0];
C = [1 \ 0 \ 0; \ 0 \ 1 \ 0]; D = zeros(3,2);
%OBS: no bloco State-Space foi feito C=eye(3) para obter na saída todos os
%estados para a realimentação. Para obter y, tomou-se as 2 primeiras saídas
[Phi,Gamma] = c2d(A,B,Ts);
item = 'c';
switch(item)
    case 'a'
        ts = 2.4; alpha = 100^{(Ts/ts)};
        Q = diag([1/2^2 1/1^2 0]); R = diag(1./[5^2 10^2]);
        <u>K = dlqr(alpha*Phi</u>, alpha*Gamma, O, R);
    case 'b'
        ts = 5; alpha = 100^(Ts/ts);
        Q = diag([1/2^2 1/1^2 0]); R = diag(1./[5^2 10^2]);
                                   24
```


Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 26 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico de ganhos é dada por PTC5611

Figure 1: Diagrama de blocos da simulação o Exemplo 2.

O código do Bloco Matlab Function é apresentado abaixo:

```
function [u_1, u_2] = fcn(x_1, x_2, x_3, K)
%#eml
u_1 = -( K(1,1)*x_1 + K(1,2)*x_2 + K(1,3)*x_3 );
u_2 = -( K(2,1)*x_1 + K(2,2)*x_2 + K(2,3)*x_3 );
```


- Controle . . .
- Controle LQR

Filtro de Kalman

Controle LQG

Bruno A. Angélico

PTC5611

Os resultados obtidos são apresentados nas Figura 2. Observe que os tempos de assentamento estão muito mais baixo do que os especificados, especialmente para x_2 . No entanto, o esforço de controle u_1 não satisfez o limite máximo especificado. Para melhorar este aspecto, pode-se tentar aumentar o tempo de assentamento. Por exemplo, para $t_s = 5$, chega-se em:

$$\mathbf{K} = \begin{bmatrix} 3,5006 & -5,0086 & 2,3797 \\ 1,1031 & 4,3946 & 0,1646 \end{bmatrix}$$

A Figura 3 apresenta os resultados obtidos. Note que os resultados agora satisfazem todas as especificações. Entretanto, os requisitos para x_2 ainda são bem conservadores, o que sugere uma relaxação no custo relativo a este estado, resultando em

$$\mathbf{Q} = \begin{bmatrix} 1/2^2 & 0 & 0 \\ 0 & \mathbf{0} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 28 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Com isso, a seguinte matriz de ganhos é obtida:

$$\mathbf{K} = \begin{bmatrix} 1,9570 & -2,6986 & 1,7547 \\ 2,9805 & 0,6968 & 0,5816 \end{bmatrix}$$

Os resultados obtidos são apresentados na Figura 4, Note que o esforço de controle diminuiu e os requisitos de projetos continuam sendo satisfeitos.

28

Controle LQR

Filtro de Kalman

Homepage

Página de Rosto

Página 29 de 78

Voltar

Full Screen

Fechar

Controle LQG

Bruno A. Angélico

PTC5611

Figure 2: Resposta do Exemplo 2.

29

Controle...

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 30 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Figure 3: Resposta do Exemplo 2 com especificação $t_s = 5$ s.

30

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 31 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Figure 4: Resposta do Exemplo 2 com especificação $t_s = 5$ s e relaxação no custo de x_2 .

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 32 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

Se a equação de saída do sistema é dada por $\mathbf{y}[n] = \mathbf{C}\mathbf{x}[n]$, e $\mathbf{Q} = \mathbf{C}^{\top}\mathbf{C}$, então a função custo do LQR pode ser escrita como:

$$J = \frac{1}{2} \sum_{n=0}^{\infty} \left(\mathbf{x}^{\top}[n] \mathbf{C}^{\top} \mathbf{C} \mathbf{x}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] \right)$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\mathbf{y}^{\top}[n] \mathbf{y}[n] + \mathbf{u}^{\top}[n] \mathbf{R} \mathbf{u}[n] \right)$$
(35)

PTC5611

Se em (35) a matrix **R** for da forma $\mathbf{R} = \rho \mathbf{I}$, com $\rho \to 0^+$, então tem-se a forma demominada *cheap control*. Isso significa que não há penalização no esforço de controle.

Filtro de Kalman

е

Bruno A. Angélico **3. Filtro de Kalman**

O filtro de Kalman consiste em um conjunto de equações recursivas para estimar os estados do sistema descrito pelas seguintes equações de diferenças

$$\mathbf{x}[n+1] = \mathbf{\Phi}\mathbf{x}[n] + \mathbf{\Gamma}\mathbf{u}[n] + \mathbf{\Psi}\mathbf{w}[n], \qquad (36)$$

$$\mathbf{y}[n] = \mathbf{C}\mathbf{x}[n] + \mathbf{v}[n], \qquad (37)$$

PTC5611

onde $\mathbf{w}[n]$ e $\mathbf{v}[n]$ representam, respectivamente, o ruído de processo e o ruído de medição, ambos caracterizados como ruído branco Gaussiano, tais que

$$\mathbb{E}\left\{\mathbf{v}[k]\mathbf{w}^{\top}[j]\right\} = 0, \qquad (38)$$

$$\mathbb{E}\left\{\mathbf{v}[k]\mathbf{v}^{\top}[j]\right\} = \left\{\begin{array}{l} 0, \quad k \neq j\\ \mathbf{R}_{\mathbf{v}}, \quad k = j \end{array}\right\}$$
(39)

Desistir

Página 33 de 78

Voltar

Full Screen

Fechar

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Bruno A. Angélico

е

PTC5611

$$\mathbb{E}\left\{\mathbf{w}[k]\mathbf{w}^{\top}[j]\right\} = \left\{\begin{array}{ll} 0, \ k \neq j\\ \mathbf{R}_{\mathbf{w}}, \ k = j\end{array}\right.$$
(40)

Considere um estimador com a mesma estrutura do estimador de valor atual (filtro), tal que

$$\hat{\mathbf{x}}[n] = \bar{\mathbf{x}}[n] + \mathbf{L}_c[n](\mathbf{y}[n] - \mathbf{C}\,\bar{\mathbf{x}}[n]), \qquad (41)$$

$$\bar{\mathbf{x}}[n] = \Phi \hat{\mathbf{x}}[n-1] + \Gamma \mathbf{u}[n-1], \qquad (42)$$

onde (42) é denominada atualização temporal, dependendo apenas do modelo, ao passo que (41) denomina-se correção de medida. Definem-se:

$$\tilde{\mathbf{x}}[n] = \hat{\mathbf{x}}[n] - \mathbf{x}[n], \qquad (43)$$

Voltar

Full Screen

Fechar

Desistir

Página 34 de 78

como o erro de estimação *a posteriori* e

$$\tilde{\bar{\mathbf{x}}}[n] = \bar{\mathbf{x}}[n] - \mathbf{x}[n], \qquad (44)$$

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 35 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

е

como o erro de estimação *a priori*. Suas respectivas covariâncias (medidas das magnitudes dos ruídos) são dadas por:

$$\mathbf{P}[n] = \mathbb{E}\left\{\mathbf{\tilde{x}}[n]\,\mathbf{\tilde{x}}^{\top}[n]\right\},\tag{45}$$

PTC5611

$$\mathbf{M}[n] = \mathbb{E}\left\{ \mathbf{\tilde{\bar{x}}}[n] \, \mathbf{\tilde{\bar{x}}}^{\top}[n] \right\}$$
(46)

Ao substituir (43) e (41) em (45), obtém-se:

$$\mathbf{P}[n] = \mathbb{E}\left\{\tilde{\mathbf{x}}[n]\,\tilde{\mathbf{x}}^{\top}[n]\right\}$$

= $\mathbb{E}\left\{\left(\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}\right)\tilde{\mathbf{x}}[n]\,\tilde{\mathbf{x}}^{\top}[n]\,\left(\mathbf{I} - \mathbf{L}_{c}\mathbf{C}\right)^{\top}\right\} + \mathbb{E}\left\{\mathbf{L}_{c}[n]\mathbf{v}[n]\,\mathbf{v}^{\top}[n]\mathbf{L}_{c}^{\top}[n]\right\}$
= $\left(\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}\right)\,\mathbf{M}[n]\left(\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}\right)^{\top} + \mathbf{L}_{c}[n]\,\mathbf{R}_{\mathbf{v}}\,\mathbf{L}_{c}^{\top}[n]$ (47)

O ganho $\mathbf{L}_{c}[n]$ é obtido ao minimizar o seguinte custo:

$$\min_{\mathbf{L}_c[n]} J = \operatorname{Tr}\left(\mathbf{P}[n]\right) \tag{48}$$

Controle LQR

Filtro de Kalman

Controle LQG

Homepage

Página 36 de 78

e,

Voltar

Full Screen

Fechar

Bruno A. Angélico

Antes de prosseguir, considere as seguintes propriedades: sejam $\mathbf{G}, \mathbf{A}, \mathbf{X}, \mathbf{B} \in \mathbf{P}$ matrizes de dimensões compatíveis, então

PTC5611

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\left(\mathbf{G} + \mathbf{A} \mathbf{X} \mathbf{B} \right) \mathbf{P} \left(\mathbf{G} + \mathbf{A} \mathbf{X} \mathbf{B} \right)^{\top} \right] = 2 \mathbf{A}^{\top} \left(\mathbf{A} \mathbf{X} \mathbf{B} + \mathbf{G} \right) \mathbf{P} \mathbf{B}^{\top}$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left(\mathbf{X} \mathbf{A} \mathbf{X}^{\top} \right) = \mathbf{X} \left(\mathbf{A} + \mathbf{A}^{\top} \right)$$

Com isso, verifica-se que:

$$\frac{\partial}{\partial \mathbf{L}_{c}[n]} \operatorname{Tr} \left[(\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}) \ \mathbf{M}[n] (\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C})^{\top} \right] = -2 \left(\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C} \right) \mathbf{M}[n] \mathbf{C}^{\top},$$
(49)

$$\frac{\partial}{\partial \mathbf{L}_c[n]} \operatorname{Tr} \left(\mathbf{L}_c[n] \, \mathbf{R}_{\mathbf{v}} \, \mathbf{L}_c^{\top}[n] \right) = \mathbf{L}_c[n] \, \left(\mathbf{R}_{\mathbf{v}} + \mathbf{R}_{\mathbf{v}}^{\top} \right) = 2 \mathbf{L}_c[n] \, \mathbf{R}_{\mathbf{v}}.$$
(50)

Bruno A. Angélico Logo,

Controle . . .

Controle LQR

Filtro de Kalman

Controle LQG

Fechar

Desistir

$$\frac{\partial J}{\partial \mathbf{L}_c[n]} = -2\left(\mathbf{I} - \mathbf{L}_c[n]\mathbf{C}\right) \mathbf{M}[n]\mathbf{C}^{\top} + 2\mathbf{L}_c[n]\mathbf{R}_{\mathbf{v}}.$$
 (51)

Ao igualar (51) a zero, encontra-se $\mathbf{L}_{c}[n]$, tal que

$$\mathbf{L}_{c}[n] = \mathbf{M}[n]\mathbf{C}^{\top} (\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}})^{-1}$$
(52)

PTC5611

Considere novamente a Equação (47). Ao expandir os termos, chega-se em:

$$\mathbf{P}[n] = \mathbf{M}[n] - \mathbf{L}_c[n] \mathbf{C}\mathbf{M}[n] + \mathbf{L}_c[n] \left(\mathbf{C}\mathbf{M}[n]\mathbf{C}^\top + \mathbf{R}_{\mathbf{v}}\right) \mathbf{L}_c^\top[n] - \mathbf{M}[n]\mathbf{C}^\top \mathbf{L}_c^\top[n].$$
(53)

Substituindo (52) no terceiro termo do lado direito de (53),

Bruno A. Angélico obtém-se:

 $\mathbf{P}[n]$

Controle LQR

Controle . . .

Filtro de Kalman

Controle LQG

Homepage Página de Rosto Página 38 de 78 Voltar Full Screen

$$\mathbf{P}[n] = (\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}) \mathbf{M}[n] \Rightarrow \mathbf{P}[n](\mathbf{M}[n])^{-1} = (\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C}).$$
(54)

(54)

A Equação (52) pode ser rearranjada como:
$$\mathbf{L}_{c}[n] = \mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1}\mathbf{R}_{\mathbf{v}} \left(\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}}\right)^{-1}$$

$$= \mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1} \left(\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1} + \mathbf{I}\right)^{-1}$$
(55)

PTC5611

Com isso,

$$\mathbf{L}_{c}[n] \left(\mathbf{C} \mathbf{M}[n] \mathbf{C}^{\top} \mathbf{R}_{\mathbf{v}}^{-1} + \mathbf{I} \right) = \mathbf{M}[n] \mathbf{C}^{\top} \mathbf{R}_{\mathbf{v}}^{-1}$$
(56)

ou seja,

Fechar

 $\mathbf{L}_{c}[n] = \mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1} - \mathbf{L}_{c}[n]\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1} = (\mathbf{I} - \mathbf{L}_{c}[n]\mathbf{C})\mathbf{M}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1}$ (57)

Bruno A. Angélico

PTC5611

Controle... Controle LQR Filtro de Kalman Controle LQG Homepage Página de Rosto Página 39 de 78 Voltar Full Screen Fechar

Desistir

Portanto, de (54) e (57), chega-se em: $\mathbf{L}_{c}[n] = \mathbf{P}[n]\mathbf{C}^{\top}\mathbf{R}_{\mathbf{v}}^{-1}.$ (58)

Ao substituir (58) de volta em (54), verifica-se que:

$$\mathbf{P}[n] = \left(\mathbf{M}^{-1}[n] + \mathbf{C}^{\top} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{C}\right)^{-1}$$
(59)

Uma forma numericamente mais eficiente de se escrever (59) pode ser obtida utilizando-se o seguinte lema.

Lema 3.1 Lema da inversão de matrizes Considere **R**, **S**, **T** e **U** matrizes de dimensões $(N \times N)$, $(N \times K)$, $(K \times K)$ e $(K \times N)$, respectivamente, e que não haja problemas de singularidade com as matrizes a serem invertidas, então, a seguinte relação é válida:

$$(\mathbf{R} + \mathbf{STU})^{-1} = \mathbf{R}^{-1} - \mathbf{R}^{-1}\mathbf{S} [\mathbf{T}^{-1} + \mathbf{U}\mathbf{R}^{-1}\mathbf{S}]^{-1}\mathbf{U}\mathbf{R}^{-1}$$

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 40 de 78

Voltar

Full Screen

Fechar

e,

Bruno A. Angélico

PTC5611

Assim:

 $\mathbf{P}[n] = \mathbf{M}[n] - \mathbf{M}[n]\mathbf{C}^{\top} (\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}})^{-1}\mathbf{C}\mathbf{M}[n]. \quad (60)$ Note que em (58) o ganho $\mathbf{L}_{c}[n]$ depende de $\mathbf{P}[n]$ dada em (60), que por sua vez depende de $\mathbf{M}[n]$. Para fechar o conjunto de equações recursivas que definem o filtro de Kalman, considere:

$$\tilde{\bar{\mathbf{x}}}[n+1] = \bar{\mathbf{x}}[n+1] - \mathbf{x}[n+1]$$
(61)

$$\mathbf{M}[n+1] = \mathbb{E}\left\{ \mathbf{\tilde{\bar{x}}}[n+1] \, \mathbf{\tilde{\bar{x}}}^{\top}[n+1] \right\}.$$
(62)
De (44) e (36),

 $\tilde{\mathbf{x}}[n+1] = \mathbf{\Phi}\hat{\mathbf{x}}[n] + \mathbf{\Gamma}\mathbf{u}[n] - \mathbf{\Phi}\mathbf{x}[n] - \mathbf{\Gamma}\mathbf{u}[n] - \mathbf{\Psi}\mathbf{w}[n] = \mathbf{\Phi}\tilde{\mathbf{x}}[n] - \mathbf{\Psi}\mathbf{w}[n].$ (63)

40

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 41 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico Com isso,

PTC5611

$$\mathbf{M}[n+1] = \mathbb{E}\left\{ \left(\mathbf{\Phi}\tilde{\mathbf{x}}[n] - \mathbf{\Psi}\mathbf{w}[n]\right) \left(\mathbf{\Phi}\tilde{\mathbf{x}}[n] - \mathbf{\Psi}\mathbf{w}[n]\right)^{\top} \right\} \\ = \mathbb{E}\left\{\mathbf{\Phi}\tilde{\mathbf{x}}[n] \; \tilde{\mathbf{x}}^{\top}[n]\mathbf{\Phi}^{\top}\right\} + \mathbb{E}\left\{\mathbf{\Psi}\mathbf{w}[n] \; \mathbf{w}^{\top}[n]\mathbf{\Psi}^{\top}\right\} \\ = \mathbf{\Phi}\mathbb{E}\left\{\tilde{\mathbf{x}}[n] \; \tilde{\mathbf{x}}^{\top}[n]\right\}\mathbf{\Phi}^{\top} + \mathbf{\Psi}\mathbb{E}\left\{\mathbf{w}[n] \; \mathbf{w}^{\top}[n]\right\}\mathbf{\Psi}^{\top}$$

$$\tag{64}$$

Portanto,

$$\mathbf{M}[n+1] = \mathbf{\Phi}\mathbf{P}[n]\,\mathbf{\Phi}^{\top} + \mathbf{\Psi}\mathbf{R}_{\mathbf{w}}\mathbf{\Psi}^{\top}.$$
 (65)

Assim se completa as relações que definem o estimador ótimo variante no tempo, conhecido com filtro de Kalman. Os cálculos são resumidos no seguinte procedimento:

As equações recursivas para determinar ${\bf M}$ e ${\bf P}$ no filtro de Kalman são repetidas aqui:

Defina $\mathbf{R}_{\mathbf{v}}, \mathbf{R}_{\mathbf{w}}, \bar{\mathbf{x}}[0] \in \mathbf{M}[0]$; 1. 2. Faça n = 0;Calcule $\mathbf{P}[n] = \mathbf{M}[n] - \mathbf{M}[n]\mathbf{C}^{\top} (\mathbf{C}\mathbf{M}[n]\mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}})^{-1}\mathbf{C}\mathbf{M}[n]$ 3. Calcule $\mathbf{L}_c[n] = \mathbf{P}[n] \mathbf{C}^\top \mathbf{R}_{\mathbf{v}}^{-1};$ 4. Calcule $\hat{\mathbf{x}}[n] = \bar{\mathbf{x}}[n] + \mathbf{L}_c[n](\mathbf{y}[n] - \mathbf{C} \bar{\mathbf{x}}[n]);$ 5. Atualize $\mathbf{\bar{x}}[n+1] = \mathbf{\Phi}\mathbf{\hat{x}}[n] + \mathbf{\Gamma}\mathbf{u}[n];$ 5. Atualize $\mathbf{M}[n+1] = \mathbf{\Phi}\mathbf{P}[n]\mathbf{\Phi}^{\top} + \mathbf{\Psi}\mathbf{R}_{\mathbf{w}}\mathbf{\Psi}^{\top};$ 6. 7. Faça n = n + 1; 8. Vá para o passo 3.

Bruno A. Angélico

Já

$$\begin{split} \mathbf{P}[n] &= \mathbf{M}[n] - \mathbf{M}[n] \mathbf{C}^{\top} \left(\mathbf{C} \mathbf{M}[n] \mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}} \right)^{-1} \mathbf{C} \mathbf{M}[n] \\ \mathbf{M}[n+1] &= \mathbf{\Phi} \mathbf{P}[n] \,\mathbf{\Phi}^{\top} + \mathbf{\Psi} \mathbf{R}_{\mathbf{w}} \mathbf{\Psi}^{\top} \\ \hat{\mathbf{A}} \text{ para o controle ótimo, tinha-se:} \\ \mathbf{M}[n] &= \mathbf{P}[n] - \mathbf{P}[n] \mathbf{\Gamma} \left(\mathbf{R} + \mathbf{\Gamma}^{\top} \mathbf{P}[n] \mathbf{\Gamma} \right)^{-1} \mathbf{\Gamma}^{\top} \mathbf{P}[n] \\ \mathbf{P}[n-1] &= \mathbf{\Phi}^{\top} \mathbf{M}[n] \mathbf{\Phi} + \mathbf{Q} \end{split}$$

PTC5611

Controle LQR

Controle LQG

Filtro de Kalman

Página 43 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

onde

е,

PTC5611

Note que as duas formas são semelhantes, exceto pelo sentido da evolução temporal. Assim, da mesma forma que feito no controle ótimo, pode-se considerar a versão em regime estacionário para o estimador, resultando em um ganho constante \mathbf{L}_{ss} . Por analogia ao controle ótimo, tem-se:

$$\mathbf{L}_{ss} = \mathbf{M}_{ss} \, \mathbf{C}^{\top} \big(\mathbf{C} \, \mathbf{M}_{ss} \mathbf{C}^{\top} + \mathbf{R}_{\mathbf{v}} \big)^{-1}, \tag{66}$$

$$\mathbf{M}_{ss} = \mathbf{\Phi} \mathbf{P}_{ss} \, \mathbf{\Phi}^\top + \mathbf{\Psi} \mathbf{R}_{\mathbf{w}} \mathbf{\Psi}^\top, \tag{67}$$

 $\mathbf{P}_{ss} = \mathbf{M}_{ss} - \mathbf{M}_{ss}\mathbf{C}^{\top} \left(\mathbf{R}_{\mathbf{v}} + \mathbf{C}\mathbf{M}_{ss}\mathbf{C}^{\top}\right)^{-1} \mathbf{C}\mathbf{M}_{ss} \qquad (68)$ De (67) e (68), obtém-se:

$$\mathbf{M}_{ss} = \mathbf{\Phi} \left(\mathbf{M}_{ss} - \mathbf{M}_{ss} \mathbf{C}^{\top} \left(\mathbf{R}_{\mathbf{v}} + \mathbf{C} \mathbf{M}_{ss} \mathbf{C}^{\top} \right)^{-1} \mathbf{C} \mathbf{M}_{ss} \right) \mathbf{\Phi}^{\top} + \mathbf{\Psi} \mathbf{R}_{\mathbf{w}} \mathbf{\Psi}^{\top}, \quad (69)$$

Controle LQR

Filtro de Kalman

Controle LQG

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

que está na forma da equação algébrica de Riccati.

No MATLAB, há o comando dlqe que, de acordo com a notação utilizada aqui, possui a seguinte sintaxe: [L,M,P,E] = dlqe(Phi,Psi,C,Rw,Rv), sendo E os polos resultantes do observador.

O LQR e o FK são duais, ou seja, relações análogas são obtidas nos dois casos, simplesmente fazendo as correspondências apontadas na Tabela2

Table 2: Parâmetros duais do LQR e do FK em regime estacionário.

LQR	FK
Φ	$\Phi^ op$
Γ	$\mathbf{C}^ op$
_	—
\mathbf{Q}	$\Psi \mathrm{R_w} \Psi^+$
$egin{array}{c} \mathbf{Q} \ \mathbf{R} \end{array}$	${f \Psi R_w \Psi^+ \over R_v}$

Controle LQR

Filtro de Kalman

Controle LQG

Homepage

Página de Rosto

▲
♦ Página 45 de 78
Voltar
Full Screen

Bruno A. Angélico

PTC5611

$$G(s) = \frac{70}{(s+2)(s+5)(s+7)}$$

A representação em espaço de estados pode ser dada por

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -14 & -59 & -70 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 70 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Assuma que haja ruído branco de medição, tal que $\mathbf{R}_{\mathbf{v}} = 0,01$. Considere também a presença de ruído branco no estado x_1 , tal que $\mathbf{R}_{\mathbf{w}} = 0,01$. Note que assim, pode-se considerar

$$\Psi = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

Desistir

Fechar

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 46 de 78

Voltar

Full Screen

Fechar

Bruno A. Angélico

PTC5611

Projete estimadores de estado considerando: a) observador de Luenberger, alocando os polos com dinâmica cerca de três mais rápida do que a menor constante de tempo do sistema; b) filtro de Kalman variante no tempo; c) filtro de Kalman estacionário. Assuma estado inicial igual a $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}$. Antes de iniciar a solução, observe que:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ 0 \\ 0 \end{bmatrix} u + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} w = \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix}$$
Assim, para incluir o ruído de processo no modelo, pode-se considerar a matriz aumentada $\mathbf{B}_1 = \begin{bmatrix} b_1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ no modelo em espaço de estados, bem como o vetor de entrada $\begin{bmatrix} u \\ w \end{bmatrix}$.

Bruno A. Angélico PTC5611 A solução é obtida pelo seguinte código Matlab:

```
clear all; clc; %close all;
                     fs=50; Ts=1/fs; s = tf('s');
Controle . . .
                     G = 1/((s+2)*(s+5)*(s+7)); K = 1/dcgain(G); G = K = G*G;
Controle LQR
                     0BS 1: 0 ganho foi transferido para a matrix de entrada. Assim y = x_3
Filtro de Kalman
                      [A, B, C, D] = tf2ss(G.num{:}, G.den{:}); B = B K G; C = C/K G;
                      [Phi, Gamma] = c2d(A, B, Ts);
Controle LQG
                     Psi = [1 \ 0 \ 0]'; Rv = 1e-2; Rw = 1e-2;
                     %OBS 2: no bloco State-Space1 a matrix B foi modificada para considerar a
    Homepage
                     %entrada de ruído em x 1. Consequentemente, D foi modificada
                     A1 = A; B1 = [B, Psi]; C1 = C; D1 = [0 0]; % Bloco State-Space1
  Página de Rosto
                     %OBS 3: no bloco State-Space2 C=eye(3) para obter todos os estados
                     % para fins de comparação
                     A2 = A; B2 = B; C2 = eye(3); D2 = [0; 0; 0]; % Bloco State-Space2
                     x 0 = [1 0 1]; %estado inicial
                     item = 'a';
                     switch(item)
                     case 'a' %Luemberger
                     so = [-21; -22+j*2; -22-j*2]; p o = exp(so*Ts);
  Página 47 de 78
                     Lc = place (Phi', (C*Phi)', p_0)';
                     sim('SIM_EX4_CHAP_12_a');
     Voltar
                     case 'b' %Filtro de Kalman
                     M \ 0 = eye(3);
                     sim('SIM EX4 CHAP 12 b');
    Full Screen
                     case 'c' %Filtro de Kalman estacionário
                     Lc = dlge(Phi, Psi, C, Rw, Rv);
     Fechar
```


Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 48 de 78

Voltar

Full Screen

Bruno A. Angélico

PTC5611

```
sim('SIM EX4 CHAP 12 a');
otherwise
error('item precisa se ''a'', ''b'' ou ''c'' ');
end
x_1 = x_{out}(:, 1); x_2 = x_{out}(:, 2); x_3 = x_{out}(:, 3); y = x_3;
x_chap_1 = x_chap_out(:, 1); x_chap_2 = x_chap_out(:, 2);
x_chap_3 = x_chap_out(:,3); y_chap = x_chap_3;
t d = (0:length(y chap)-1)*Ts;
figure(1);
plot(t,y,'b',t_d,y_noisy,'y',t_d,y_chap,'r');
xlabel('$t$','Interpreter','latex');
ylabel('Amplitude','Interpreter','latex');
l = legend('$y$ sem ruido', '$y$ com ruido', '$\hat y$');
set(l, 'Interpreter', 'Latex', 'Fontsize', 12);
figure(2);
subplot(3,1,1);plot(t,x 1, 'b--',t d,x chap 1, 'r'); axis([0 20 -4 4]);
xlabel('$t$','Interpreter','latex');
ylabel('Amplitude','Interpreter','latex');
1 = legend('$x_1$','$\hat x_1$'); set(1,'Interpreter','Latex','Fontsize',12
subplot(3,1,2);plot(t,x 2,'b--',t d,x chap 2,'r'); axis([0 20 -2 2]);
xlabel('$t$','Interpreter','latex');
ylabel('Amplitude','Interpreter','latex');
1 = legend('$x_2$', '$\hat x_2$');
set(l, 'Interpreter', 'Latex', 'Fontsize', 12);
subplot(3,1,3);plot(t,x_3,'b-',t_d,x_chap_3,'r'); axis([0 20 -0.5 1.5]);
xlabel('$t$','Interpreter','latex');
ylabel('Amplitude', 'Interpreter', 'latex');
l = legend('$x_3$','$\hat x_3$'); set(l,'Interpreter','Latex','Fontsize',12
```

Desistir

Fechar

Controle LQR

Bruno A. Angélico PTC5611 Diagramas de simulação estão apresentados nas Figuras 5 e 6.

Figure 5: Diagrama de blocos da simulação o Exemplo 3 a e c.

PTC5611

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 53 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

PTC5611

(a) Saída e Estados

(b) Sinal de Controle

Controle LQR

Controle LQG

Filtro de Kalman

Homepage

Página de Rosto

Página 54 de 78

Voltar

Full Screen

Fechar

Desistir

Bruno A. Angélico

PTC5611

(a) Saída e Estados

(b) Sinal de Controle