

SISTEMAS INTELIGENTES

Prática 10 – Algoritmos Genéticos (Otimização de Sistemas)

Ivan Nunes da Silva

Objetivos da Aula

- Fixar a teoria sobre os processos de otimização envolvendo Algoritmos Genéticos, conforme visto nas aulas teóricas.
- Introduzir os principais componentes da ToolBox de Algoritmos Genéticos implementados no Matlab.
- Implementar soluções inteligentes para problemas envolvendo Otimização de Processos.

Definindo Problemas de Otimização

Um problema geral de otimização pode ser definido pela seguintes expressões:

Minimizar: f(x) {Função objetivo ou fitness function}

sujeito a: $A \cdot x \le b$ {Restrições de desigualdade}

 A^{eq} . $x = b^{eq}$ {Restrições de igualdade}

 $x^{min} \le x \le x^{max}$ {Restrições de valores p/ x // bounds constraints}

Onde: \mathbf{x} define o vetor das N variáveis do problema $\{\mathbf{x} \in \Re^{N}\}$;

f(x) define a função a ser otimizada;

A define a matriz dos coeficientes das expressões de desigualdade, sendo **b** o vetor de termos independentes;

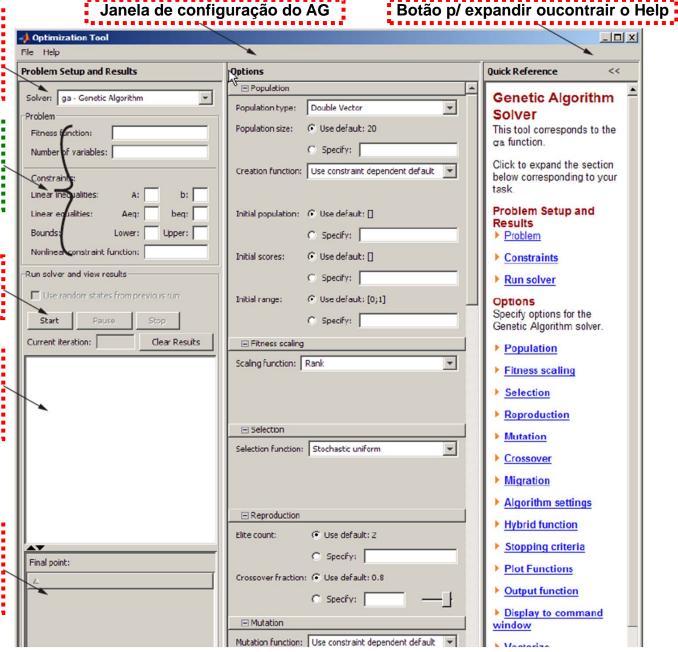
A^{eq} define a matriz dos coeficientes das expressões de igualdade, sendo **b**^{eq} o vetor de termos independentes;

x^{min} e x^{max} são vetores que definem os valores mínimo e máximo para cada componente do vetor x.

Acessando a Toolbox de Algoritmos Genéticos

- A ToolBox de Algoritmos Genéticos (AG) do Matlab possui uma interface gráfica amigável e eficiente.
- De maneira similar aos outros ToolBoxes, a ToolBox de AG permite uma prototipagem extremamente rápida do problema a ser implementado por meio dos algoritmos genéticos.
- No Matlab, a otimização sempre é realizada com o intuito de minimizar a função objetivo. Caso haja necessidade de maximizar, basta-se lembrar que: Min f(x) = Max -f(x)
- Para acessar a ToolBox de Algoritmos Genéticos no Matlab (versão 2011b ou superior), basta-se digitar "optimtool('ga')" na linha de comando.

Algoritmos Genéticos no Matlab


Menu de seleção do otimizador

Janela de definição do problema

Botão para executar o AG

Janela de visualização de resultados

Janela de visualização da solução final

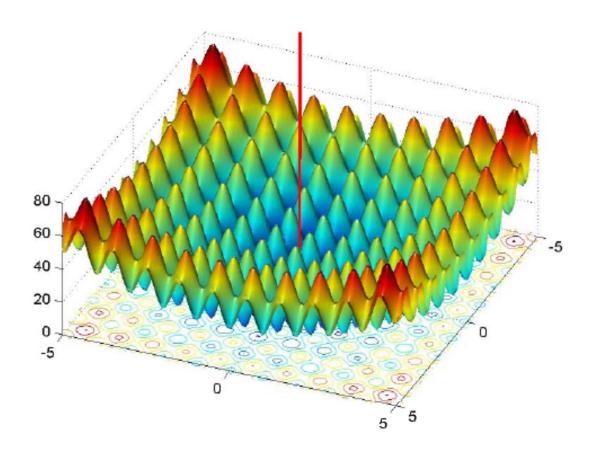
Resolvendo Problemas de Otimização (I)

Problema 1:

Seja o seguinte problema de otimização irrestrita, isto é, sem restrições, definido por:

$$f(x_1, x_2) = 20 + x_1^2 + x_2^2 - 10 \cdot (\cos(2\pi x_1) + \cos(2\pi x_2))$$

- Minimize a função acima por meio de um AG, com os seguintes parâmetros de configuração:
 - > Tipo de indivíduos: Real (double vector).
 - Quantidade de indivíduos: 100 (population size).
 - Função de criação dos indivíduos: uniforme no domínio (constraint dependent).
 - Método de escalamento: melhores indivíduos (rank).
 - Método de Seleção: amostragem estocástica.
 - Método de Cruzamento (Reprodução):
 - ➤ Taxa de elitismo igual a 2 (Elite count = 2) → É quantidade de indivíduos (de menor fitness) a passar diretamente p/ próxima geração;
 - > Taxa de cruzamento de 85% (Crossover Fraction = 0.85).
 - Método mutação: em gene aleatório (constraint dependent).



Resolvendo Problemas de Otimização (II)

- A função a ser otimizada é extremamente não-linear, sendo de difícil resolução por métodos convencionais, contendo diversos pontos de mínimos locais.
 - \rightarrow Mínimo Global \rightarrow x = [0.0, 0.0]

Global minimum at [0 0]

1º Passo: Criando a função de Fitness

> A função de fitness é definida por:

$$f(x_1, x_2) = 20 + x_1^2 + x_2^2 - 10 \cdot (\cos(2\pi x_1) + \cos(2\pi x_2))$$

- Nesse caso, a mesma deve ser formulada a partir da especificação de sua respectiva função ("function" do matlab);
- Assim, implemente a função "f1genetico", a qual receberá o vetor x, constituído de dois argumentos [x1, x2], a fim de produzir a saída desejada y, isto é:

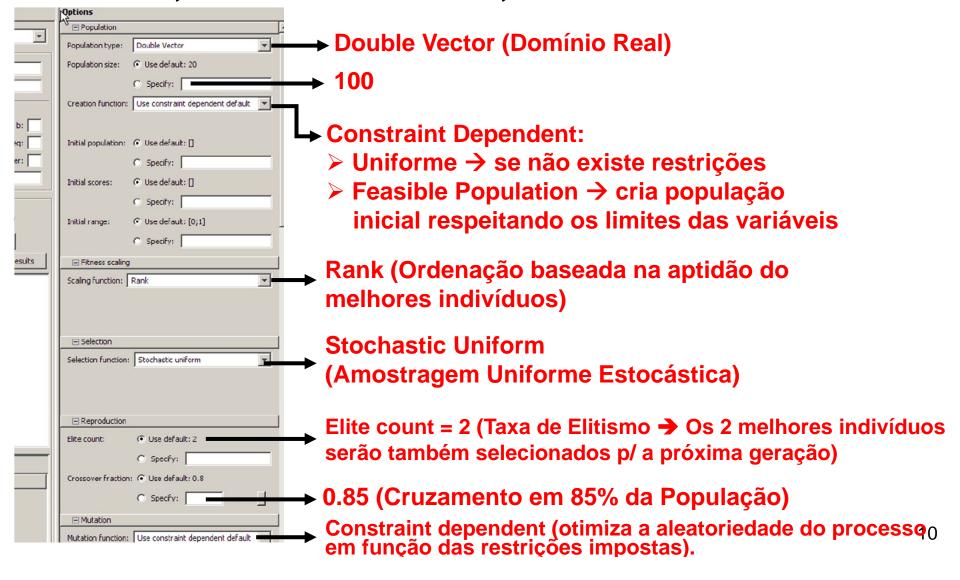
```
function y = f1genetico(x) (...)
```

- Teste a função na linha de comando a fim de verificar se a mesma foi implementada corretamente:
 - \triangleright Para $\mathbf{x} = [1, 1]$, a resposta deve ser 2.

2º Passo: Inserindo a função de Fitness no Toolbox

A inserção da função de fitness dentro da Toolbox é realizada pela associação de seu **ponteiro**, o qual é definido pelo operador "@", isto é:

Problem	
Fitness function:	@f1genetico
Number of variables:	2

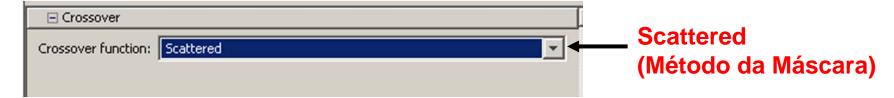

f1genetico(
$$\mathbf{x}$$
) = 20 + $x_1^2 + x_2^2 - 10 \cdot (\cos(2\pi x_1) + \cos(2\pi x_2))$

Resolvendo Problemas de Otimização (V)

3º Passo: Inserindo os parâmetros de configuração do AG, conforme o slide 6, isto é:

Resolvendo Problemas de Otimização (VI)

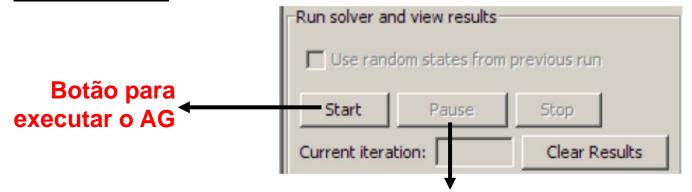
4º Passo: Definindo os parâmetros associados ao critério de parada do AG (assuma os valores defaults), isto é:


		Define uma quantidade máxima de gerações	
Generations:	• Use default: 100	── (iterações) como critério de parada do AG	
	C Specify:	(Especificar: 150)	
Time limit:	• Use default: Inf	Define um tempo máximo de execução como critério de parada do AG (Usar default: Infinito)	
	C Specify:	ontono do parada do 710 (ocar doladin inilinto)	
Fitness limit:	Use default: -Inf	Define um valor mínimo de função objetivo que causará a parada do AG (Usar default: -Infinito)	
	C Specify:	Define uma quantidade máxima de seguidas	
Stall generations:	© Use default: 50	iterações/gerações pobres (que não melhoram a	
	C Specify:	função objetivo) como critério de parada	
Stall time limit:	• Use default: Inf	Define um limite tempo para que o AG consiga melhorar o valor da função objetivo.	
	C Specify:	Define uma tolerância a ser observada nos	
Function tolerance:	• Use default: 1e-6	→ valores da função objetivo (entre sucessivas	
	C Specify:	gerações) a fim de parar o AG. (Especificar: 10 ⁻⁸)	
Nonlinear constraint tolerance:	© Use default: 1e-6	Define uma tolerância a ser observada nos valores das restrições do problema (entre	
	C Specify:	sucessivas gerações) a fim de parar o AG.	

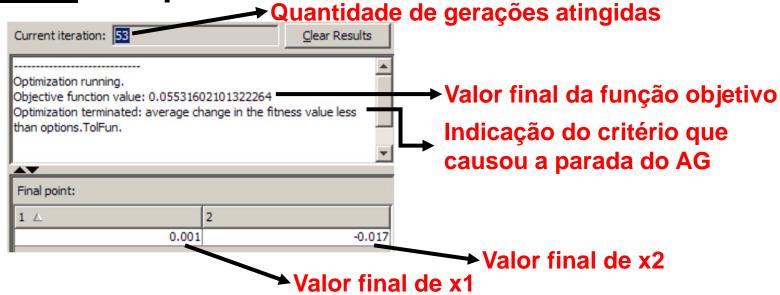
Resolvendo Problemas de Otimização (VII)

5º Passo: Definindo a função de Cruzamento do AG

6º Passo: Definindo formatos de saída do AG


	☐ Plot functions		
Plotar o gráfico do melhor	Plot interval:	1	
fitness em cada iteração	Best fitness	Best individual	Distance
(selecionar "Best fitness")	Expectation	Genealogy	Range
	Score diversity	Scores	Selection
	Stopping	Max constraint	
	Custom function:		
Fornecer os resultados dos	☐ Output function		
valores da função fitness original (deixar desmarcado)	Custom function:		
Mostrar evolução do AG na linha	☐ Display to command window		
de comando (selecione "iterative")	Level of display: iter	ative	•

Resolvendo Problemas de Otimização (VIII)



7º Passo: Executando o AG

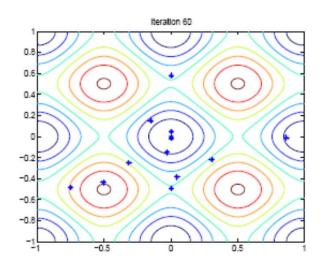
Botão que realiza uma pausa no processamento do AG

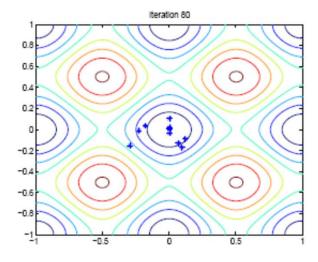
8º Passo: Interpretando os Resultados

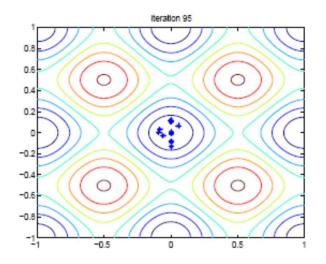
Resolvendo Problemas de Otimização (IX)

a) Realizar 5 execuções do AG para este problema, inserindo as respectivas respostas na tabela abaixo.

Execução	Número de Gerações	Valor de x1	Valor de x2	Valor da função objetivo
1				
2				
3				
4				
5				


 b) Para a melhor resposta do item (a), trace o gráfico do valor da função objetivo em função da respectiva geração.




Resolvendo Problemas de Otimização (X)

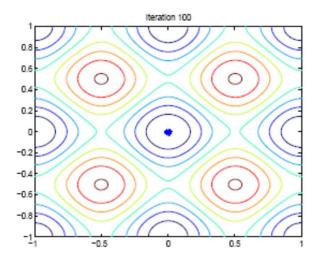
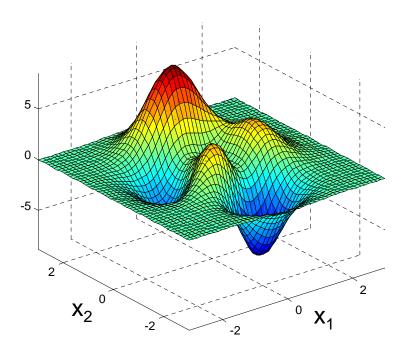
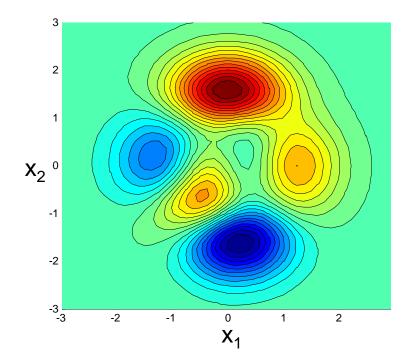


Ilustração do processo de convergência (Problema 1)

Resolvendo Problemas de Otimização (XI)




Problema 2:

> Seja o seguinte problema de otimização:

$$f(x_1, x_2) = 3 \cdot (1 - x_1)^2 \cdot e^{(-x_1^2 - (x_2 + 1)^2)} \dots$$

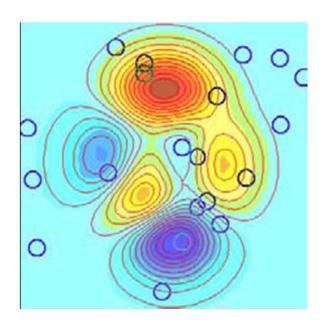
$$\dots - 10 \cdot (\frac{x_1}{5} - x_1^3 - x_2^5) \cdot e^{(-x_1^2 - x_2^2)} - \frac{1}{3} e^{(-(x_1 + 1)^2 - x_2^2)}$$

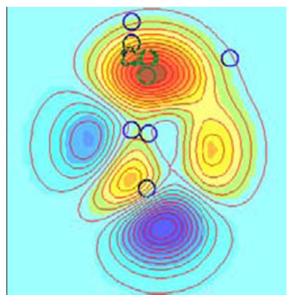
Resolvendo Problemas de Otimização (XII)

a) Obter o ponto de <u>máximo</u> da função "f2genetico" usando os mesmos parâmetros de configuração utilizado para o Problema 1, registrando as respectivas respostas na tabela abaixo.

Execução	Número de Gerações	Valor de x1	Valor de x2	Valor da função objetivo
1				
2				
3				
4				
5				

- b) Para a melhor resposta do item (a), trace o gráfico do valor da função objetivo em função da respectiva geração.
- c) Obter o ponto de mínimo da função "f2genetico", com -3 \leq x1 \leq -1 e com -1 < x2 < 1.5.


Execução	Número de Gerações	Valor de x1	Valor de x2	Valor da função objetivo
1				
2				
3				
4				
5				



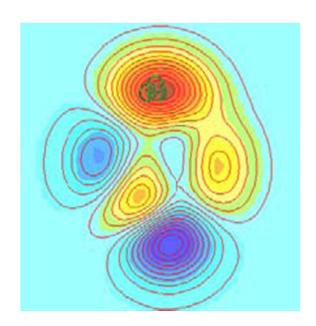

Resolvendo Problemas de Otimização (XIII)

Ilustração do processo de convergência (Problema 2)

