AGM5823 – Tópicos em Química atmosférica

# Ozônio troposférico Parte 3 – alguns mecanismos de reações

Profa. Adalgiza Fornaro

São Paulo, novembro de 2023

# **Resumo: os ingredientes**

Para formar ozônio na troposfera, é preciso:

- O próprio ozônio

   (sem ozônio → sem radical OH)
   fonte na troposfera livre: estratosfera mas não explica
   todo o processo oxidadtivo observado!!!!
- NO<sub>x</sub> → fotólise de NO<sub>2</sub> produz oxigênio atômico fonte: emissões antropicas (queima de combustíveris fosseis) e naturais (relâmpagos)
- CO e COV (compostos orgânicos voláteis) fonte: emissões antropicas (queima de combustíveris, processos industriais em geral) e naturais (queimadas de florestas, florestas, pantanos, etc)

#### Why is NO2 important?

- (air pollution) NO and NO2 together with hydrocarbons form ozone
- (air pollution) NO2 has direct health effects
- (air pollution) NO/NO2 are transformed to harmful particles (nitrates)

- (nature) Nitrate deposition is harmful to the ecosystem (vertilisation, acidification)
- (climate) NO/NO2 play a role in the formation of free tropospheric ozone (greenhouse gas) and aerosol, and have an impact on the lifetime of methane



#### Etapas principais na produção de ozônio troposférico (R = H ou radical alquila ou acila).



 $HO_2$  = radical hidroperoxila  $CH_3O_2$  = radical metilperoxila

HO = radical hidroxila

 $CH_3O$  = radical metoxi

#### Fontes de radical hidroxila - principal oxidante atmosférico



Obs.: a reação do radical nitrato  $(NO_3)$  é especialmente importante à noite porque não há fontes fotolíticas de OH.

Taxas de geração de radicais HO calculadas a partir de várias fontes para uma área florestal rural no sudeste dos Estados Unidos (pg. 200, Finlayson Pitts & Pitts, 2000) Produção dos oxidantes O<sub>3</sub>, OH e H<sub>2</sub>O<sub>2</sub> nas reações fotoquímicas atmosféricas (**TROPOSFERA**)



Thompson, Science, 256, 1992

Produção dos oxidantes O<sub>3</sub>, OH e H<sub>2</sub>O<sub>2</sub> nas reações fotoquímicas atmosféricas (**TROPOSFERA**)



Thompson, Science, 256, 1992

#### Constante de velocidade, k (**10**<sup>-12</sup> cm<sup>3</sup> molecula<sup>-1</sup> s<sup>-1</sup>) para reações **de alcenos com radical OH**

| Ethene                            | 8.52              |  |
|-----------------------------------|-------------------|--|
| Propene                           | 26.3              |  |
| 1-Butene                          | 31.4              |  |
| cis-2-Butene                      | 56.4              |  |
| trans-2-Butene                    | 64.0              |  |
| 2-Methylpropene                   | 51.4              |  |
| 1-Pentene                         | 31.4              |  |
| cis-2-Pentene                     | 65                |  |
| trans-2-Pentene                   | 67                |  |
| Cyclopentene                      | 67                |  |
| 3-Methyl-1-butene                 | 31.8              |  |
| 2-Methyl-1-butene                 | 61                |  |
| 2-Methyl-2-butene                 | 86.9              |  |
| 1-Hexene                          | 37                |  |
| Cyclohexene                       | 67.7              |  |
| 1-Heptene                         | 40                |  |
| trans-2-Heptene                   | 68                |  |
| Cycloheptene                      | 74                |  |
| 1,3-Butadiene                     | 66.6              |  |
| 2-Methyl-1,3-butadiene (isoprene) | 101               |  |
| Camphene                          | 53                |  |
| 2-Carene                          | 80                |  |
| Limonene                          | 171               |  |
| a-Phellandrene                    | 313               |  |
| β-Phellandrene                    | 168               |  |
| a-Pinene                          | 53.7              |  |
| β-Pinene                          | 78.9              |  |
| a-Terpinene                       | 363               |  |
| y-Terpinene                       | 177               |  |
| Terpinolene                       | 225               |  |
| Methyl vinyl ketone               | 18.8 <sup>d</sup> |  |
| Methacrolein                      | 33.5 <sup>d</sup> |  |
|                                   |                   |  |

Constante de velocidade, k (**10<sup>-18</sup>** cm<sup>3</sup> molecula<sup>-1</sup> s<sup>-1</sup>) para reações de alcenos com ozônio

| Ethene                   | 1.6                 |
|--------------------------|---------------------|
| Propene                  | 10.1                |
| 1-Butene                 | 9.64                |
| 2-Methylpropene          | 11.3                |
| cis-2-Butene             | 125                 |
| trans-2-Butene           | 190                 |
| 1-Pentene                | 10.0                |
| Cyclopentene             | 570                 |
| 2-Methyl-2-butene        | 403                 |
| 1-Hexene                 | 11.0                |
| Cyclohexene              | 81.4                |
| cis-3-Methyl-2-pentene   | 450                 |
| trans-3-Methyl-2-pentene | 560                 |
| 2,3-Dimethyl-2-butene    | 1130                |
| 1,3-Butadiene            | 6.3                 |
| 2-Methyl-1,3-butadiene   | 12.8                |
| Myrcene                  | 470                 |
| 2-Carene                 | 230                 |
| 3-Carene                 | 37                  |
| Limonene                 | 200                 |
| α-Phellandrene           | 2980                |
| $\beta$ -Phellandrene    | 47                  |
| α-Pinene                 | 86.6                |
| β-Pinene                 | 15                  |
| α-Terpinene              | $2.1 \times 10^{4}$ |
| γ-Terpinene              | 140                 |
| Terpinolene              | 1880                |
| Methyl vinyl ketone      | 5.6 <sup>e</sup>    |
| Methacrolein             | 1.2 <sup>e</sup>    |
|                          |                     |

#### Constante de velocidade, k (cm<sup>3</sup> molecula<sup>-1</sup> s<sup>-1</sup>) para reações de alcenos com radical NO<sub>3</sub>

| Alkene                            | k (cm <sup>3</sup> molecule <sup>-1</sup><br>s <sup>-1</sup> ) at 298 K | A (cm <sup>3</sup><br>molecule <sup>-1</sup> s <sup>-1</sup> ) | E <sub>a</sub> / R<br>(K) |
|-----------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------|
| Ethene                            | $2.1 \times 10^{-16}$                                                   | с                                                              | с                         |
| Propene                           | $9.5 \times 10^{-15}$                                                   | $4.6 \times 10^{-13}$                                          | 1156                      |
| 1-Butene                          | $1.4 \times 10^{-14}$                                                   | $3.14 \times 10^{-13}$                                         | 938                       |
| 2-Methylpropene                   | $3.3 \times 10^{-13}$                                                   |                                                                |                           |
| cis-2-Butene                      | $3.5 \times 10^{-13}$                                                   |                                                                |                           |
| trans-2-Butene                    | $3.9 \times 10^{-13}$                                                   | d                                                              | d                         |
| 2-Methyl-2-butene                 | $9.4 \times 10^{-12}$                                                   |                                                                |                           |
| 2,3-Dimethyl-2-butene             | $5.7 \times 10^{-11}$                                                   |                                                                |                           |
| 1,3-Butadiene                     | $1.0 \times 10^{-13}$                                                   |                                                                |                           |
| 2-Methyl-1,3-butadiene (isoprene) | $6.8 \times 10^{-13}$                                                   | $3.03 \times 10^{-12}$                                         | 446                       |
| Cyclopentene                      | $5.3 \times 10^{-13}$                                                   |                                                                |                           |
| Cyclohexene                       | $5.9 \times 10^{-13}$                                                   | $1.05 \times 10^{-12}$                                         | 174                       |
| Cycloheptene                      | $4.8 \times 10^{-13}$                                                   |                                                                |                           |
| Camphene                          | $6.2 \times 10^{-13f}$                                                  | $3.1 \times 10^{-12}$                                          | 481                       |
| 2-Carene                          | $1.9 \times 10^{-11}$                                                   |                                                                |                           |
| 3-Carene                          | $9.1 \times 10^{-12}$                                                   |                                                                |                           |
| Limonene                          | $1.2 \times 10^{-11}$                                                   |                                                                |                           |
| α-Pinene                          | $5.9 \times 10^{-12}$                                                   | $3.5 \times 10^{-13}$                                          | - 841                     |
| β-Pinene                          | $2.1 \times 10^{-12f}$                                                  | $1.6 \times 10^{-10}$                                          | 1248                      |
| α-Phellandrene                    | $7.3 \times 10^{-11}$                                                   |                                                                |                           |
| β-Phellandrene                    | $8.0 \times 10^{-12}$                                                   |                                                                |                           |
| a-Terpinene                       | $1.4 \times 10^{-10}$                                                   |                                                                |                           |
| y-Terpinene                       | $2.9 \times 10^{-11}$                                                   |                                                                |                           |
| Terpinolene                       | $9.7 \times 10^{-11}$                                                   |                                                                |                           |
| Methyl vinyl ketone               | $< 6 \times 10^{-16 d}$                                                 |                                                                |                           |
| Methacrolein                      | $3.3 \times 10^{-15 c}$                                                 |                                                                |                           |

TABLE 6.13 Room Temperature Rate Constants and Temperature Dependence<sup>a</sup> for the Gas-Phase Reactions of the NO<sub>3</sub> Radical with Some Alkenes<sup>b</sup>

#### Diagrama resumido da oxidação de alcanos



"Química tem tudo a ver com elétrons" Espécies com elétrons desemparelhados (radicais) fazendo a maior parte do trabalho

Prof. Jose-Luis Jimenez

Representação simplificada das sequências de reação envolvidas na oxidação troposférica de COVs.



Aumont, Szopa, Madronich, Atmos. Chem. Phys., 5, 2497–2517, 2005

Alcenos "são mais reativos" que alcanos



- Reações muito rápidas, mais rápidas para alcenos maiores
- Dependência de pressão,
- dependência T negativa.

 – suporta a importância da adição à dupla ligação.

# Compare OH +

- Propane:  $1 \ge 10^{-12}$
- Propene: 26 x 10<sup>-12</sup>
- Heptane: 7 x 10<sup>-12</sup>
- Heptene: 40 x 10<sup>-12</sup>

#### $O_3$ + alcenos

- ➢ Lembre-se que a taxa de colisão ~2,5x10<sup>-10</sup>
- Reações muito mais lentas do que para OH
- Comparar

- OH + Propene: 2.6 x 10<sup>-11</sup>

- O<sub>3</sub> + Propene: 1 x 10<sup>-17</sup>

Mas lembre-se:

- d[Org]/dt = k[Oxidant][Org]
- OH: 0,1 ppt
- O<sub>3</sub>: 100 ppb

Assim, embora a reação de ozonólise de alcenos seja um processo lento, ela é importante na atmosfera devido às grandes concentrações de O<sub>3</sub>, comparadas às do radical OH.

#### NO<sub>3</sub> + alcenos



NO<sub>3</sub> é adicionado à ligação dupla

- O aduto excitado pode:
- Formar epóxido

### Velocidades de reação NO<sub>3</sub>

TABLE 6.13 Room Temperature Rate Constants and Gas-Phase Reactions of the NO<sub>3</sub> Radical

| Lembre-se que a taxa de                                   |
|-----------------------------------------------------------|
| colisão é ~2,5 x 10 <sup>-10</sup>                        |
| <ul> <li>As reações são bastante</li> </ul>               |
| rápidas para alcenos                                      |
| biogênicos                                                |
| <ul> <li>Taxas comparáveis a OH</li> </ul>                |
| <ul> <li>d[Org]/dt = -[Oxidante][Org]</li> </ul>          |
| – NO <sub>3</sub> : 50 ppt @ noite                        |
| – OH: 0,1 ppt @ dia                                       |
| <ul> <li>Reações de NO<sub>3</sub> com alcenos</li> </ul> |
| biogênicos à noite são muito                              |
| importantes                                               |
|                                                           |

| Alkene                            | k (cm <sup>3</sup> molecule <sup>-1</sup><br>s <sup>-1</sup> ) at 298 K |
|-----------------------------------|-------------------------------------------------------------------------|
| Ethene                            | $2.1 	imes 10^{-16}$                                                    |
| Propene                           | $9.5 \times 10^{-15}$                                                   |
| 1-Butene                          | $1.4 	imes 10^{-14}$                                                    |
| 2-Methylpropene                   | $3.3 \times 10^{-13}$                                                   |
| cis-2-Butene                      | $3.5 \times 10^{-13}$                                                   |
| trans-2-Butene                    | $3.9 \times 10^{-13}$                                                   |
| 2-Methyl-2-butene                 | $9.4 \times 10^{-12}$                                                   |
| 2,3-Dimethyl-2-butene             | $5.7 \times 10^{-11}$                                                   |
| 1,3-Butadiene                     | $1.0 \times 10^{-13}$                                                   |
| 2-Methyl-1,3-butadiene (isoprene) | $6.8 	imes 10^{-13}$                                                    |
| Cyclopentene                      | $5.3 \times 10^{-13}$                                                   |
| Cyclohexene                       | $5.9 \times 10^{-13}$                                                   |
| Cycloheptene                      | $4.8 \times 10^{-13}$                                                   |
| Camphene                          | $6.2 \times 10^{-13}$                                                   |
| 2-Carene                          | $1.9 \times 10^{-11}$                                                   |
| 3-Carene                          | $9.1 \times 10^{-12}$                                                   |
| Limonene                          | $1.2 	imes 10^{-11}$                                                    |
| α-Pinene                          | $5.9 \times 10^{-12}$                                                   |
| $\beta$ -Pinene > Blogenics       | $2.1 \times 10^{-12}$                                                   |
| α-Phellandrene                    | $7.3 \times 10^{-11}$                                                   |
| β-Phellandrene                    | $8.0 	imes 10^{-12}$                                                    |
| α-Terpinene                       | $1.4 	imes 10^{-10}$                                                    |
| y-Terpinene                       | $2.9 	imes 10^{-11}$                                                    |
| Terpinolene                       | $9.7 \times 10^{-11}$                                                   |
| Methyl vinyl ketone               | $< 6 \times 10^{-16 d}$                                                 |
| Methacrolein                      | $3.3 \times 10^{-15 e}$                                                 |

Mecanismos de reação de

oxidação de alguns COVs

#### Diagrama simplificado da reação de metano com radical hidroxila



# Oxidação do metano

 $CH_4 + \dot{O}H \longrightarrow \dot{C}H_3 + H_2O$ 



# Oxidação do metano



# Oxidação do etano



# Oxidação do propano





Obs: Carbonilas = cetonas + aldeídos

EPA, 2005



# Reação do isopreno com OH



Todos estes seis produtos convertem NO para NO<sub>2</sub>

Mark Z. Jacobson, Department of Civil & Environmental Engineering, Stanford University

# Destino dos produtos de oxidação do isopreno

Produção de metacroleína via o segundo produto



#### Produção do metilvinilcetona via o quinto produto



Mark Z. Jacobson, Department of Civil & Environmental Engineering, Stanford University



# Reação do isopreno com ozônio



Mark Z. Jacobson, Department of Civil & Environmental Engineering, Stanford University

# Reações de alceno com ozônio



# Reações de alceno com ozônio

Reação do biradical Criegee com NO



Decomposição do biradical criegee excitado



Mark Z. Jacobson, Department of Civil & Environmental Engineering, Stanford University

### Reações de alceno com ozônio



# Reação de alceno com ozônio



Excited methylcriegee biradical decomposition





Mecanismo de reação do ozônio com alcenos, mostrando a formação de intermediários Criegee (CIs). Os tipos gerais de reação disponíveis para intermediários Criegee estabilizados (sCIs) também são ilustrados para um exemplo. Os substituintes R<sub>1</sub> a R<sub>4</sub> podem ser átomos de H ou grupos orgânicos, embora a rota de hidroperóxido de vinil sCI / CI ilustrada não esteja disponível se R<sub>2</sub> = H.

Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Troe, J., Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates, Atmos. Chem. Phys., 20, 13497–13519, 2020



Mecanismo de reação do ozônio com alcenos, mostrando a formação de intermediários Criegee (CIs).

Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Troe, J., Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates, Atmos. Chem. Phys., 20, 13497–13519, 2020

#### continuação



Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Troe, J., Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates, Atmos. Chem. Phys., 20, 13497–13519, 2020

# Reações de alceno com radical nitrato (NO<sub>3</sub>)



### Reação dos compostos aromáticos com radical OH



### Reação dos compostos aromáticos com radical OH

Reação do benzilperoxi radical com NO



### Reação dos compostos aromáticos com radical OH

Reação do aducto tolueno-hidroxil radical



# **Destino do cresol**

 $Cresol \rightarrow metilfenilperoxi radical e nitrocresol$ 



# **Reações dos alcóois**

Oxidação do metanol por OH (36-h de tempo de vida)



# **Reações dos alcóois**

Oxidação do etanol por OH (10-h de tempo de vida)



#### Aldeídos podem sofrer mais reações formando PAN

Outro importante poluente atmosférico é o peroxiacilnitrato (PAN), formado a partir de compostos orgânicos no ar:



Entre os principais produtos do *smog* estão ozônio e PAN (peroxiacetilnitrato). O **PAN**, como o ozônio, é um composto tóxico potente e é formado a partir dos hidrocarbonetos na atmosfera.

A mistura dos gases  $O_3$ , PAN e  $NO_2$  produzem a aparência castanha e/ou enfumaçada no ar.

#### Estruturas e nomes de alguns peroxiacil nitratos encontrados na

#### atmosfera ou estudos de laboratório

| Name                                                 | Acronym | Structure                                                          |
|------------------------------------------------------|---------|--------------------------------------------------------------------|
|                                                      |         | P                                                                  |
| Peroxyacetyl nitrate (peroxyacetic nitric anhydride) | PAN     | CH <sub>3</sub> COONO <sub>2</sub>                                 |
| Peroxypropionyl nitrate                              | PPN     | CH3CH2COONO2                                                       |
| Peroxy-n-butyryl nitrate                             | PnBN    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COONO <sub>2</sub> |
| Peroxybenzoyl nitrate                                | PBzN    | C <sub>6</sub> H <sub>5</sub> COONO <sub>2</sub>                   |
| Peroxymethacryloyl nitrate                           | MPAN    | $H_3C O O O O O O O O O O O O O O O O O O O$                       |

- em geral, PAN >> PPN e outros
- Regiões altamente poluídas PAN ~70 ppb
- tempo de vida destes compostos entre 30 e 100 minutos, devido decomposição térmica ⇒ reservatório de NO<sub>2</sub> durante a noite

#### Metacroleína (aldeído produto da oxidação do isopreno)



Pg. 217-220, Finlayson – Pitts & Pitts, 2000

#### Efeito de presença inicial de PAN na produção de ozônio: a) Variação de propeno (C<sub>3</sub>H<sub>6</sub>) consumido; b) variação de ozônio produzido



#### E quanto a outros compostos orgânicos voláteis?

- Tipos semelhantes de compostos químicos e radicais
  - Aromáticos: adição de OH
  - Aldeídos: abstração aldeídica de H
  - Cetonas e álcoois: abstração H da cadeia alquílica
  - Ácidos carboxílicos: adição de OH ou abstração de H
- Tipos semelhantes de mecanismos químicos
  - Fica muito complicado rapidamente.
- Você pode buscar entender mais com base no que abordamos
  - Se precisar saber para sua pesquisa:
    - Veja o livro para introdução de conceitos (FP & P!!)
    - Em seguida, pesquise na literatura



Visão geral dos processos fotoquímicos relacionados ao ozônio troposférico e estratosférico

(EPA, 2005 - EPA/600/R-05/0054aA)

Fatores que favorecem o smog fotoquímico em regiões urbanas:

- altas concentrações de poluentes primários (e.x., NO, COVs),
- poucas nuvens, permitindo alta intensidade de raios UV,
- inversões atmosféricas (e.x., São Paulo e Los Angeles),
- ventos fracos incapazes de dispersar poluentes.

Os processos que levam a formação de níveis elevados de  $O_3$ , produzem também acidez atmosférica e material particulado.

### Mudança da capacidade oxidante da atmosfera





Processos e reações em atmosfera urbana poluída.

#### Processos e compostos envolvidos na poluição do ar.



Reações fotoquímicas ambiente poluído ⇒ *smog* fotoquímico ⇒ acidez atmosférica e aerosol secundário.

### **COVs: processos em fase gasosa**



Shen et al., Heterogeneous reactions of volatile organic compounds in the atmosphere, Atmospheric Environment 68 (2013) 297-314

#### **COVs: reações heterogêneas**



#### **Health effects**

HMCs: high molecular weight compounds; LMCs: low molecular weight

compounds

#### **Bibliografia:**

- C. Baird. "Química Ambiental", 2a.ed., Bookman, Porto Alegre, 2002.
- D.J. Jacob, "Introduction to Atmospheric Chemistry", Princeton University Press, Princeton, 1999.
- B.J. Finlayson-Pitts, J.N. Pitts Jr., "Chemistry of the upper and lower atmosphere – theory, experiments and applications, Academic Press, San Diego, 1998.
- Brasseur, G.P., Orlando, J.J., Tyndall, G.S., Atmospheric Chemistry and Global Change, Oxford University Press, New York, 1999.
- J.H. Seinfeld e S. N. Pandis, "Atmospheric Chemistry and Physics: from air pollution to climate change", John Wiley & Sons, New York, 1998.

http://www.abema.org.br/ (Associação Brasileira de Entidades Estaduais de Meio Ambiente)

http://www.cetesb.sp.gov.br/

http://www.epa.gov/air/

Do, D.H.; Langenhove, H.V.; Walgraeve, C.; Hayleeyesus, S.F.; Wispelaere, P.D.; Dewulf, J.; Demeestere, K., 2013: Volatile organic compounds in an urban environment: a comparison among Belgium, Vietnam and Ethiopia, International Journal of Environmental Analytical Chemistry, 93(3), 298-314.

Kesselmeier, J., Staudt, M., 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, Journal of Atmospheric Chemistry, 33, 23–88.

Maka, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A., 2003. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone, Journal of Geophysical Research: Atmospheres, 108 (D2), ACH 2-1–ACH 2-51.

Martins, L.D.; Andrade, M.F.; Freitas, E.D.; Pretto, A.; Gatti, L.V.; Albuquerque, E.L.; Tomaz, E.; Guardani, M.L.; Martins, M.H.R.B.; Junior, O.M.A., 2006. Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil, Environ. Sci. Technol, 40, 6722-6729.

Penuelas, J.; Staudt, M., 2010. BVOCs and global change, Trends in Plants Science, 15(3), 133-144.