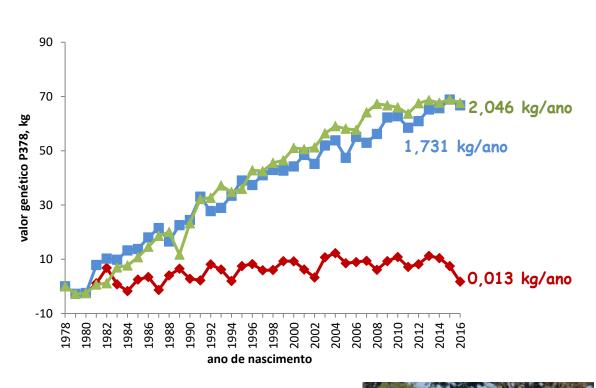
Avaliação genômica em raças Zebuínas de corte: Situação atual e perspectivas

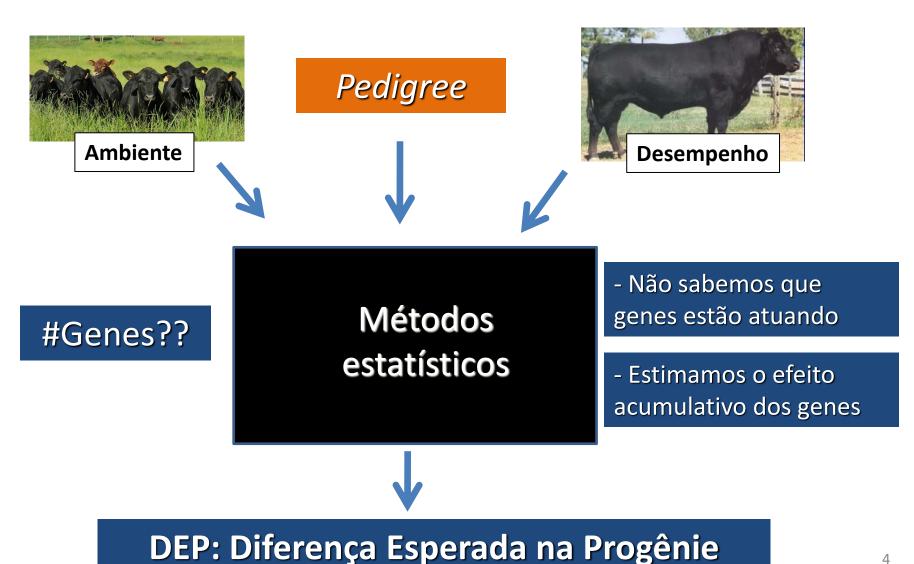
Prof. Fernando Baldi Dep Zootecnia, Unesp – FCAV Diretor de Pesq. Inovação ANCP



Sumário

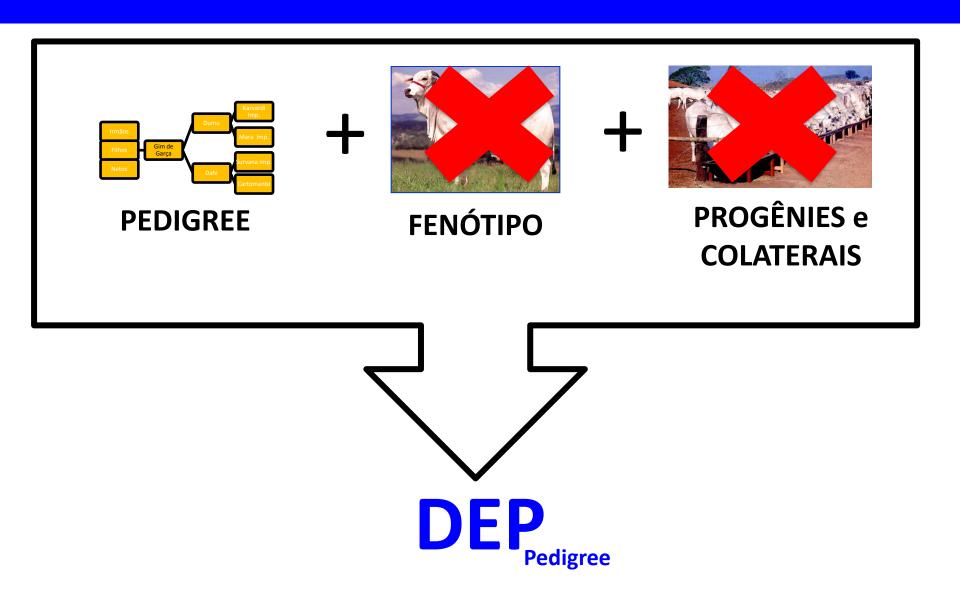
- Estado da arte sobre metodologias de avaliação genômica em raças zebuínas de corte
- Importância da informação genômica para o melhoramento genético
- Resultados de pesquisa sobre utilização de informações genômicas
- Perspectivas futuras sobre o uso de informações genômicas
- Considerações finais.

Seleção em raças zebuínas

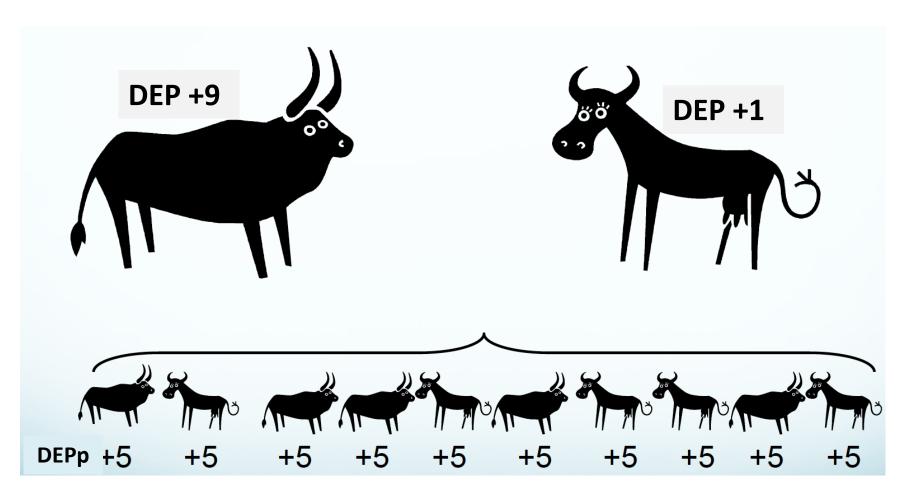


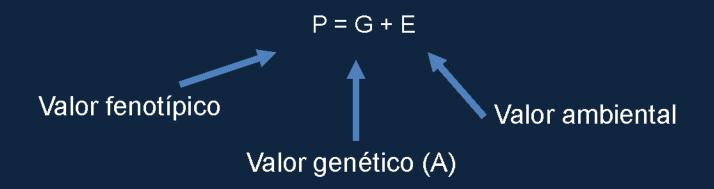
Média P378_{78/79/80} = 274 kg NeC=0,005% da média/ano NeS=0,63% da média/ano NeT=0,75% da média/ano

Melhoramento Genético Tradicional



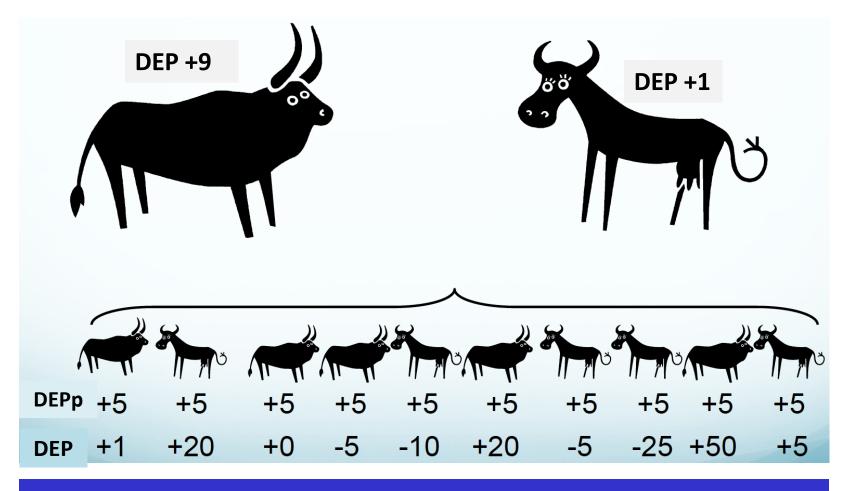
Limitantes da Avaliação Genética Tradicional


- 1. Dependência das informações de parentesco ou pedigree e informações fenotípicas
- 2. Características avaliadas tardiamente;
- 3. Seleção para característica "não tradicionais" e de baixa herdabilidade;
- 4. Baixa acurácia na seleção de animais jovens;


Avaliação Genética Convencional: Animal Jovem

Animais Jovens: DEP é a média dos pais

DEPp pedigree = BLUP

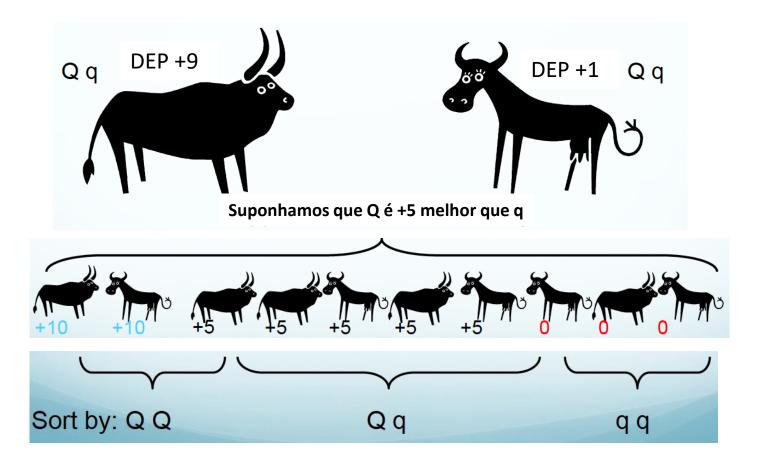


Variáveis aleatórias

Segregação Mendeliana

Na atual circunstância: com mais informações

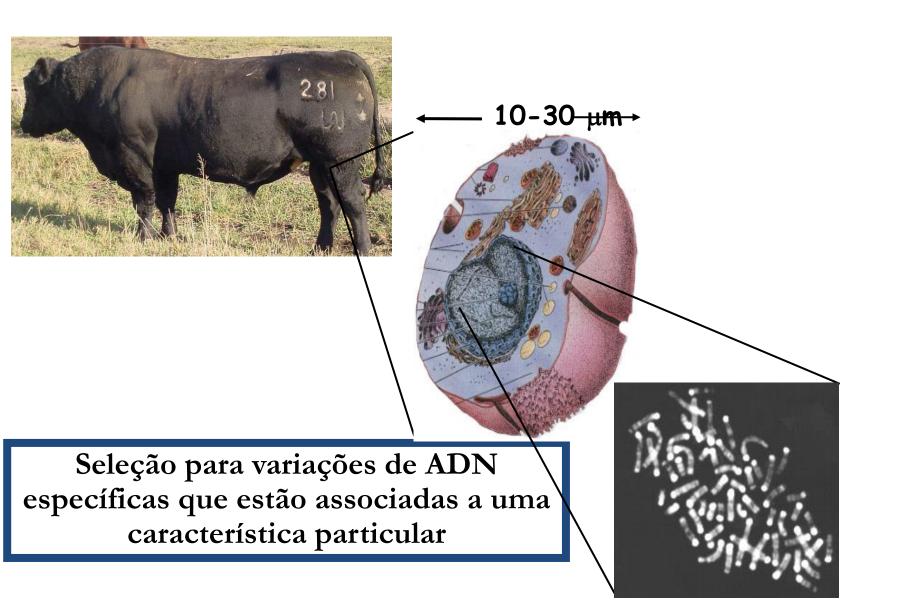
Precisamos dos fenótipos para identificar os animais que têm uma DEP maior à média dos pais (segregação Mendeliana)



Limitações da Avaliação Genética Convencional

- As DEPs são preditas a partir das informações do <u>fenótipo</u> e <u>pedigree</u> (na era pre-genômica)
- Com <u>suficiente informação</u> é possível chegar próximo da DEP "verdadeira" para cada característica.
- Na era da genômica temos os genótipos!!

DEP da progênie jovem é média dos pais + Genômica


Melhoramento Animal para uma Pecuária Eficiente

Predição do Ganho Genético (ΔG) com genômica:

Menor risco na seleção dos animais!!! Seleção mais cedo na vida do animal !!!

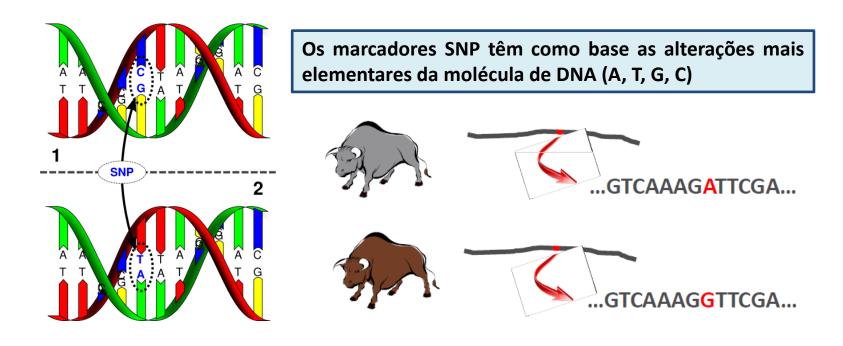
Informação genômica: de onde vem?

Sequenciamento do genoma bovino

- Publicado em 2009;
- L1 Dominette 01449 Hereford;
- 3 bilhões de pares de bases ou SNPs (C, T, A, G);

The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

The Bovine Genome Sequencing and Analysis Consortium,* Christine G. Elsik,
Ross L. Tellam, Kim C. Worley


To understand the biology and evolution of ruminants, the cattle genome was sequenced to about seve ifold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

Marcadores de DNA: SNPs

Somente o genótipo tem pouca utilidade na avaliação genômica!!!!

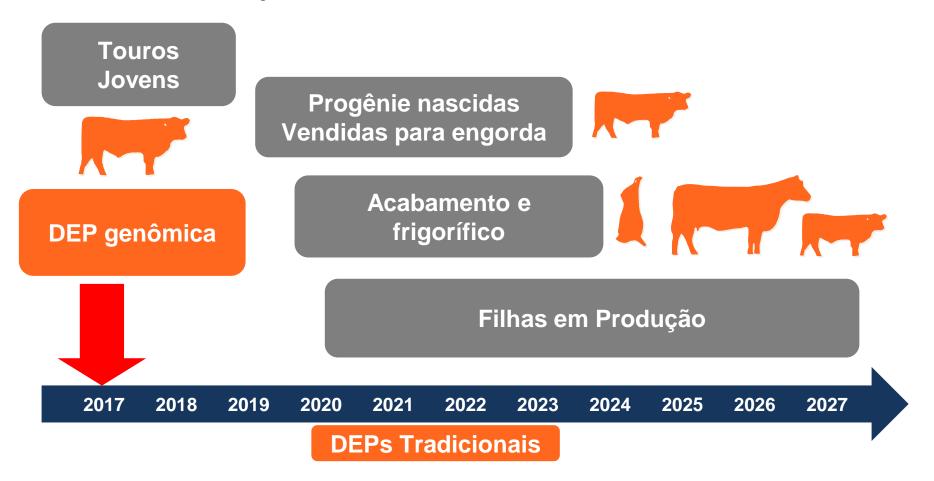
Informação Genômica

O Sequenciamento do genoma tem permitido a descoberta de milhares de polimorfismos de base única (SNPs):

Raramente um único SNP é responsável pela variação em características de interesse econômico

Quando os marcadores são úteis?

- Aumento da acurácia de animais jovens
- Características difíceis ou caras de medir
- Características de baixa variabilidade genética
- Melhorar o parentesco

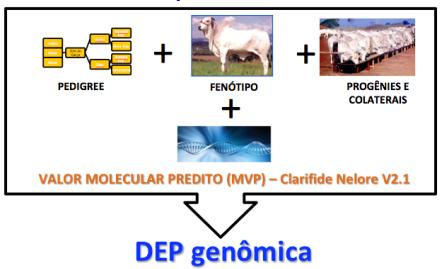


Seleção genômica

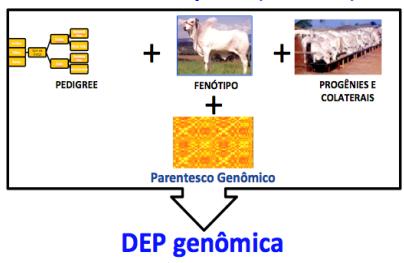
Podemos acelerar o ganho genético se identificarmos os animais superiores mais cedo na vida do animal?

Cronograma de atividades de teste de progênie

Exemplo da raça Holstein no Canadá

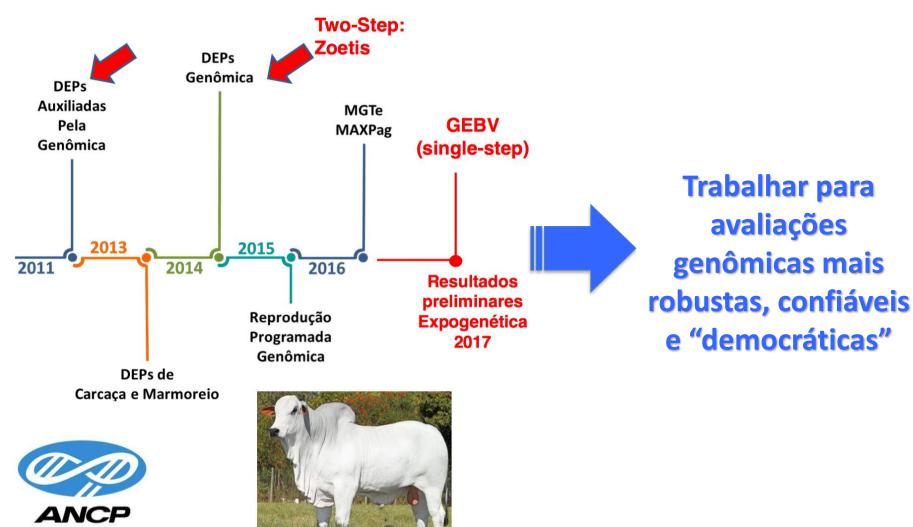

Tempo (meses)	Atividade			
0	Vacas de elite escolhidas e acasaladas			
9	Bezerros filhos de vacas de elite			
+ de 5 anos para obter dados fenotípicos da progênie do reprodutor				
57	Primeiras estimativas de valores genéticos para os touros jovens pelo test-day model			
64	64 Filhas completam a primeira lactação, seleção de touros			

Schaeffer (2006)

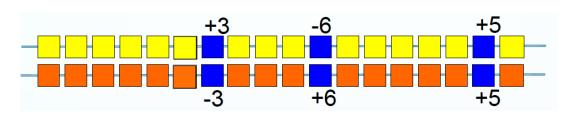

Abordagens em avaliações genômicas

Inclusão da informação genômica:

Método de dois passos:



Método de um passo (ssGBLUP):



Qual abordagem é melhor em termos de resultados?

Evolução das avaliações genômicas

Seleção genômica: calculo do MVP

$$MVP = \sum_{i}^{p} SNP_{i} * b_{i}$$

MVP ou DGV: Valor Molecular Predito

Conhecendo o efeito dos marcadores é possível obter o valor molecular genômico, antes do indivíduo chegar à idade reprodutiva ou expressar características de interesse.

Combinação do MVP com informação do pedigree:

$$GEBV = w_1MVP + w_2DEP_{Pais}$$

GEBV: Valor genômico estimado ou DEP genômica

Método do passo único (ssGBLUP)

Combina todas as fontes de informação de um indivíduo num único passo (single step):

Contribuição média dos pais

Contribuição da progênie do animal

Contribuição do pedigree dos animais genotipados

$$GEBV = w_1PA + w_2YD + w_3PC + w_4DGV - w_5PP,$$

Desempenho do próprio animal

Valor genômico direto

Passos para implementar a seleção genômica

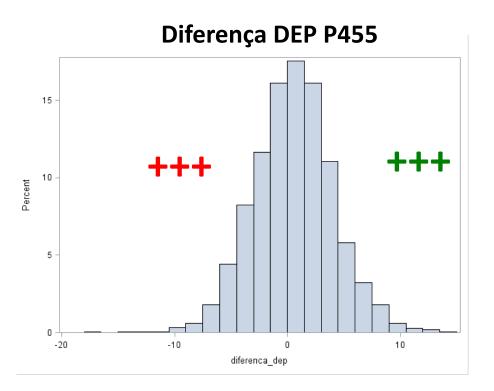
Fenótipos e genótipos conhecidos

Equação de predição

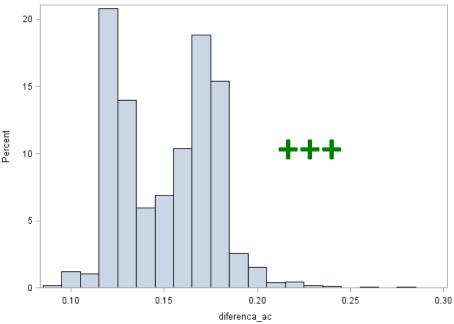
Valor genômico do animal=w₁x₁+w₂x₂+w₃x₃.....

Seleção de reprodutores utilizando os valores genômicos

Precisión tradicional y genómica, número de progenies equivalentes para DEP genômica para animales jóvenes

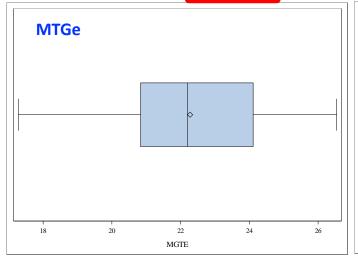

DEPs fase de cria	ACC Tradicional	ACC Genomica	Número de progenies equivalentes
Edad al primer parto	0.16	0.23	10
PP30 (precocidad sexual)	0.17	0.40	21
Stayability (longevidad)	0.11	0.28	22
Productividad de la vaca	0.12	0.36	22
Habilidad materna	0.14	0.41	45
Peso 120 dias edad	0.23	0.37	12
Peso 210 dias de edad	0.23	0.38	11

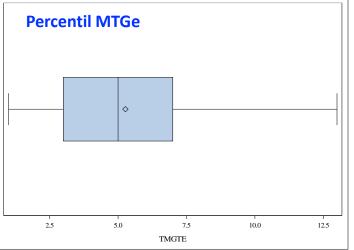
DEPs fase de recria y engorde	ACC Tradicional	ACC Genomica	Número de progenies equivalentes
Peso 450 dias de edad	0.27	0.42	11
Perimetro escrotal	0.20	0.36	6
Area de ojo de bife	0.19	0.36	9
Espesura de grasa	0.19	0.32	6


Mayor impacto en reproducción y leche

Diferença entre acurácia e DEP genômica e tradicional de animais jovens

Diferença de acurácia DEP P455

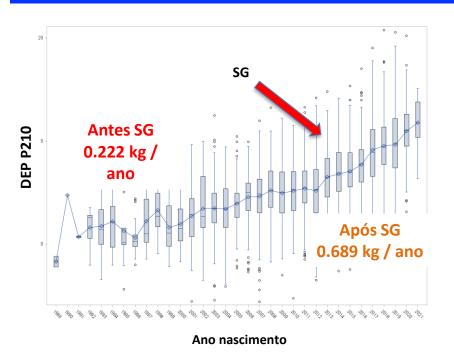


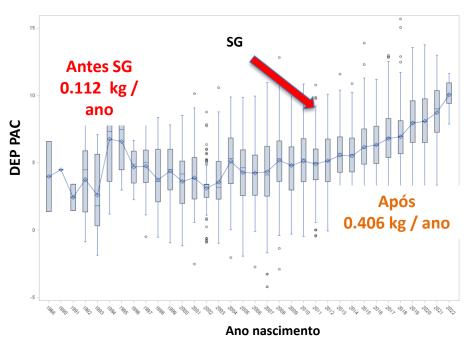

Impacto de la DEPg en la producción de animales FIV

Padre: MTGe=21.8 TMGTe=5% X Madre: MTGe=23.43 TMGTe=3%

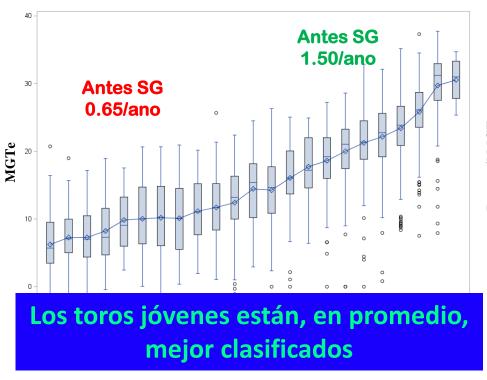
52 Productos Genotipados:

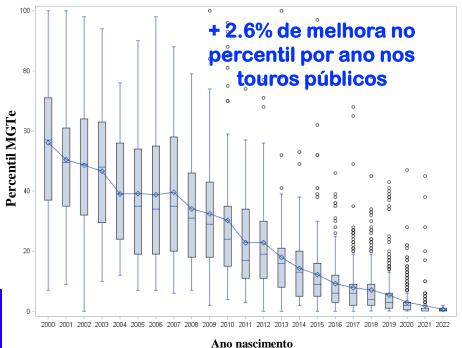
Variable N	N N	Mean	Minimum	Lower Quartile	Upper Quartile	Maximum
MGTE 5				20.84 3.00	24.11 7.00	26.54 13.00





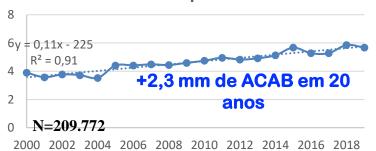
Tendencias genéticas para P210 e PAC: Impacto da selección genômica



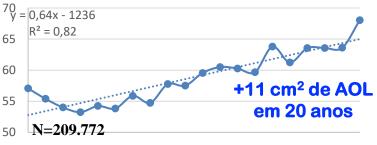


Evolución de MGTe y porcentil de toro públicos de MGTe

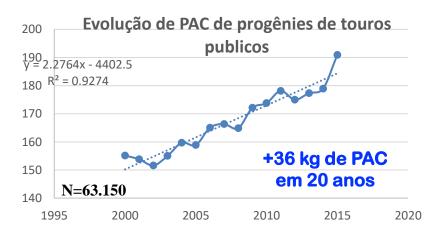
2840 touros públicos Nelore


Evolución fenotípica de progenies de toros públicos

Evolução de p450 de progênies de touros publicos



2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020


Evolução de ACAB de progênies de touros publicos

Evolução de AOL de progênies de touros publicos

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Avaliação genômica utilizando o método do ssGBLUP

Resultados de pesquisa com dados da ANCP:

Acurácia para P455 obtida pelo BLUP e ssGBLUP para diferentes grupos de animais

Categoria	BLUP	ssGBLUP	%
Todos os animais: 60.325	0,34	0,37	10
Touros: 1363	0,46	0,50	9
Animais genotipados: 3809	0,26	0,53	107
Genotipados com fenótipo: 1973	0,33	0,57	72
Genotipados sem fenótipo: 1836	0,17	0,48	180
Animais jovens: 13.529	0,16	0,24	44
Animais jovens sem genótipo: 12.014	0,16	0,21	25
Animais Jovens com genótipo: 1515	0,16	0,47	189

Habilidade de predição para características reprodutivas

Número de dados e estatística descritiva

Característica	N Total	Mean ± SD	N Validação
IPP	175.829	32,8±6,6	835
SC365	239.806	21,158 ± 2,690	2.522
IPM	10.953	16,444 ± 3,571	3.378
PP30	152.143	1,295 ± 0,456	6.187
STAY	505.639	1,312 ± 0,463	3.328

Habilidade de predição para características reprodutivas

Característica	Viés	Dispersão	Acurácia *
IPP	0,01	0,95	0,95
PE365	-0,135	1,01	0,90
IPM	0,058	0,97	0,66
3P	-0,001	0,90	0,75
STAY	0,015	0,93	0,91

^{*}Correlação DEP genômica vs. DEP genômica + Fenótipo

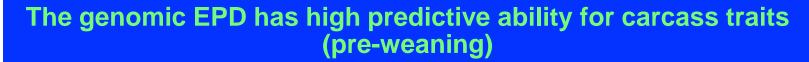
Seleção de animais jovens e baixo impacto da adição do fenótipo na avaliação final (estabilidade da avaliação genômica)

Prediction ability for carcass traits (REA, RFT and Marbling)

EPD total=Genotipo+Fenotipo

EPD partial=Genotipo

	Correlation (EPD total vs EPD partial)	Bias	Acc GEBV	Acc Adjusted Phenotype
REA	0.95	1.00	0.91	0.85
RFT	0.94	1.00	0.95	0.84
Marbling	0.88	0.78	0.60	0.35


N de treinamento para REA e RFT = 244.209

Validação para REA e RFT = 11.732

N de treinamento marbling = 52.858

Validação para marbling = 4.628

Peripolli et al. (s/p)

Genomic prediction for beef tenderness in Nelore beef cattle

Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle¹

C. U. Magnabosco,* F. B. Lopes,*+2 R. R. Fragoso,* E. C. Eifert,* B. D. Valente,† G. J. M. Rosa,† and R. D. Sainz‡

*Embrapa Cerrados, BR 020 Km 18, PO Box 08223, Planaltina, DF – Brazil 73310-970; †Department of Animal Sciences. University of Wisconsin-Madison. Madison 53706; and ‡Depa

Contents lists available at ScienceDirect

Animal The international journal of animal biosc

ABSTRACT: Zebu (Bos indicus) cattl Nellore breed, comprise more than 8 cattle in Brazil, given their tolerance of mate and high resistance to ectoparasit advantages for production in tropical zebu cattle tend to produce tougher me meat tenderness is constrained by the di meat quality traits. This study was per of longissimus muscle from 205, 141, d Department of Animal Science, Federal University of Goiás, Goiánia, GO 75345-000, Brazil slaughtered in 2005, 2010, and 201 which were selected and mated so as tt 8 National Association of Breeders and Researchers, Ribeirão Preto 14020-230, Brazil segregation for WBSF. The animals v with either the Illumina BovineHD from 90 samples) chip or the Gene Profiler (GGP Indicus HD; 77,000 from Article history. The quality controls of SNP were Received 2 January 2020 Received in revised form 5 June 2020 Proportion P-value ≥ 0.1%, minor alle Accepted 8 June 2020 1%, and call rate > 90%. The FImput used for imputation from the GGP Ir Keywords:

Kev words: Bayesian regre

Multiple-trait

© 2016 American Society of Anim.

rus breeds. Traditional genetic select Genome-enabled prediction of meat and carcass traits using of phenotypic evaluation for meat qua regression, single-step genomic best linear unbiased predicti genomic selection may be the best stra blending methods in Nelore cattle

pare the accuracies of different Baye F.B. Lopes a.b.*, F. Baldi a, T.L. Passafaro c, L.C. Brunes d, M.F.O. Costa e, E.C. Eifert models in predicting molecular bree G.I.M. Rosa c.f, R.B. Lobo g, C.U. Magnabosco b

- meat tenderness in Polled Nellore catt * Department of Animal Science, São Paulo State University Júlio de Mesquita Filho (UNESP), Prof. Paulo Donato Castelane, Jaboticabal
- was composed of Warner-Bratzler shea b Embrapa Cerrados, BR-020, 18, Sobradinho, Brasilia, DF 70770-901, Brazil
 - Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
 - Embrana Rice and Reans CO.462 km 12 Santo Antônio de Goiás GO 75375-000 Reavil
 - Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA

TICLE INFO

Genomic prediction Warner-Bratzler shear force

Several methods have been used for genome-enabled prediction example, multiple regression models describing a target trait w Cenomic selection studies have been focused mostly on singleare genetically correlated, and an increase in prediction accuracy related traits is expected when using multiple-trait models. The racy of genomic prediction for carcass and meat quality traits i approaches. The study considered 15 780, 15 784, 15 742 and thickness (RF mm) rumn fat (RF mm) and Warner-Bratzler sh tle, from the Nelore Brazil Breeding Program, Animals were geno morphism (SNP) panel and subsequently imputed to arrays with of genomic regression models, namely, Bayes A, Bayes B, Baye methods, BLUP; and single-step genomic best linear unbiased in terms of prediction accuracy using a fivefold cross-validatio 0.35 and from 0.21 to 0.46 for RF and WBSF on single- and mult racies for REA, BF, RF and WBSF were all similar using the differ

tion, this study has shown the impact of genomic information upon genetic evaluations in beef cattle using the multiple-trait model, which was also advantageous compared to the single-trait model because it accounted for the selection process using multiple traits at the same time. The advantage of multi-trait analyses is attributed to the consideration of correlations and genetic influences between the traits, in addition to the non-random association of alleles.

Received: 18 October 2019 | Revised: 9 January 2020 | Accented: 11 January 2020

DOI: 10.1111/jbg.12468

ORIGINAL ARTICLE

Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks

Fernando Brito Lopes^{1,2} | Cláudio U. Magnabosco¹ | Tiago L. Passafaro³ | | Marcos F. O. Costa⁵ | Eduardo C. Eifert¹ | Marcelo G. Narciso⁵ | Guilherme J. M. Rosa^{3,6} | Raysildo B. Lobo⁷ | Fernando Baldi¹

Department of Animal Science, São Paulo State University (UNESP), Jaboticabal,

²Embrana Cerrados Brasilia Brazil ³Department of Animal Sciences, University of Wisconsin-Madison Madison, WI, USA

⁴Department of Animal Science, Federal University of Goiás (UFG), Goiânia, Brazil 5Embrana Rice and Beans, Santo Antônio de Goiás, Brazil

⁶Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA

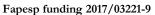
National Association of Breeders and Researchers (ANCP), Ribeirão Preto, Brazil

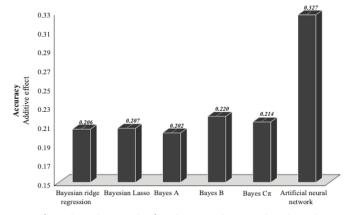
Correspondence

Fernando Brito Lopes, Department of Animal Science, São Paulo State University (UNESP), Prof. Paulo Donato Castelane Jaboticabal, SP, 14884-900, Brazil. Email: camult@gmail.com

Funding information

Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number


The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes $C\pi$ in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non-autosomal chromosomes, with minor allele frequency <5%, deviation from HWE ($p < 10^{-6}$), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree-based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes Cπ) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle.


Genomic prediction for beef tenderness in Nelore beef cattle

Prediction ability of ridge regression method using all markers available (376k) and preselected markers (5k).

D. 12-42 A1-224	Fold*				
Prediction Ability	F1	F2	F3	F4	Mean
RR-BLUP_376k (EBV x DGV)	0.38	0.35	0.35	0.38	0.37±0.10
RR-BLUP_376k (ÿ x DGV)	0,08	0,06	0,05	0,09	0.07±0.11
RR-BLUP_5k (EBV x DGV)	0.45	0.45	0.45	0.46	0.45±0.09
RR-BLUP_5k (ÿ x DGV)	0.26	0.27	0.26	0.28	0.27±0.09

EBV= Estimated Breeding Value obtained using the complete data set; DGV= Direct genomic value; *Average of 20 replicates.

Estimates of correlation between beef tenderness and genomic breeding values predicted

NOME	GEN	PAI		MAC	
110001	- CFECULA	****	DEP	AC	TOP
RECOMENDADO OB		OBG 588	-0.135	29	0.1%
MOGNO OB		OBG 588	-0.095	42	0.1%
TALCO OB		OBG 775	-0.093	29	0.1%
SONOLENTO OB	G	HA620	-0.090	47	0.1%
AUSTIN DE CV	G	MANA C256	-0.071	46	0.1%
VETERANO FIV DE CV	G	CVCV 201	-0.068	56	0.1%
APOGEU DE NAVIRAI		CSCM 148	-0.067	46	0.1%
METEORO OB		OBG 588	-0.064	39	0.1%
TANADO FIV DE CV	G	CSCM 331	-0.063	46	0.1%
SETUBAL FIV DE CV	G	ESL 151	-0.060	45	0.1%
QUADRADAO DE CV	G	CSCM 163	-0.057	58	0.1%
HELIX CERRADOS	G	OBG 775	-0.051	41	0.1%
LIMINHA DE CV		CSCM 148	-0.050	28	0.1%
XE 40 DA BACURI		MGL 120	-0.047	42	0.1%
QUARAÇÁ 34 DA BACURI		MGL 53	-0.040	56	0.5%
STALONE FIV DE CV	G	1111	-0.036	47	0.5%
AVESSO DA BELA	G	1111	-0.035	50	0.5%
SANSAO DE CV	G	CVCV 201	-0.035	46	0.5%
XE 11 DA BACURI		MGL 115	-0.034	41	0.5%
XINGU DE CV	G	CVCV 798	-0.033	48	0.5%
MINUANO AGMN 0906	G	MGL 96	-0.032	42	0.5%
MONARCA FIV DA BELA	G	C688	-0.032	37	0.5%
JUBILOSO DE CV		F990	-0.031	45	0.5%
MACUNI DO SALTO	G	G519	-0.030	48	0.5%
BRONZEADO OB		OBG 384	-0.030	27	0.5%
SUMO FIV DE CV	G	CVCV 223	-0.029	50	0.5%
URUBATĂ 7 DA BACURI		MGL 120	-0.029	42	0.5%
CROMO JR TAR		CSCM 331	-0.028	21	0.5%
XYSTO FIV DE CV	G	CVCV 798	-0.028	21	0.5%
			A STATE OF THE PARTY OF THE PAR	100	

Lopes et al. (2019)

Genomic prediction for healthy beef production in tropics

CSIRO PUBLISHING

Animal Production Science http://dx.doi.org/10.1071/AN16107

Genetic parameters for fatty acids in intramuscular fat from feedlot-finished Nelore carcasses

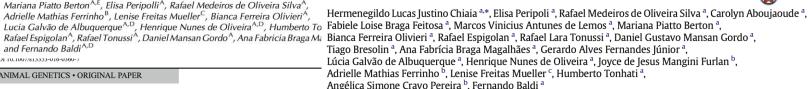
Carolyn Aboujaoude^A, Angélica Simone Cravo Pereira^B, Fabieli Louise Braga Fei Marcos Vinicius Antunes de Lemos^A, Hermenegildo Lucas Justino Chiaia^A, Mariana Piatto Berton^{A,E}, Elisa Peripolli^A, Rafael Medeiros de Oliveira Silva^A, Adrielle Mathias Ferrinho^B, Lenise Freitas Mueller^C, Bianca Ferreira Olivieri^A, and Fernando Baldi A,D

/-UOL 1U.1UU//813333-U10-U30U-/

ANIMAL GENETICS • ORIGINAL PAPER

Genetic correlation estimates between beef fatty acid nrofi b Faculdade de Medicina Veterinária e Zootecnia, USP, Pirassununga, SP, 13635-900, Brazil with meat and carcass traits in Nellore catt Berton et al. BMC Genomics (2016) DOI 10.1186/s12864-016-3232-y

Fabieli Loise Braga Feitosa 1 · Bianca Ferreira Olivieri 1 · Carolyn Aboujao Angélica Simone Cravo Pereira² · Marcos Vinicius Antunes de Lemos¹ · Hermenegildo Lucas Justino Chiaia 1 · Mariana Piatto Berton 1 · Elisa Peril Adrielle Matias Ferrinho² · Lenise Freitas Mueller³ · Mônica Roberta Maz Lucia Galvão de Albuquerque 1,5 · Henrique Nunes de Oliveira 1,5 · Humbert Rafael Espigolan · Rafael Lara Tonussi · Rafael Medeiros de Oliveira Sil Daniel Gustavo Mansan Gordo · Ana Fabrícia Braga Magalhães · Ignaci Fernando Baldi 1,5


Contents lists available at ScienceDirect

Meat Science

journal homepage: www.elsevier.com/locate/meatsci

Genomic prediction for beef fatty acid profile in Nellore cattle

- a Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP, 14884-000, Brazil
- c Faculdade de Zootecnia e Engenharia de Alimentos, USP, Pirassununga, SP, 13635-900, Brazil

BIVIC Genomics

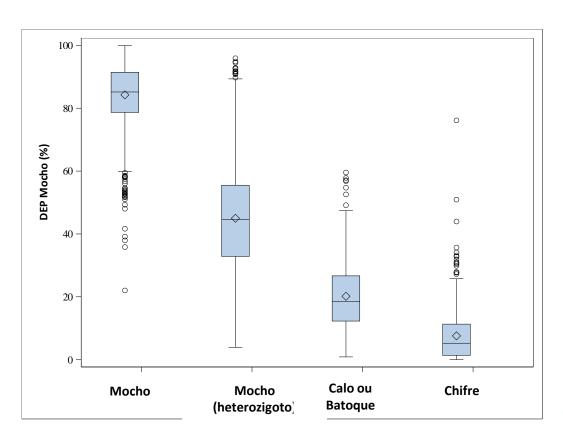
alheiro1, Daniel M. Gordo1, Rafael Tor e Oliveira¹, Susan Duckett³,

Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid

Mariana P. Berton¹, Larissa F. S. Fonseca¹, Daniela F. J. Gimenez¹, Bruno L. Utembergue², Aline S. M. Cesar³, Luiz L. Coutinho^{3,5}, Marcos Vinicius A. de Lemos¹, Carolyn Aboujaoude¹, Angélica S. C. Pereira², Rafael M. de O Silva¹, Nedenia B. Stafuzza¹, Fabieli L. B. Feitosa¹, Hermenegildo L. J. Chiaia¹, Bianca F. Olivieri¹ Elisa Peripolli¹, Rafael L. Tonussi¹, Daniel M. Gordo¹, Rafael Espigolan¹, Adrielle M. Ferrinho², Lenise F. Mueller⁴, Lucia G. de Albuquerque^{1,5}, Henrique N. de Oliveira^{1,5}, Susan Duckett⁶ and Fernando Baldi^{1,5*}

Resposta em acurácia para CAR em animais jovens da raça Nelore

Acurácia para consumo alimentar residual (CAR) obtida pelo BLUP e ssGBLUP


Categoria	BLUP	ssGBLUP	Resposta %
Animais jovens com fenótipos e genótipos	0.26	0.42	63%
Animais jovens com fenótipos e sem genótipos	0.26	0.32	22%
Animais jovens sem fenótipos e com genótipos	0.15	0.36	134%

DEP para Característica Mocho:

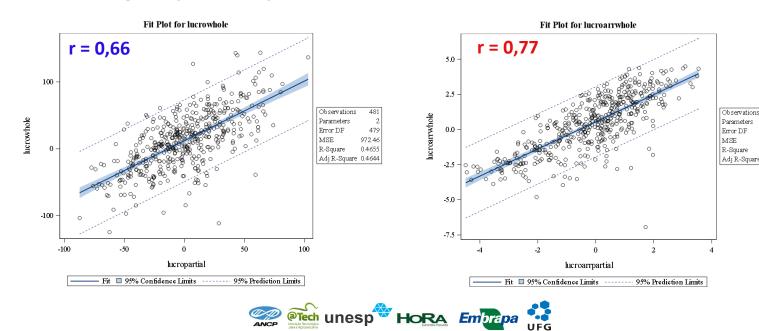
Nueva herramienta para valorar Mocho Nelore



Lucratividade do confinamento: ponto de abate ideal R\$

0.34

Heritability - h²d


Feedlot Profitability

O software captura dados Algoritmos, mercado e IA BeefTrader mostra lucro diário e calculam o Ponto de Negociação de loTs (sensores previsto de confinamentos Ótimo (OTP) usando a análise de inteligentes) e animais individualmente Pesquisa Operacional Sincronização de Padronização de base Processamento das dados fenotípicos de dados e ajustes de informações individuais de observados com parâmetros zootécnicos, touros e/ou intra-rebanho BeefTrader na Fase 1 econômicos e genéticos com os algoritmos LPT

Capacidade de predição do lucro no confinamento usando apenas o genótipo (DEP para lucro)

- √ 3631 animais com fenótipo de lucro
- √ 17771 animais com genótipo
- √ 481 animais com genótipo e fenótipo

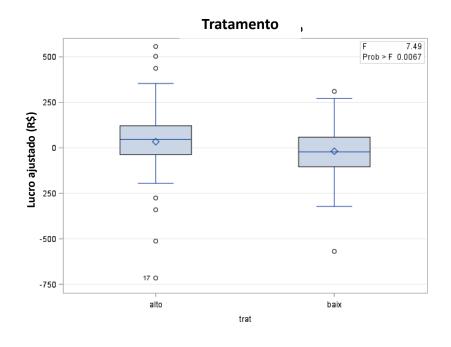
1.6074

Capacidade de predição de rentabilidade em confinamento comercial

 $GEBV_{young} \approx DGV = Z\hat{a}$

Ecuación de predicción de la rentabilidad en confinamiento

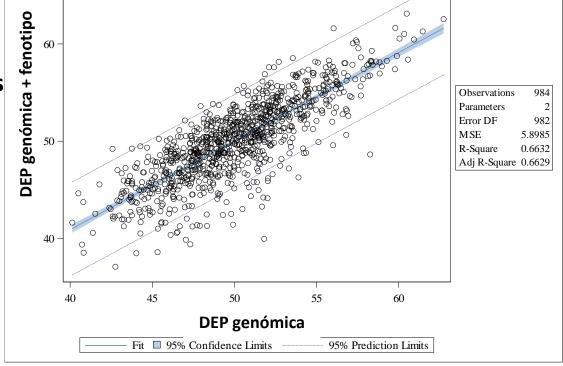
Identificação de animais de maior **lucratividade**



Capacidade de predição do lucro no confinamento usando apenas o genótipo (DEP para lucro)

- ✓ DEP lucro (genótipo) <= -22.47 => Baixo (N=120)
- ✓ DEP lucro (genótipo) >= +20.46 => Alto (N=120)

Tratamento	Lucro ajustado (R\$)
alto	33.73a
baixo	-18.69b



Próxima DEPg: Facilidad de parto en Vaquillonas

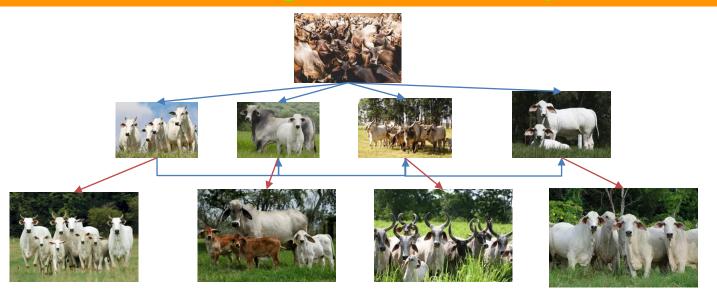
- 26.011 datos de FP
 - 6.7% de Dificultad en vaquillonas precoces
 - 1.2% de Dificultad en vaquillonas tradicionales
- h^2 : 0.22 h_m^2 : 0.17

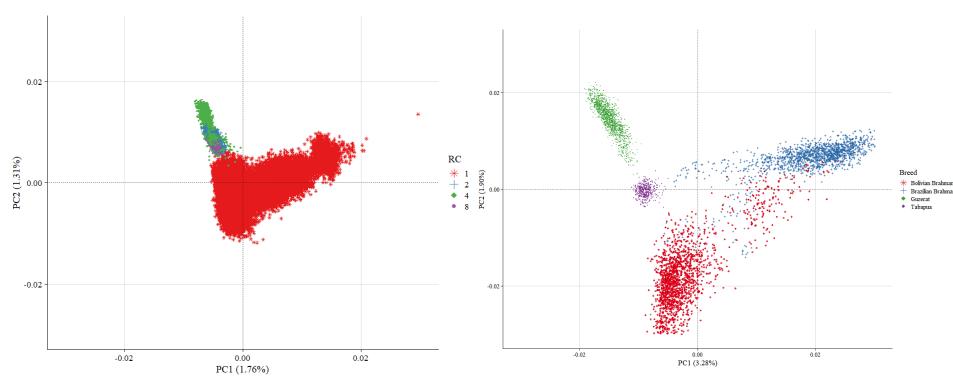
Fit Plot for depfpfullm

Predicciones genómicas para rasgos de importancia productiva en metapoblaciones de razas de cebú de carne

Suporte financeiro:

Parceiras técnico/acadêmicos:




Evaluación genómica multirracial con metafundadores

Identificamos antíguas relaciones de parentesco

La información entre diferentes razas está conectada da a través de regiones genómicas heredadas comunes, que se originan en el mismo ancestral común o ancestrales relacionados

Estructura genómica de la metapoblación

Figura 1: 1:Nelore; 2: Guzerá; 4:Brahman; 8:Tabapuã.

Figura 2: 2: Guzerá; 4:Brahman; 8:Tabapuã.

Capacidad predictiva del genotipo: animales jóvenes

Habilidade de predição (viés, dispersão e acurácia) dos modelos uniracial e multirracial utilizando os metafundadores nas raças Nelore, Brahman e Guzerá¹

		В	rahman		G	uzera			Tabapua		ı	Nelore	
Característica	Modelo	Habilidade de predição	inflação	viés	Habilidade de predição	inflação	viés	Habilidade de predição	inflação	viés	Habilidade de predição	inflação	viés
	Uniracial	0,19	0,89	0,12	0,18	0,71	0,33	0,16	1,01	0,13	0,65	1,19	0,04
AOL	Multirracial	0,51	0,96	0,02	0,55	0,98	0,01	0,50	1,03	0,04	0,57	1,13	0,03
ACAB	Uniracial	0,33	1,01	0,05	0,44	1,23	0,00	0,17	1,17	0,03	0,99	0,96	0,02
ACAB	Multirracial	0,71	0,87	0,05	0,65	0,93	0,02	0,63	0,78	-0,03	0,99	0,96	0,02
P210	Uniracial	0,47	1,05	0,06	0,48	0,98	0,00	0,05	-0,05	0,07	0,76	1,02	0,79
P210	Multirracial	0,69	0,95	0,08	0,68	0,91	-0,04	0,58	1,00	0,09	0,75	0,96	0,14
P450	Uniracial	0,62	1,16	0,10	0,80	1,12	0,06	0,37	0,95	0,02	0,99	0,99	0,03
P450	Multirracial	0,91	0,99	0,09	0,99	0,97	-0,01	0,76	0,79	-0,13	0,99	0,99	0,03
IPP	Uniracial	0,54	0,94	0,10	0.53	1,06	-0,05	0,31	1,37	-0,05	0,56	0,95	0,01
IPP	Multirracial	0,60	0,93	0,05	0,63	1,02	-0,003	0,45	1,37	-0,03	0,54	0,95	0,001
PE365	Uniracial	0,50	1,20	0,09	0,19	1,68	0,38	0,23	0,74	0,02	0,99	1,00	0,05
PE365	Multirracial	0,60	0,94	0,13	0,50	0,73	0,03	0,56	0,99	-0,07	0,99	1,00	0,05
	Multirracial	0,60	0,94	0,13	0,50	0,73	0,03	0,56	0,99	-0,07	0,99	1,00	0,05

¹Uniracial: Modelo ssGBLUP específico para cada raça ou uniracial; Multirracial: Modelo ssGBLUP multirracial incluindo metafundadores (1 metafundador para cada raça);

Mayor impacto en razas con poblaciones de referencia más pequeñas

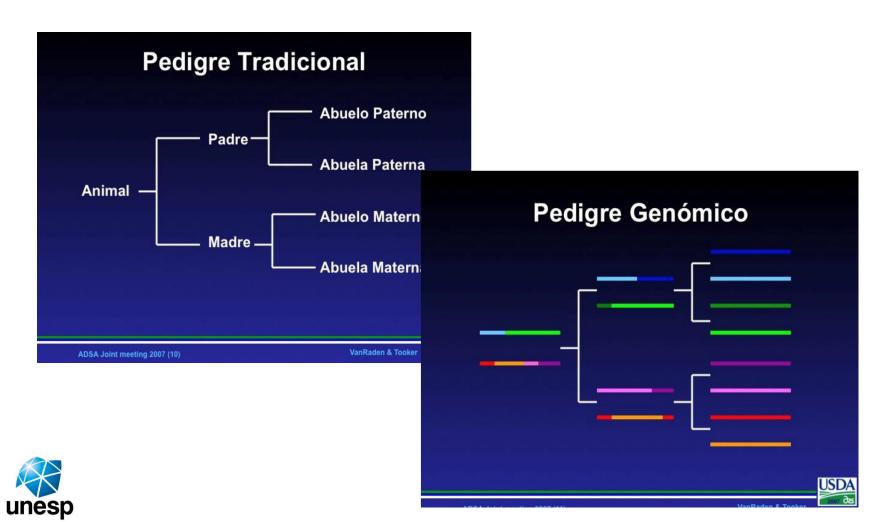
Amplitud de DEP genómica: animales jóvenes

Estatística descritivas das DEPs genômicas em animais jovens sem fenotipo e com genótipo obtidas pelos modelos uniracial e multirracial utilizando os metafundadores nas raças Nelore, Brahman e Guzerá¹

				Brahm	an			Guzera				Tabapua				Nelore	1
Característica	Modelo	Média	Min	Max	Amplitude	Média	Min	Max	Amplitude	Média	Min	Max	Amplitude	Média	Min	Max	Amplitude
	Uniracial	1.05	-0.75	2.90	3.66	1.42	-0.62	4.16	4.78	0.91	-0.41	2.23	2.64	0.96	-5.87	7.40	13.27
AOL	Multirracial	0.74	-3.94	4.86	8.80	1.66	-4.12	7.74	11.85	0.73	-2.38	5.32	7.71	0.87	-5.17	6.90	12.07
ACAB	Uniracial	0.21	-0.26	1.03	1.29	0.18	-0.56	1.28	1.84	0.09	-0.17	0.27	0.44	0.25	-2.39	2.72	5.10
ACAB	Multirracial	0.25	-1.78	1.61	3.39	0.07	-1.53	1.73	3.25	0.08	-1.45	1.42	2.87	0.23	-2.42	2.72	5.14
P210	Uniracial	8.73	-4.03	22.06	26.08	10.03	-3.95	22.23	26.18	6.98	2.31	12.34	10.03	5.96	-20.77	35.06	55.83
P210	Multirracial	9.71	-12.78	29.24	42.01	8.03	-8.52	28.44	36.96	5.47	-7.06	20.29	27.35	5.57	-22.16	35.60	57.76
P450	Uniracial	10.73	-14.34	22.47	36.81	10.28	-6.48	27.61	34.09	8.51	1.53	19.53	18.00	7.98	-29.64	49.04	78.67
P450	Multirracial	7.23	-18.54	33.35	51.90	6.48	-20.61	31.61	52.22	7.26	-13.57	25.83	39.40	6.98	-30.47	46.64	77.11
IPP	Uniracial	0.03	-2.12	1.24	3.36	-0.47	-2.05	1.19	3.24	-0.31	-1.01	0.42	1.43	-0.13	-2.12	1.99	4.11
IPP	Multirracial	1.14	-1.32	2.93	4.25	0.43	-1.66	2.73	4.39	0.35	-0.86	1.87	2.73	-0.05	-2.03	1.81	3.84
PE365	Uniracial	0.32	-0.88	1.68	2.57	0.04	-0.35	0.55	0.90	-0.00	-0.90	0.92	1.81	2.10	-1.98	5.25	7.24
FE305	Multirracial	1.78	0.12	3.67	3.55	1.66	-0.05	3.32	3.37	1.31	-0.43	3.01	3.44	1.91	-2.14	4.99	7.13

¹Uniracial: Modelo ssGBLUP específico para cada raça ou uniracial; Multirracial: Modelo ssGBLUP multirracial incluindo metafundadores (1 metafundador para cada raça);

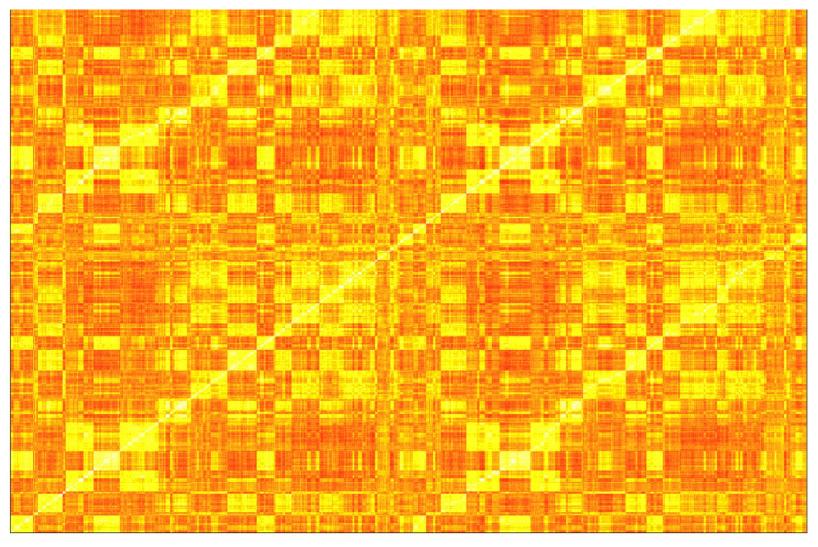
Mayor amplitud en las DEP de animales jóvenes en razas con poblaciones de referencia pequeñas



O próximo desafio: Parentesco genômico

- Podemos utilizar a informação genômica para "recuperar" parentesco;
- Potencial para a avaliação de <u>rebanhos</u> <u>comerciais</u> e situações com paternidade incerta;
- A partir do parentesco genômico é possível quantificar a endogamia genômica.

Seleção genômica


Parentesco entre animais mais confiável

Matriz de parentesco tradicional

```
0.5
                                                0.25
                                                        0.25
                                                                 0.25
                                                                         0.25
                                                                                 0.25
                                                                                          0.25
                                                                                                  0.25
                                                                                                           0.25
                                                                                                                                         Ο.
                                                                                                                          ο.
                                                                                                                                                  σ.
                                                                                                                                                           ο.
                                               0.25
                                                                0.25
                                                                                                  0.25
                                                                                                          0.25
Ο.
                         Ο.
                                 0.5
                                        Ο.
                                                        0.25
                                                                         0.25
                                                                                 0.25
                                                                                          0.25
                                                                                                                          0.
                                                                                                                                         0.
                                                                                                                                                  σ.
                                                                                                                                                           ۵.
        1.
                 σ.
                                                                                                                                 ο.
                                                                         0.25
Π.
        Π.
                 1.
                         Π.
                                        0.5
                                                0.25
                                                        0.25
                                                                 0.25
                                                                                 0.25
                                                                                          0.25
                                                                                                  0.25
                                                                                                           0.25
                                                                                                                          σ.
                                                                                                                                          ۵.
                                                                                                                                                  Π.
                                                                                                                                                           ο.
                                                        0.25
                                                                0.25
                                                                         0.25
                                                                                                  0.25
ο.
        σ.
                 σ.
                                        0.5
                                                0.25
                                                                                 0.25
                                                                                          0.25
                                                                                                           0.25
                                                                                                                   Ο.
                                                                                                                          σ.
                                                                                                                                          ٥.
                                                                                                                                                  σ.
                                                                                                                                                           ο.
0.5
                                               0.5
                                                                                          0.5
                         Π.
                                        Π.
                                                        0.5
                                                                 0.5
                                                                         0.5
                                                                                 0.5
                                                                                                  0.5
                                                                                                           0.5
                                                                                                                   D.
                                                                                                                          D.
                                                                                                                                          Π.
                                                                                                                                                  σ.
                                                                                                                                                           Ο.
                 0.5
                         0.5
                                               0.5
                                                        0.5
                                                                                          0.5
                                                                                                  0.5
                                                                 0.5
                                                                         0.5
                                                                                 0.5
                                                                                                           0.5
                                                                                                                          σ.
                                                                                                                                          ٥.
                                                                                                                                                  σ.
                                                                                                                                                           Ο.
        0.25
                 0.25
                         0.25
                                 0.5
                                        0.5
                                                        0.5
                                                                0.5
                                                                         0.5
                                                                                 0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                           0.5
                                                                                                                                                  σ.
                                                                                                                                                           0.
                                                1.
                                                                                                                   D.
                                                                                                                          σ.
                                                                                                                                         σ.
                                                                                                                                 Π.
                                        0.5
0.25
        0.25
                 0.25
                         0.25
                                 0.5
                                                0.5
                                                        1.
                                                                0.5
                                                                         0.5
                                                                                 0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                          0.5
                                                                                                                                                  Π.
                                                                                                                                                           O.
                                                                                                                   D.
                                                                                                                          σ.
                                                                                                                                 Π.
                                                                                                                                          Π.
0.25
                         0.25
                                                        0.5
                                                                         0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                          0.5
        0.25
                 0.25
                                  0.5
                                        0.5
                                                0.5
                                                                                 0.5
                                                                                                                                          ٥.
                                                                                                                                                  ο.
                                                                                                                                                           ο.
                                                                                                                          ο.
0.25
        0.25
                 0.25
                         0.25
                                 0.5
                                        0.5
                                               0.5
                                                        0.5
                                                                                 0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                                                          ۵.
                                                                                                                                                  Ο.
                                                                                                                                                           0.
        0.25
                 0.25
                                        0.5
                                               0.5
                                                        0.5
                                                                0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                           0.5
0.25
                         0.25
                                  0.5
                                                                         0.5
                                                                                                                                                  Ο.
                                                                                                                                                           ο.
                                                                                 1.
                                                                                                                          ο.
                                                                                                                                 σ.
                                                                                                                                         σ.
0.25
                 0.25
                                               0.5
                                                        0.5
                                                                         0.5
        0.25
                         0.25
                                  0.5
                                        0.5
                                                                0.5
                                                                                 0.5
                                                                                                  0.5
                                                                                                           0.5
                                                                                                                   ۵.
                                                                                                                          0.
                                                                                                                                 σ.
                                                                                                                                          ۵.
                                                                                                                                                  Ο.
                                                                                                                                                           ο.
0.25
        0.25
                 0.25
                         0.25
                                  0.5
                                        0.5
                                                0.5
                                                        0.5
                                                                         0.5
                                                                                 0.5
                                                                                          0.5
                                                                                                           0.5
                                                                                                                                                  σ.
                                                                                                                                                           ٥.
                                                                                                                                          σ.
0.25
        0.25
                 0.25
                         0.25
                                 0.5
                                               0.5
                                                        0.5
                                                                                 0.5
                                                                                          0.5
                                                                                                  0.5
                                                                                                                                                           ٥.
                                        0.5
                                                                         0.5
                                                                                                                                          Π.
                                                                                                                                                  Π.
                                                                                                                                                  0.5
                                                                                                                                                           0.5
Π.
        σ.
                 σ.
                         σ.
                                  σ.
                                         σ.
                                                σ.
                                                        Π.
                                                                 σ.
                                                                         Π.
                                                                                 α.
                                                                                          σ.
                                                                                                  σ.
                                                                                                           Π.
                                                                                                                   1.
                                                                                                                          σ.
                                                                                                                                 0.5
                                                                                                                                          0.5
                                                                                 σ.
                                                                                                                                 0.5
                                                                                                                                         0.5
                                                                                                                                                  0.5
                                                                                                                                                           0.5
Π.
                 σ.
                         Ο.
                                                                                                           σ.
                                                                                                                          0.5
                                                                                                                                                           0.75
                                                                                          Π.
                                                                                                                                          0.5
                                                                                                                                                  0.75
σ.
        σ.
                 σ.
                         Π.
                                  σ.
                                        σ.
                                                σ.
                                                        α.
                                                                 α.
                                                                         σ.
                                                                                 σ.
                                                                                                  σ.
                                                                                                           σ.
                                                                                                                                                           0.75
σ.
                                        Π.
                                                                                 σ.
                                                                                          Π.
                                                                                                  σ.
                                                                                                           σ.
                                                                                                                   0.5
                                                                                                                          0.5
                                                                                                                                                  0.75
        σ.
                 σ.
                         ο.
                                  σ.
                                                σ.
                                                        α.
                                                                 α.
                                                                         σ.
                                                                                                                                 0.5
                         Ο.
                                         Ο.
                                                σ.
                                                        α.
                                                                                 σ.
                                                                                          Ο.
                                                                                                  σ.
                                                                                                                   0.5
                                                                                                                          0.5
                                                                                                                                 0.75
                                                                                                                                         0.75
                                                                                                                                                  1.25
                                                                                                                                                           0.75
ο.
        σ.
                 σ.
                                  σ.
                                                                 α.
                                                                         σ.
                                                                                                           σ.
                                                                                                                          0.5
                                                                                                                                 0.75
                                                                                                                                                          1.25
σ.
                         Ο.
                                                σ.
                                                                                 σ.
                                                                                          Ο.
                                                                                                           Π.
                                                                                                                   0.5
                                                                                                                                         0.75
                                                                                                                                                  0.75
```

Matriz de parentesco genômica

Genomic evaluation in commercial beef cattle populations

EBV and GEBV for W450 in Nellore animals from commercial herds with different pedigree structures (N = 974 animals) ¹

			% de maes conhecidas									
		100		75		50		25		0		
		BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	
	100	0.14	0.35	0.14	0.35	0.13	0.35	0.13	0.34	0.12	0.34	
% touro conhecidos	75	0.11	0.34	0.11	0.34	0.10	0.34	0.10	0.34	0.09	0.34	
	50	0.08	0.34	0.07	0.34	0.07	0.34	0.06	0.33	0.06	0.33	
	25	0.05	0.33	0.04	0.33	0.04	0.33	0.06	0.33	0.03	0.33	
	0	0.02	0.32	0.01	0.32	0.009	0.32	0.005	0.32	-	0.32	

¹ Foram realizadas 10 repetições para cada cénario. Total 454 análises

EBV and GEBV bias for P450 in Nellore animals from commercial herds with different pedigree structures (N = 974 animals) $)^1$

			% de maes conhecidas									
		1	.00		75		50		25		0	
		BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	BLUP	ssGBLUP	
	100	1.00	0.95	0.94	0.94	0.88	0.93	0.82	0.90	0.75	0.90	
	75	0.81	0.92	0.75	0.93	0.70	0.87	0.64	0.90	0.56	0.88	
% touro conhecidos	50	0.62	0.89	0.59	0.88	0.49	0.87	0.43	0.86	0.37	0.85	
	25	0.44	0.84	0.37	0.83	0.32	0.82	0.28	0.81	0.17	0.81	
	0	0.25	0.76	0.20	0.76	0.14	0.75	0.09	0.75	0	0.74	

¹ Foram realizadas 10 repetições para cada cénario. Total 454 análises

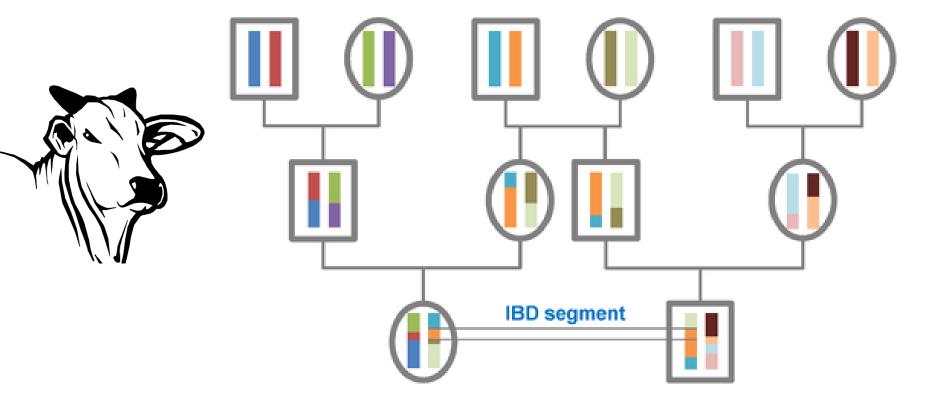
Avaliação genômica de rebanhos comerciais utilizando diferentes estratégias

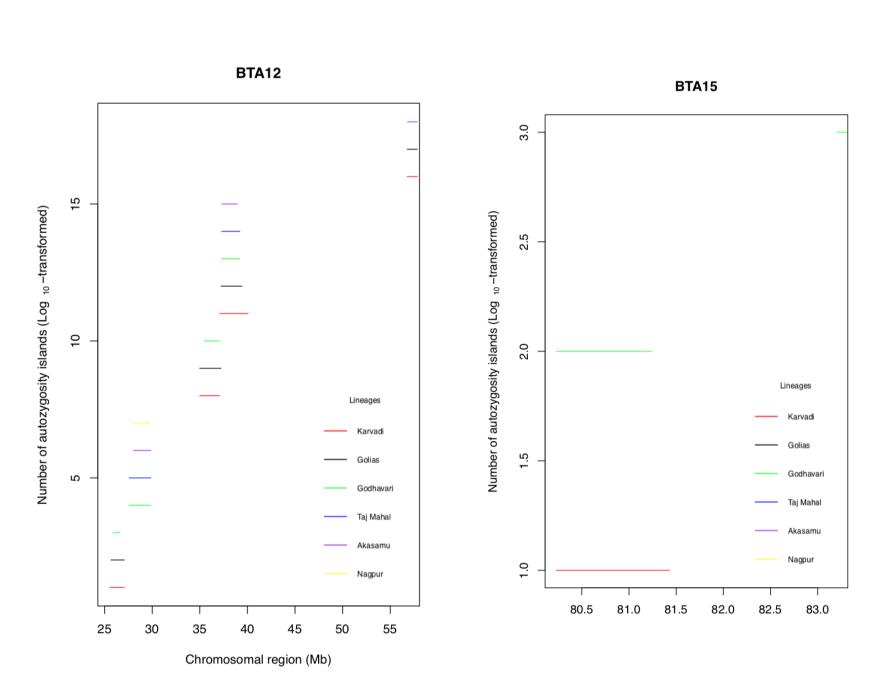
Duas abordagens ou estratégias para avaliação genômica:

- 1) ssGBLUP_comercial: Animais "cara limpa" com painel ZL5
- 2) ssGBLUP_comercial+registrado: Animais "cara limpa"+ animais registrados

Característica	Estratégia	N_Dados	N_Genótipos	Acurácia	% Aumento
IPP	ssGBLUP_comercial ¹	53.866	2.017	0,28	46
IPP	ssGBLUP_comercial+registrado ²	456.951	2.017(12.206)	0,41	40
DAG	ssGBLUP_comercial	18.759	2.017	0,27	40
PAC	ssGBLUP_comercial+registrado ²	181.871	2.017(12.206)	0,40	48
NAD420	ssGBLUP_comercial	143.614	2.017	0,28	46
MP120	ssGBLUP_comercial+registrado ²	1.085.945	2.017(12.206)	0,41	46
DD120	ssGBLUP_comercial	143.614	2.017	0,31	42
DP120	ssGBLUP_comercial+registrado ²	1.085.945	2.017(12.206)	0,44	42
DAFF	ssGBLUP_comercial	124.169	2.017	0,31	45
P455	ssGBLUP_comercial+registrado ²	840.145	2.017(12.206)	0,45	45

RESEARCH ARTICLE


Open Access


CrossMark

Autozygosity islands and ROH patterns in Nellore lineages: evidence of selection for functionally important traits

Elisa Peripolli¹*o, Julia Metzger², Marcos Vinícius Antunes de Lemos¹, Nedenia Bonvino Stafuzza³, Sabrina Kluska¹, Bianca Ferreira Olivieri¹, Fabieli Louise Braga Feitosa¹, Mariana Piatto Berton¹, Fernando Brito Lopes¹, Danísio Prado Munari³, Raysildo Barbosa Lôbo⁴, Cláudio de Ulhoa Magnabosco⁵, Fernando Di Croce⁶, Jason Osterstock⁶, Sue Denise⁶, Angélica Simone Cravo Pereira⁷ and Fernando Baldi¹

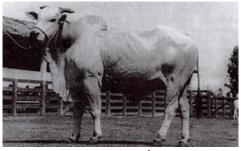
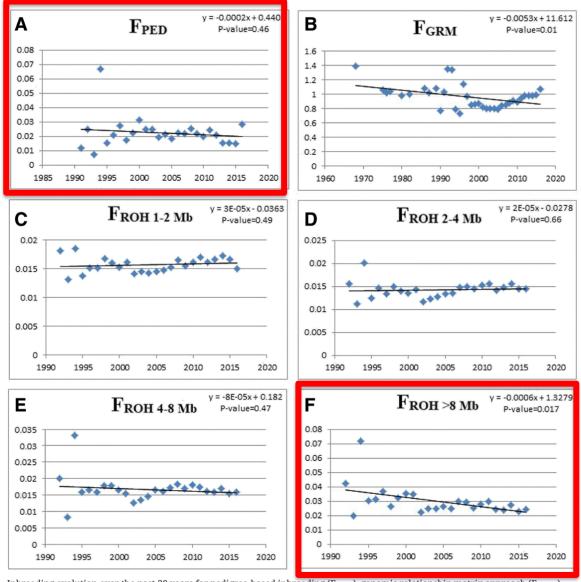

Ilhas de ROH específicas de cada linhagem

Table 5 Gene content of non-overlapping ROH islands within the Nellore lineages highlighted according to their function

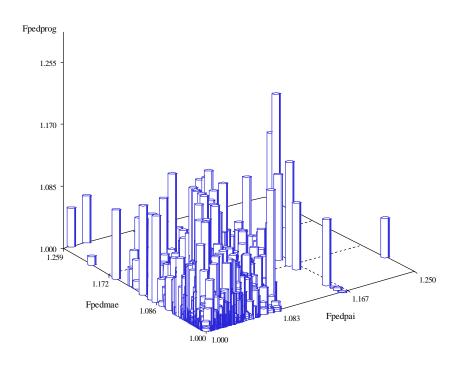
Lineage	Gene	Function	Author
Godhavari	LAMB4	Immune System	[91]
Karvadi	RFX4	Immune System	[92]
Godhavari	IFRD, PPM1B, DTX4, MTMR7	Productive traits	[64, 92–95]
Taj Mahal	CAPZA2	Productive traits	[96]
Karvadi	ZBTB20, RPS20, STAC3, STAT6, RIC8B, LYPLA1, XKR4, TMEM68, TGS1	Productive traits	[66, 92, 97–102]
Godhavari	NAMPT	Reproductive traits	[103, 104]
Godhavari	PPM1B, JMJD1C	Reproductive traits	[105, 106]
Karvadi	RFX4, NPBWR1, OPRK1, MRPL15	Reproductive traits	[65, 107]
Karvadi	DRD3, ZBTB20	Reproductive traits	[108, 109]
Karvadi	CSNK1A1, TBC1D12	Thermotolerance	[110, 111]

Godhavari

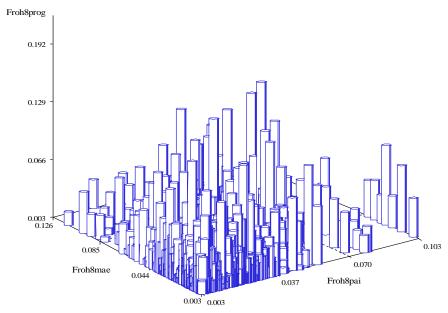


Karvadi

Taj mahal


Golias

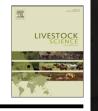
BMC Genomics



Inbreeding evolution over the past 30 years for pedigree-based inbreeding (F_{PED}), genomic relationship matrix approach (F_{GRM}), and F_{ROH} ($F_{ROH1-2~Mb}$, $F_{ROH2-4~Mb}$, $F_{ROH4-8~Mb}$, and $F_{ROH} > 8~Mb$) coefficients and their respective regression equations and $p_{PROH2-2~Mb}$. The X-axis represents the years and the Y-axis shows the inbreeding coefficients. Each blue dot represents the inbreeding average per year

Development of genomic tools for mating decisions in Nelore cattle (Fapesp funding 2018/00938-2)

Relationship between progeny expected inbreeding inbreeding (Fpedprog) with sire (Fpedpai) and dam Fpedmãe) expected inbreeding coeficient.



Relationship between progeny inbreeding coefficient based on ROH higher than 8 Mb progeny (Frohprog) and inbreeding coefficient based on ROH of sire (Frohpai) and dam (Frohmãe).

Livestock Science

journal homepage: www.elsevier.com/locate/livsci

Copy number variation regions in Nellore cattle: Evidences of environment adaptation

Marcos Vinicius Antunes de Lemos^{a,*,1}, Mariana Piatto Berton^{a,1}, Gregório Miguel Ferreira de Camargo^{b,1}, Elisa Peripolli^{a,1}, Rafael Medeiros de Oliveira Silva^{a,1}, Bianca Ferreira Olivieri^{a,1}, Aline S.M. Cesar^{c,1}, Angélica Simone Cravo Pereira^{d,1}, Lucia Galvão de Albuquerque^{a,1}, Henrique Nunes de Oliveira^{a,1}, Humberto Tonhati^{a,1}, Fernando Baldi^{a,1}

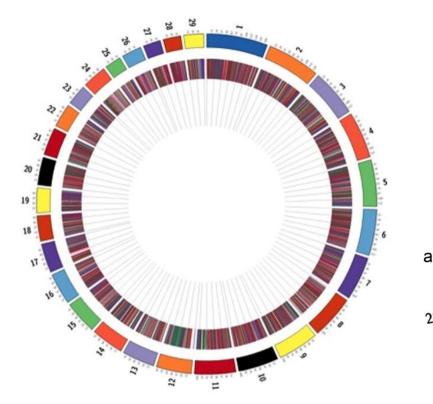
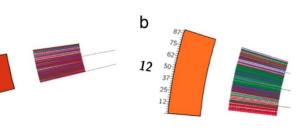
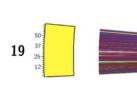




Fig. 4. Comprehensive circular map of autosomal copy-number variants in Bos indicus. From the outside to the inside of the external circle: Chromosome name; genomic location (in Megabases); bars depicting the CNV regions (loss in green, gain in red, and both events in purple). Figs. 4a, 4b and 4c are a zoom of the chromosome that showed the highest percentage of insertion regions (BTA28, BTA12 and BTA19, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

C

Table 2Gene ontology enrichment.

Category	Term	Count	P-Value	Fold Enrichment	FDR
GOTERM_BP_DIRECT	negative regulation of cAMP-dependent protein kinase activity	4	2,4E-2	5,2	3,5E
GOTERM_BP_DIRECT	histone deubiquitination	4	2,4E-2	5,2	3,5E
GOTERM_BP_DIRECT	regulation of vasodilation	3	9,7E-2	5,2	8,3E
GOTERM_BP_DIRECT	positive regulation of histone methylation	3	9,7E-2	5,2	8,3E
GOTERM_BP_DIRECT	positive regulation of cardiac muscle cell proliferation	3	9,7E-2	5,2	8,3E
GOTERM_BP_DIRECT	protein localization to endosome	3	9,7E-2	5,2	8,3E
GOTERM_BP_DIRECT	regulation of proteasomal ubiquitin-dependent protein catabolic process	4	5,2E-2	4,2	6,1E
GOTERM_BP_DIRECT	cellular response to extracellular stimulus	4	5,2E-2	4,2	6,1E
GOTERM_BP_DIRECT	amino acid transmembrane transport	4	8,9E-2	3,5	8,1E
GOTERM_BP_DIRECT	signal transduction by protein phosphorylation	8	5,5E-3	3,2	9,3E
GOTERM_BP_DIRECT	cellular response to cAMP	5	7,5E-2	2,9	7,51
GOTERM_BP_DIRECT	somitogenesis	5	7,5E-2	2,9	7,51
GOTERM_BP_DIRECT	hair follicle morphogenesis	5	7,5E-2	2,9	7,5
GOTERM_BP_DIRECT	negative regulation of JAK-STAT cascade	6	4,3E-2	2,8	5,4
GOTERM_BP_DIRECT	retrograde vesicle-mediated transport, Golgi to ER	7	3,6E-2	2,6	4,8
GOTERM_BP_DIRECT	protein tetramerization	6	8,6E-2	2,4	7,9
GOTERM_BP_DIRECT	regulation of autophagy	6	8,6E-2	2,4	7,9
GOTERM_BP_DIRECT	negative regulation of cyclin-dependent protein kinase activity	10	1,5E-2	2,4	2,4
GOTERM_BP_DIRECT	protein autophosphorylation	9	3,4E-2	2,2	4,6
GOTERM_BP_DIRECT	MAPK cascade	9	3,4E-2	2,2	4,6
GOTERM_BP_DIRECT	fatty acid biosynthetic process	7	9,0E-2	2,1	8,1
GOTERM_BP_DIRECT	chloride transmembrane transport	11	2,3E-2	2,1	3,4
GOTERM_BP_DIRECT	cell cycle arrest	9	5,8E-2	2,0	6,5
GOTERM BP DIRECT	heart development	12	2,5E-2	2,0	3,5
GOTERM_BP_DIRECT	ubiquitin-dependent protein catabolic process	17	1,1E-2	1,9	1,8
GOTERM_BP_DIRECT	protein stabilization	12	5,8E-2	1,8	6,5
GOTERM_BP_DIRECT	cell proliferation	15	3,2E-2	1,8	4,3
GOTERM_BP_DIRECT	transcription from RNA polymerase II promoter	25	7,8E-3	1,7	1,3
GOTERM_BP_DIRECT	negative regulation of apoptotic process	25	2,7E-2	1,5	3,8
GOTERM_BP_DIRECT	intracellular protein transport	20	6,6E-2	1,5	7,0
GOTERM_BP_DIRECT	positive regulation of transcription from RNA polymerase II promoter	50	3,0E-3	1,5	5,1

Gene ontology (GO) categories significantly over represented, with false discovery rate (FDR).

- ✓ The 9805 CNVR estimated in the present study covered approximately 13.05% of the cattle genome (UMD_3.1, 2,649,685,063 bp) and overlapped with 5495 genes.
- ✓ These genes have functions described as involved in biological processes that might be related to the environmental adaptation of the subspecies to tropical areas, such as regulation of vasodilatation, immune system response, hair follicle morphogenesis, among others.

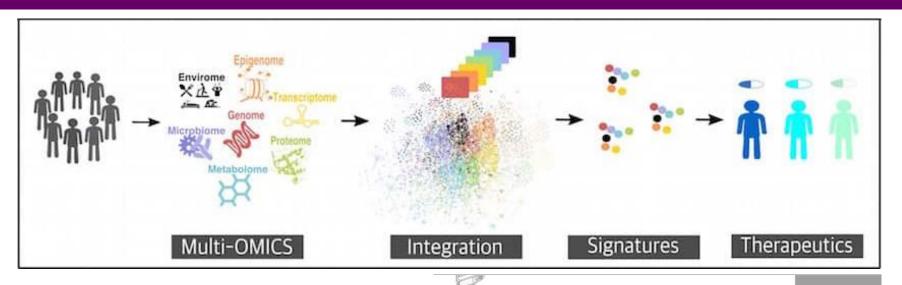
Whole genome sequencing of zebu and brazilian locally adapted taurine breeds for identifying selection signatures

Processo Fapesp: 17/27148-9

- ✓ Sequencing analysis from 13 Gir (Bos indicus), 12 Crioulo Lageano (Bos taurus,), 12 Caracu Caldeano (Bos taurus), and 12 Pantaneiro (Bos taurus) cattle
 - ✓ Population differentiation analysis
 - ✓ Genomic inbreeding coefficient estimation
 - ✓ Selective sweeps detection
 - ✓ Gene annotation and enrichment analysis

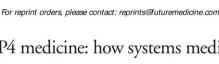
Reflexões sobre a avaliação genômica

- Complexidade dos resultados da avaliação genômica
 - DEPs, DEP genômica e MVP
 - Vários tipos de acurácia vs. Habilidade de predição
- O custo da genotipagem pesa sobre o orçamento da fazenda
 - As decisões são mais complexas e dispendiosas
 - Custo da genotipagem vs. custo da fenotipagem
- Maior acurácia da DEP genômica não significa "animal mais positivo" ou "mais negativo"
 - Maior acurácia: menor risco na decisão de seleção.



Reflexões sobre avaliação genômica

- O uso de informações genômicas é atraente, mas não é a solução para todos os problemas
 - Estamos todos preparados para usar a genômica?
 - A genômica não corrige erros de dados ou problemas de manejo.
- O criador valoriza muito a informação genômica (genótipos) e não leva em consideração o banco de dados utilizado para estimar os efeitos dos marcadores
 - Quanto vale um "bom" banco de dados para treinar os marcadores?
- Na "era genômica", os fenótipos são mais importantes!
 - Continuar coletando fenótipos e fenótipos "não tradicionais".
 - Excessivo foco nos genótipos e esquecemos o resto!



Revolução multiômica e medicina de precisão

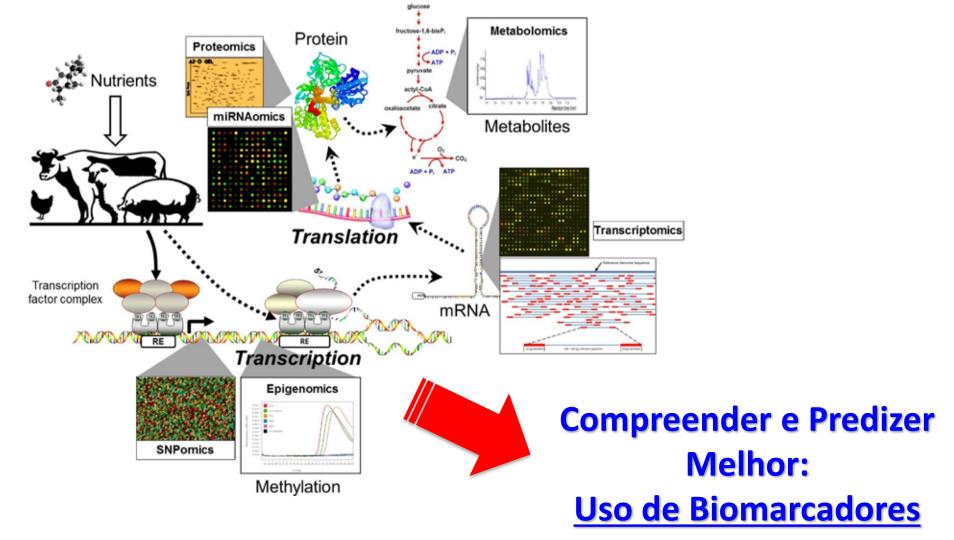
Nova visão da medicina (P4):

- 1. Previsível
- 2. Preventiva
- 3. Personalizada
- 4. Participativa

Perspective

P4 medicine: how systems medicine will transform the healthcare sector and society

Ten years ago, the proposition that healthcare is evolving from reactive disease care to care that is predictive, preventive, personalized and participatory was regarded as highly speculative. Today, the core elements of that vision are widely accepted and have been articulated in a series of recent reports by the US Institute of Medicine. Systems approaches to biology and medicine are now beginning to provide patients, consumers and physicians with personalized information about each individual's unique health experience of both health and disease at the molecular, cellular and organ levels. This information will make disease care radically more cost effective by personalizing care to each person's unique biology and by treating the causes rather than the symptoms of disease. It will also provide the basis for concrete action by consumers to improve their health as they observe the impact of lifestyle decisions. Working together in digitally powered familial and affinity networks, consumers will be able to reduce the incidence of the complex chronic diseases that currently account for 75% of disease-care costs in the USA.


KEYWORDS: big data knowledge network learning healthcare new taxonomy of disease omics studies P4 medicine personal data clouds systems biology systems medicine wellness industry

Mauricio Flores*17, Gustavo Glusman²⁴, Kristin Brogaard².

Medicina Personalizada e Aconselhamento Genético

Integração das ciências multiômicas na produção animal

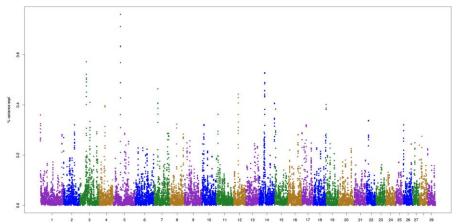

Genomic prediction for early sexual precocity indicator traits using biological information in Nelore heifers

Table 2. Number of genotyped animals with phenotypic records into the training and validation subsets for early heifer pregnancy (PP30) in Nelore beef cattle (N=102,294).

Subset	PP30
Training	13,614
Validation	3,247

PP30: early heifer pregnancy

Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heillers - doi: 10.252			
NOME DO GENE OU DA REGIÃO	CROMOSSOMO	POSIÇÃO bp	VERSÃO DO GENOMA
APOL6, HIMGXB4, HIMOXI, ISX, LARGEI, MB, MCM5, RASD2, RBFOX2, SNORA76, TOMI	5	72,521,518-74,466,890	UMD 3.1
BICDI, DNMIL, FGD4, KIAA1551, PKP2, STT10, YARS2	5	76,522,303-78,484,850	UMD SJ
CCDC91, COX7ALP1, ERGIC2, FAR2, KLHL42, PTHLH	5	80,633,605-82,455,158	UMP3.1
ATP6V1H, FAM150A, LYPLA1, MRPL15, NPBWR1, OPRKI, PCMTD1, RB1CC1, RGS20, RP1, SOX17, ST18, TCEA1, U2, U6, and XKR4	14	22,507,464-24,484,847	UMD3.I
GGH, NKAIN3, TTPA, YTHDF3	14	28,561,608-30,475,350	UMBAI
ALDH16A1, BAX, BCAT2, BOSTAUVIR403, BOSTAUVIR404, C190988, CSAR1, CSAR2, CA11, CABP5, CCDC114, CCDC155, CCDC9, CD37, CRX, DBP, DHDH, DHX34, DXXL1, ELSPBP1, EMP3, FAM34E	18	54,518,279-56,456,772	UMB3J
Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle - 2016 - DOI: 10.1371/jour	nal.pone.0159502		
NOME DO GENE OU DA REGIÃO	CROMOSSOMO	POSIÇÃO be	VERSÃO DO GENOMA
LOC104972336, LOC104972335, SYT1, LOC104972334, PAWR, LOC104972337, LOC104972338, PPP1R124, GTOGE, LOC416702, LOC100139409, LOC104972340, LOC104972319, LOC106040027, PTPRQ	5	8885458-10124194	UMDAI
MG474C. L0C(01986414, L0C781871	5	16060262-17119904	EMB 11
LOCINISI. LOCINISTRIA. LOCINISTRIA. LOCINISTRIA.	- 6	10646200-11661005	UMP31
LOCIONISSIS PRESSE LOCIONISSIS LOCIONISSIS SNAPI DADA ZNESSE VIZEO PRIZADE VIZEO PRIZADE LOCIONISSIS ATPLIAL GAIP LPAR PRIA LOCIONISSIS CEPT VIEW NOVEL SESSION DUFAIS TSS	7	3116169-3849099	UMP31
MGGTI, LOCION/00179, ZFPE2, LOCION221, LOCION/SSI, LOC	7	41289319-42032123	UMP31
LOCIO4974016. PCMTDI. LOCIO1998226. LOCIO4974020. ST18. LOCIO6141269. LOCIO1998592. FAMISSA. RBICCI. LOCIO4974017. NFBWRI. OPREI	14	22610144-23399257	UMDAL
OCCUPATOR, COCCUPATOR, MONIE, LOCUPATOR, STEEL, ADMITSE, OCCUPATORS, OCCUPATORS	18	4263730-4907873	UMPAI
DOCUMPTON, DOCUMPDON, BOUND, DOCUMPTON, SECUL, SURVEY, SECUL, SURVEY, SECUL, SURVEY, SECUL, SURVEY, SECUL,	21	8725-3028689	UMBAI
SIMEN, SINGE, MISS, MORRES, SINGE, DOCUMENTS, LOC. (MEDISMS, DOCUMENTS), LOC. (MEMORIS, DOC. (MEMORIS, DOCUMENT)), LOC. (MEMORIS, DOC. (MEMOR	21	61928582-62528341	
			UMD3.1
CSMD1, LOC 1997/923	27	992755-1574730	UMB3J
Association between single nucleotide polymorphisms and sexual precocity in Nellore helfers - 2017 DOI: 1	0.1016/j.anireprosci.2016.1	2.009	
NOME DO GENE OU DA REGIÃO / SNP	CROMOSSOMO	PosiçÃo	VERSÃO DO GENOMA
BowineHD0100003126	1	9816619	UMD M
BovineHD2100011237	21	38863958	UMBSI
BovineHD2100019377	21	66082472	UMDAI
BoxineH02200012994	22	44861196	UMBAI
Associação genômica ampla (GWAS) aplicada a características reprodutivas de novilhas da raça Neisre - 2017 - https://tesec.asp.br/bess/diapon/veis/74/74155/td-1	2002017 11100Fi No. P	OTHERSON - II	
Associação genomica ampita (GWAS) aplicada a características reprodutivas de novimas da raça Neñore - 2017 - https://desen.asp.br/resea/disponives/74/74135/ide-1	CROMOSSOMO	POSIÇÃO be	VERSÃO DO GENOMA
	CHUMOSSUMO	72521518 - 74466890	
APOL6, HMGXB4, HO-1, ESC, LARGE1, MB, MCM5, RASD2, RBFOX2, SNORA76, TOM1	5		UMD3.I
BICDI, DNMIL, FGD4, KIAA1551, PKP2, SYT10, YARS2	5	76522303 - 78484850	UMD3.1
CCDC91, COX7ALP1, ERGIC2, FAR2, KLHL42, PTHLH	5	80633605 - 82455158	UMD3.1
ATP6VIH, FAM150A, LYPLAI, MRPL15, NPBWRI, OPRKI, PCMTD1, RB1CC1, RGS20, RP1, SOX17, ST18, TCEAI, U2, U6, XKR4	14	22507464-24484847	UMD3.1
	14	28561608 - 30475350	UMD 3.1
GGH, NKAIN3, TTPA, YTHDF3			

Table 3. Genomic prediction accuracy, bias, and inflation for early heifer pregnancy (PP30) in Nelore beef cattle.

	ssGBLUP	ssw1	ssw2	ssw1biopoli	ssw2biopoli
Accuracy	0.49	0.58	0.59	0.57	0.52
Bias	0.018	0.009	0.002	0.007	0.001
Inflation	0.99	0.53	0.44	0.65	0.54

Weighted genomic prediction for growth and carcass-related traits in Nellore cattle

Table 6. Prediction accuracy for growth and carcass-related traits in Nelore cattle.

Trait	BLUP	ssGBLUP	ssw1	ssw2	ssw1bio	ssw2bio	ssw1biopoli	ssw2biopoli
W450	0.25	0.29	0.26	0.24	0.32	0.23	0.24	0.21
REA	0.20	0.28	0.28	0.28	0.26	0.24	0.27	0.28
MAR	0.09	0.63	0.60	0.54	0.54	0.42	0.60	0.53
BFT	0.08	0.80	0.77	0.71	0.66	0.49	0.77	0.71
RFT	0.12	0.69	0.67	0.60	0.59	0.50	0.67	0.61

Supplementary file 6. Manhattan plots of the 1st and 2nd iterations (A and B) of the WssGWAS with the additive genetic variance explained by windows of 10 SNPs for rump fat thickness obtained by ultrasonography (RFT).

Supplementary file 8. Bos taurus autosome (BTA) and genomic coordinates (ARS-UCD1.2/bosTau9) of the weighted QTLs reported in the literature for beef cattle.

	REA		BFT		RFT		MAR		W450
вта	Position (bp)	ВТА	Position (bp)	BTA	Position (bp)	ВТА	Position (bp)	ВТА	Position (bp)
1	575178	1	49686709-49686709	1	575149	1	575669	1	575112
1	616548	1	153635967-153666555	1	575156	1	575775	1	575204
1	616614	1	131307880	1	575159	1	157526473	1	616563
1	6310604-6449104	1	575196	1	616514	2	77030	1	575097
1	4713375-5118156	1	157526473	1	616586	2	96082524-96725242	1	575199
1	96747618-96747618	1	27489183-27646252	1	157526458	5	113447	1	616547
2	76989	1	616580	2	33385123-33609413	5	31349253-32177734	1	616544
2	60690586	2	76994	2	34109808-34328519	5	68620356-69478777	1	616548
3	118043385-118059757	2	77004	2	50173468-50497926	5	76214455-77325534	1	616609
4	24583647	2	77007	2	105558282-105901115	6	60548	1	616606
5	68225886-68578791	2	77017	2	29948707-30390796	6	25609250-25621255	1	616610
5	73727053-74137382	2	77022	3	97086987-97106709	6	70773922-70782550	1	616608

Table 7. Genomic prediction inflation for growth and carcass-related traits in Nelore cattle.

Trait	BLUP	ssGBLUP	ssw1	ssw2	ssw1bio	ssw2bio	ssw1biopoli	ssw2biopoli
W450	0.39	0.40	0.27	0.27	0.54	0.74	0.28	0.23
REA	0.31	0.38	0.32	0.29	0.39	0.41	0.31	0.29
MAR	0.16	1.02	0.79	0.61	0.93	0.77	0.79	0.61
BFT	0.16	1.34	1.05	0.84	1.23	0.90	1.06	0.88
RFT	0.25	1.19	0.97	0.78	1.18	1.15	0.97	0.81

Fapesp funding 2019/06736-5

Perspectivas futuras para uso da genômica em raças zebuínas de corte

- Seleção genômica em raças compostas e raças de avaliação multirracial
- Acasalamento baseado em informações genômicas
- Sequenciamento do genoma: Novas variações genéticas para melhorar a capacidade de predição
- Melhoramento genético baseado em informações multiômicas e customizado

Agradecimentos

Melhoramento Animal, Biotecnologia e Transgenia

