PEF 5737 - Nonlinear dynamics and stability
 Direct parametrization of invariant manifolds

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil
cenmazzi@usp.br
gfranzini@usp.br
$11 / 15 / 2023$

PEF 5737 - Nonlinear dynamics and stability
 Direct parametrization of invariant manifolds

Prof. Carlos Eduardo Nigro Mazzilli Associate Professor Guilherme Rosa Franzini

Escola Politécnica, University of São Paulo, Brazil
cenmazzi@usp.br
gfranzini@usp.br
$11 / 15 / 2023$

Objectives and references

- To present a big picture on the method of direct parametrization of invariant manifolds;
- Reference
(1) Alessandra Vizzaccaro, Andrea Opreni, Loïc Salles, Atilio Frangi, Cyril Touzé. High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dynamics, 110(1), 521-575, 2022.

Full-order model

- Consider the full-order model (FOM) with N degrees of freedom

$$
\begin{equation*}
M \ddot{\boldsymbol{U}}+\boldsymbol{C} \dot{\boldsymbol{U}}+\boldsymbol{K} \boldsymbol{U}+\boldsymbol{G}(\boldsymbol{U}, \boldsymbol{U})+\boldsymbol{H}(\boldsymbol{U}, \boldsymbol{U}, \boldsymbol{U})=\mathbf{0} \tag{1}
\end{equation*}
$$

with linear mass, damping and stiffness matrices known. Tensors $G_{r s}$ and $H_{r s t}$ are also known.

- Properties of the undamped linear system

$$
\begin{align*}
& \left(-\omega_{j}^{2} \boldsymbol{M}+\boldsymbol{K}\right) \boldsymbol{\Phi}_{\boldsymbol{j}}=\mathbf{0} \tag{2}\\
& \boldsymbol{\Phi}_{\boldsymbol{j}}^{T} \boldsymbol{M} \boldsymbol{\Phi}_{\boldsymbol{j}}=1 \tag{3}\\
& \boldsymbol{\Phi}_{\boldsymbol{j}}{ }^{T} \boldsymbol{K} \boldsymbol{\Phi}_{\boldsymbol{j}}=\omega_{j}^{2} \tag{4}
\end{align*}
$$

- Nodal displacements and velocities $\boldsymbol{U}, \boldsymbol{V}=\dot{\boldsymbol{U}} \Rightarrow$. Modal displacement and velocities $u_{j}=\boldsymbol{\Phi}_{j}{ }^{T} \boldsymbol{M} \boldsymbol{U}$ and $v_{j}=\boldsymbol{\Phi}_{\boldsymbol{j}}{ }^{T} \boldsymbol{M} \boldsymbol{V}$
- Lightly damped systems, with $\boldsymbol{C}=a_{1} \boldsymbol{M}+a_{2} \boldsymbol{K} \Rightarrow \operatorname{Vector} \boldsymbol{\Phi}_{\boldsymbol{j}}$ make \boldsymbol{C} diagonal $\left(\boldsymbol{\Phi}_{\boldsymbol{j}}{ }^{T} \boldsymbol{C} \boldsymbol{\Phi}_{\boldsymbol{j}}=2 \xi_{j} \omega_{j}\right)$

Full-order model

- Damped eigenvalue problem

$$
\begin{align*}
& \left(\Lambda_{j}^{2} \boldsymbol{M}+\Lambda_{j} \boldsymbol{C}+\boldsymbol{K}\right) \boldsymbol{\Phi}_{\boldsymbol{j}}=\mathbf{0} \tag{5}\\
& \Lambda_{j}=-\xi \omega_{j}+i \omega_{j} \sqrt{1-\xi_{j}^{2}} \tag{6}\\
& \bar{\Lambda}_{j}=-\xi \omega_{j}-i \omega_{j} \sqrt{1-\xi_{j}^{2}} \tag{7}
\end{align*}
$$

- First-order FOM

$$
\begin{align*}
& M \dot{V}+C V+\boldsymbol{K} \boldsymbol{U}+\boldsymbol{G}(\boldsymbol{U}, \boldsymbol{U})+\boldsymbol{H}(\boldsymbol{U}, \boldsymbol{U}, \boldsymbol{U})=\mathbf{0} \tag{8}\\
& M \dot{U}=M V \tag{9}
\end{align*}
$$

- Since the first-order FOM has dimension $2 N$, we sort the eigenvalues as $\Lambda_{j}=-\xi \omega_{j}+i \omega_{j} \sqrt{1-\xi_{j}^{2}}$ and $\Lambda_{j+N}=-\xi \omega_{j}-i \omega_{j} \sqrt{1-\xi_{j}^{2}}$
- Right eigenvectors of the first-order FOM

$$
\begin{align*}
& \left(\Lambda_{s}\left[\begin{array}{cc}
\boldsymbol{M} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{M}
\end{array}\right]+\left[\begin{array}{cc}
\boldsymbol{C} & \boldsymbol{K} \\
-\boldsymbol{M} & \mathbf{0}
\end{array}\right]\right) \mathbb{Y}_{s}=\mathbf{0} \tag{10}\\
& \mathbb{Y}_{s}=\left\{\begin{array}{c}
\Phi_{s} \Lambda_{s} \\
\Phi_{s}
\end{array}\right\} \in \mathbb{C} \tag{11}
\end{align*}
$$

Full-order model

- We sort the right eigenvectors as

$$
\mathbb{Y}_{j}=\left\{\begin{array}{c}
\Phi_{j} \Lambda_{j} \tag{12}\\
\Phi_{j}
\end{array}\right\}, \mathbb{Y}_{j+N}=\left\{\begin{array}{c}
\Phi_{j} \bar{\Lambda}_{j} \\
\Phi_{j}
\end{array}\right\}=\overline{\mathbb{Y}}_{j}
$$

- Left eigenvectors of the first-order FOM

$$
\mathbb{X}_{s}^{T}\left(\Lambda_{s}\left[\begin{array}{cc}
\boldsymbol{M} & \mathbf{0} \tag{13}\\
\mathbf{0} & \boldsymbol{M}
\end{array}\right]+\left[\begin{array}{cc}
\boldsymbol{C} & \boldsymbol{K} \\
-\boldsymbol{M} & \mathbf{0}
\end{array}\right]\right)=\mathbf{0}
$$

- The left eigenvectors are sorted as

$$
\mathbb{X}_{j}=\frac{1}{\Lambda_{j}-\bar{\Lambda}_{j}}\left\{\begin{array}{c}
\Phi_{j} \tag{15}\\
-\bar{\Lambda}_{j} \Phi_{j}
\end{array}\right\}, \mathbb{X}_{j+N}=\overline{\mathbb{X}}_{j}
$$

- Properties

$$
\mathbb{X}_{r}^{T}\left[\begin{array}{cc}
\boldsymbol{M} & \mathbf{0} \tag{16}\\
\mathbf{0} & \boldsymbol{M}
\end{array}\right] \mathbb{Y}_{s}=\delta_{r s} \quad \mathbb{X}_{r}^{T}\left[\begin{array}{cc}
\boldsymbol{C} & \boldsymbol{K} \\
\mathbf{- M} & \mathbf{0}
\end{array}\right] \mathbb{Y}_{s}=-\Lambda_{r} \delta_{r s}
$$

Preparing the reduced-order model (ROM)

- $\mathcal{M}=\left\{m_{1} m_{2} \ldots m_{n}\right\}$ is a set of master modes. $n \ll N$ is the number of master modes and corresponds to the dimension of the ROM
- We define the following matrices

$$
\begin{align*}
& \boldsymbol{X}=\left[\begin{array}{lllllllll}
\mathbb{X}_{m_{1}} & \mathbb{X}_{m_{2}} \ldots & \ldots \mathbb{X}_{m_{n}} & \overline{\mathbb{X}}_{m_{1}} & \overline{\mathbb{X}}_{m_{2}} \ldots & \overline{\mathbb{X}}_{m_{n}}
\end{array}\right]=\left[\begin{array}{llllllll}
\boldsymbol{X}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{2}} & \ldots & \boldsymbol{X}_{\boldsymbol{n}} & \overline{\boldsymbol{X}}_{\mathbf{1}} & \overline{\boldsymbol{X}}_{\mathbf{2}} & \ldots & \overline{\boldsymbol{X}}_{n}
\end{array}\right] \tag{17}\\
& \boldsymbol{Y}=\left[\begin{array}{lllllll}
\mathbb{Y}_{m_{1}} & \mathbb{Y}_{m_{2}} & \ldots & \mathbb{Y}_{m_{n}} & \overline{\mathbb{Y}}_{m_{1}} & \overline{\mathbb{Y}}_{m_{2}} \ldots & \overline{\mathbb{Y}}_{m_{n}}
\end{array}\right]=\left[\begin{array}{lllllll}
\boldsymbol{Y}_{\mathbf{1}} & \boldsymbol{Y}_{\mathbf{2}} & \ldots & \boldsymbol{Y}_{\boldsymbol{n}} & \overline{\boldsymbol{Y}}_{\mathbf{1}} & \overline{\boldsymbol{Y}}_{\mathbf{2}} & \ldots \\
\overline{\boldsymbol{Y}}_{\boldsymbol{n}}
\end{array}\right] \tag{18}\\
& \boldsymbol{\lambda}=\operatorname{diag}\left(\Lambda_{m_{1}} \Lambda_{m_{2}} \ldots \Lambda_{m_{n}} \bar{\Lambda}_{m_{1}} \bar{\Lambda}_{m_{2}} \ldots \bar{\Lambda}_{m_{n}}\right)= \\
& =\operatorname{diag}\left(\begin{array}{llllll}
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{n} & \bar{\lambda}_{1} & \bar{\lambda}_{2}
\end{array} \ldots \bar{\lambda}_{n}\right) \tag{19}\\
& \phi=\left[\begin{array}{llllllll}
\Phi_{m_{1}} & \Phi_{m_{2}} & \ldots & \Phi_{m_{n}} & \Phi_{m_{1}} & \Phi_{m_{2}} & \ldots & \Phi_{m_{n}}
\end{array}\right]=\left[\begin{array}{lllll}
\Phi_{1} & \Phi_{2} & \ldots & \Phi_{n} & \Phi_{1}
\end{array} \Phi_{2} \ldots \Phi_{n}\right] \tag{20}
\end{align*}
$$

- Dimensions: $\boldsymbol{X}_{2 N \times 2 n}, \boldsymbol{Y}_{2 N \times 2 n}, \boldsymbol{\lambda}_{2 n \times 2 n}, \boldsymbol{\phi}_{N \times 2 n}$

Definitions

- The dynamics will be described in a $2 n$-dimensional manifold. The coefficient 2 is due to the pair displacement-velocity
- We introduce $\boldsymbol{z}_{2 n \times 1}$ normal coordinates for describing the dynamics on the mentioned manifold $\Rightarrow \dot{\boldsymbol{z}}=\boldsymbol{f}(\boldsymbol{z})$
- Nonlinear mappings: $\boldsymbol{U}=\boldsymbol{\Psi}(\boldsymbol{z})$ and $\boldsymbol{V}=\boldsymbol{\Upsilon}(\boldsymbol{z})$
- Idea: We will expand the nonlinear mappings Ψ, Υ and the reduced dynamics f as polynomial functions of \boldsymbol{z}. The goal is to identify the coefficients of the mentioned expansion
- Notice that
(1) ROMs from the normal forms: Expand \Rightarrow Reduce
(2) ROMs from DPIM: Reduce \Rightarrow Expand

and here we go...

- Chain rule:

$$
\begin{align*}
\dot{U} & =\nabla_{\boldsymbol{z}} \Psi(\boldsymbol{z}) \dot{\boldsymbol{z}}=\boldsymbol{\nabla}_{\boldsymbol{z}} \Psi(\boldsymbol{z}) \boldsymbol{f}(\boldsymbol{z})=\sum_{s=1}^{2 n} \frac{\partial \boldsymbol{\Psi}(\boldsymbol{z})}{\partial z_{s}} f_{s}(\boldsymbol{z}) \tag{21}\\
\dot{\boldsymbol{V}} & =\boldsymbol{\nabla}_{\boldsymbol{z}} \mathbf{\Upsilon}(\boldsymbol{z}) \dot{\boldsymbol{z}}=\boldsymbol{\nabla}_{\boldsymbol{z}} \mathbf{\Upsilon}(\boldsymbol{z}) \boldsymbol{f}(\boldsymbol{z})=\sum_{s=1}^{2 n} \frac{\partial \boldsymbol{\Upsilon}(\boldsymbol{z})}{\partial z_{s}} f_{s}(\boldsymbol{z}) \tag{22}
\end{align*}
$$

- Substituting the above quantities into the first-order equation of motion of the FOM

$$
\begin{align*}
& M \nabla_{z} \Upsilon(z) f(z)+C \Upsilon(z)+K \Psi(z)+G(\Psi(z), \Psi(z))+ \\
& +H(\Psi(z), \Psi(z), \Psi(z))=0 \tag{23}\\
& M \nabla_{z} \Psi(z) f(z)=M \Upsilon(z) \tag{24}
\end{align*}
$$

Homological equations

- Since the expansion is made around an equilibrium position, the zero-order term is not included in the expansion.
- Assuming that o is the maximum order employed in the expansion and that [$]_{p}$ contains only monomials of order p in the components of \boldsymbol{z}, we have

$$
\begin{align*}
& \boldsymbol{\Psi}(\boldsymbol{z})=\sum_{p=1}^{o}[\boldsymbol{\Psi}(\boldsymbol{z})]_{p} \tag{25}\\
& \mathbf{\Upsilon}(\boldsymbol{z})=\sum_{p=1}^{o}[\mathbf{\Upsilon}(\boldsymbol{z})]_{p} \tag{26}\\
& \boldsymbol{f}(\boldsymbol{z})=\sum_{p=1}^{o}[\boldsymbol{f}(\boldsymbol{z})]_{p} \tag{27}
\end{align*}
$$

- The order-p homological equations read

$$
\begin{align*}
& \boldsymbol{M}\left[\boldsymbol{\nabla}_{\boldsymbol{z}} \mathbf{\Upsilon}(\boldsymbol{z}) \boldsymbol{f}(\boldsymbol{z})\right]_{p}+\boldsymbol{C}[\mathbf{\Upsilon}(\boldsymbol{z})]_{p}+\boldsymbol{K}[\boldsymbol{\Psi}(\boldsymbol{z})]_{p}+[\boldsymbol{G}(\boldsymbol{\Psi}(\boldsymbol{z}), \boldsymbol{\Psi}(\boldsymbol{z}))]_{p}+ \\
& +[\boldsymbol{H}(\boldsymbol{\Psi}(\boldsymbol{z}), \boldsymbol{\Psi}(\boldsymbol{z}), \boldsymbol{\Psi}(\boldsymbol{z}))]_{p}=\mathbf{0} \tag{28}\\
& \boldsymbol{M}\left[\boldsymbol{\nabla}_{\boldsymbol{z}} \boldsymbol{\Psi}(\boldsymbol{z}) \boldsymbol{f}(\boldsymbol{z})\right]_{p}=\boldsymbol{M}[\mathbf{\Upsilon}(\boldsymbol{z})]_{p} \tag{29}
\end{align*}
$$

- As in other methods, the solution is started with $p=1$ and, then, the homological equations are solved in sequential order

Homological equation for $p=1$

- For $p=1$, the nonlinear terms associated with tensors $G_{r s}$ and $H_{r s t}$ do not appear. Hence, we have:

$$
\begin{align*}
& M\left[\nabla_{z} \Upsilon(z) f(\boldsymbol{z})\right]_{1}+\boldsymbol{C}[\mathbf{\Upsilon}(\boldsymbol{z})]_{1}+\boldsymbol{K}[\mathbf{\Psi}(\boldsymbol{z})]_{1}=\mathbf{0} \tag{30}\\
& \boldsymbol{M}\left[\nabla_{\boldsymbol{z}} \Psi(\boldsymbol{z}) \boldsymbol{f}(\boldsymbol{z})\right]_{1}=\boldsymbol{M}[\mathbf{\Upsilon}(\boldsymbol{z})]_{1} \tag{31}
\end{align*}
$$

- Notice that $p=1$ corresponds to the linear part of the expansion. The unknowns for this problem read:

$$
\begin{align*}
& {[\mathbf{\Upsilon}(\boldsymbol{z})]_{1}=\mathbf{\Upsilon}_{N \times 2 n}^{(1)} \boldsymbol{z}} \tag{32}\\
& {[\mathbf{\Psi}(\boldsymbol{z})]_{1}=\boldsymbol{\Psi}_{N \times 2 n}^{(1)} \boldsymbol{z}} \tag{33}\\
& {[\boldsymbol{f}(\boldsymbol{z})]_{1}=\boldsymbol{f}_{\mathbf{2 n \times 2 n}}^{(\mathbf{1})} \boldsymbol{z}} \tag{34}
\end{align*}
$$

- With the above definitions, the homological equations for $p=1$ become:

$$
\begin{align*}
& M \Upsilon^{(1)} f^{(1)} z+C \Upsilon^{(1)} z+K \Psi^{(1)} z=0 \tag{35}\\
& M \Psi^{(1)} f^{(1)} z=M \Upsilon^{(1)} z \tag{36}
\end{align*}
$$

Homological equation for $p=1$

- The last set of equation must be valid for any \boldsymbol{z}. Hence, we obtain:

$$
\left[\begin{array}{cc}
M & 0 \tag{37}\\
0 & M
\end{array}\right]\left\{\begin{array}{l}
\Upsilon^{(1)} \\
\Psi^{(1)}
\end{array}\right\} f^{(1)}+\left[\begin{array}{cc}
C & K \\
-M & 0
\end{array}\right]\left\{\begin{array}{l}
\Upsilon^{(1)} \\
\Psi^{(1)}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

- The above equation has the same form of the right eigenvalue problem and, then,

$$
\begin{align*}
& \left\{\begin{array}{l}
\boldsymbol{\Upsilon}^{(1)} \\
\Psi^{(1)}
\end{array}\right\}=\left\{\begin{array}{c}
\phi \boldsymbol{\lambda} \\
\phi
\end{array}\right\}=\boldsymbol{Y} \tag{38}\\
& \boldsymbol{f}^{(\mathbf{1})}=\boldsymbol{\lambda} \tag{39}
\end{align*}
$$

- Conclusion (as expected): The linear part of the expansion matches the solution of the linearized problem. Higher-order terms ($p>1$) correspond to corrections applied to the linearized problem

An introduction to the case with $p>1$

- With the results for $p=1$ at hand, the expansions read:

$$
\begin{align*}
& \boldsymbol{\Psi}(\boldsymbol{z})=\boldsymbol{\phi} \boldsymbol{z}+\sum_{p=2}^{o}[\boldsymbol{\Psi}(\boldsymbol{z})]_{p} \tag{40}\\
& \mathbf{\Upsilon}(\boldsymbol{z})=\boldsymbol{\phi} \boldsymbol{\lambda} \boldsymbol{z}+\sum_{p=2}^{o}[\mathbf{\Upsilon}(\boldsymbol{z})]_{p} \tag{41}
\end{align*}
$$

- Explicitly (similar expansion also valid for $p>1$

$$
\begin{equation*}
[\boldsymbol{\Psi}(z)]_{p}=\sum_{i_{1}=1}^{2 n} \sum_{i_{2}=1}^{2 n} \ldots \sum_{i_{p}=1}^{2 n} \boldsymbol{\Psi}_{\left\{i_{1} i_{2} \ldots i_{p}\right\}}^{(p)} z_{i_{1}} z_{i_{2}} \ldots z_{i_{p}} \tag{42}
\end{equation*}
$$

- For a more compact nomenclature, it is introduced set $\mathcal{I}=\left\{i_{1} i_{2} \ldots i_{p}\right\}$ with p elements (cardinality). The monomial associated with a certain set \mathcal{I}^{*} is $\pi_{\mathcal{I}}^{*}=z_{i_{1}} z_{i_{2}} \ldots$ and $\pi_{\mathcal{I}}^{(p)}$ represents all the monomials of order p for gathering all the monomials of order p.
- For example, the set $\mathcal{I}=\{1134\}$ is associated with the monomial $z_{1}^{2} z_{3} z_{4}$.
- With the introduced nomenclature, the expansion for $[\boldsymbol{\Psi}]_{p}$ is $\sum_{\mathcal{I}} \boldsymbol{\Psi}_{\mathcal{I}}^{(p)} \pi_{\mathcal{I}}^{(p)}$. Similar expression is valid for $[\boldsymbol{\Upsilon}(\boldsymbol{z})]_{p}$

