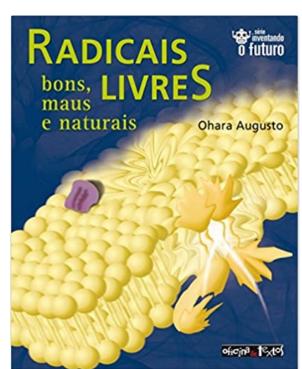
Oxidação de lipídeos e DNA

QBQ2509: Bioquímica Redox


QBQ5893: Processos Redox em Bioquímica

Dr. Danilo B. Medinas

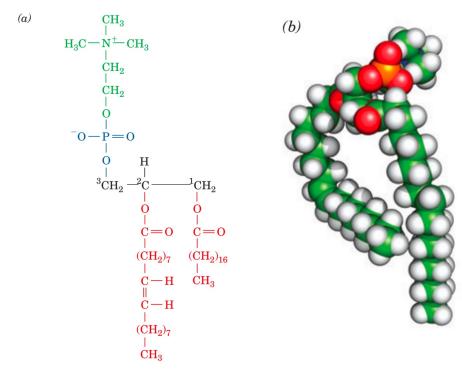
Material de estudo para prova

Halliwell: Capítulos 5

Manuscritos citados

Tópicos e metas da aula

- Recapitular estrutura de lipídeos e membranas.
 - Pré-requisito para racionalizar alvos e consequências da lipoperoxidação.
- Início e propagação da lipoperoxidação.
 - Entender os mecanismos químicos de modificação de lipídeos e danos a membranas e suas consequências.
- Recapitular estrutura de nucleotídeos e DNA.
 - Reconhecer fatores determinantes para oxidação do DNA e suas consequências.
- Tipos de oxidação no DNA e espécies envolvidas.
 - Conhecer mecanismos de modificação da molécula de DNA e seu potencial envolvimento em mutações.
- Sistemas de reparo do DNA.
 - Racionalizar mecanismos celulares de defesa contra alterações no DNA e sua importância na homeostase celular.

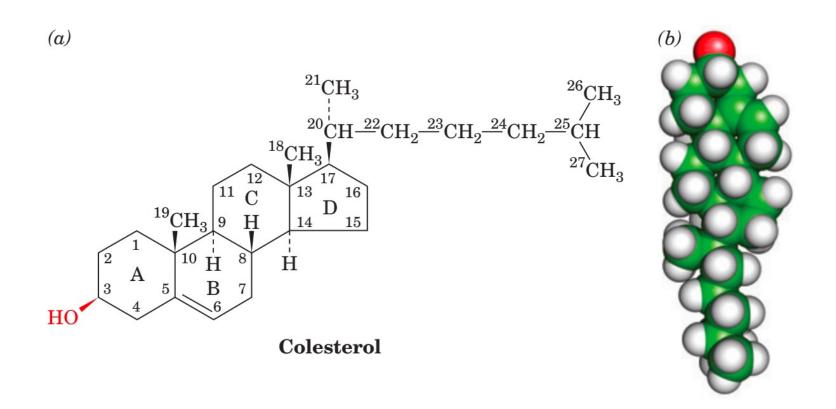

Estrutura de Lipídeos

Ácidos graxos saturados e insaturados

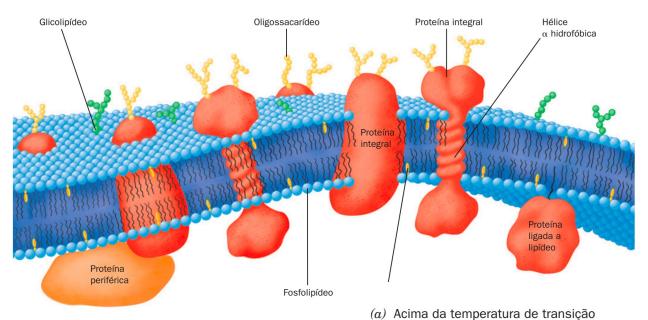
OHOHOHOH CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_{2} CH_2 CH_2 CH_2 18CH₃ CH_2 $_{18}CH_3$ $_{18}\mathrm{CH}_3$ $_{18}CH_3$

Ácido esteárico Ácido oleico Ácido linoleico Ácido α-linolênico

Insaturações contribuem para a fluidez das membranas



1-Estearoil-2-oleoil-3-fosfatidilcolina


PUFAs

Colesterol

Colesterol também contribui para as propriedades biofísicas de membrana controlando sua fluidez

Membranas

Fluidez da membrana: fator a se considerar ao analisar a acessibilidade de lipídeos a oxidantes

(b) Abaixo da temperatura de transição

(b) Abaixo da temperatura de transição

Rancificação

Processo de oxidação de gorduras que altera as propriedades nutritivas e sensoriais dos alimentos.

Mecanismos???

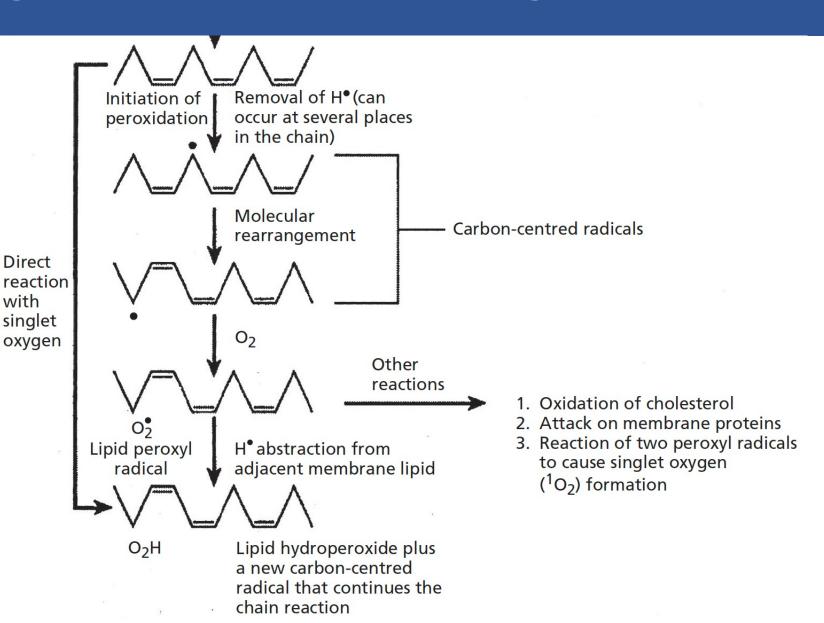
Início - Ataque a cadeia de carbono

Radical OH• pode se adicionar ou abstrair H•

$$C=C$$
 + OH $^{\bullet}$ \longrightarrow $C-\dot{C}$ $C-\dot{C}$

Outros radicais, HO₂•, RO₂•, RO• podem abstrair H• de PUFAs, de acordo com seu potencial de redução

 Table 2.2
 Some biologically relevant standard reduction potentials.


	Couple	Standard reduction potential (V)
Highly reducing	H ₂ O / hydrated electron (e ⁻ _{aq})	-2.84
	$CO_2 / CO_2^{\bullet-}$	-1.80
	O ₂ , H ⁺ /HO ₂ Paraquat / paraquat [•] Fe(III)-transferrin / Fe ²⁺ -transferrin O ₂ /O ₂ [•] NAD ⁺ , H ⁺ / NADH Fe(III)-ferritin / ferritin, Fe ²⁺ FAD, 2H ⁺ / FADH ₂ Dehydroascorbate / ascorbate [•] Fe(III)-EDTA / Fe ²⁺ -EDTA Ubiquinone, H ⁺ / ubisemiquinone Fe(III)-ADP / Fe ²⁺ -ADP Fe(III)-citrate / Fe ²⁺ -citrate Ubisemiquinone, H ⁺ / ubiquinol Ferricytochrome <i>c</i> / ferrocytochrome <i>c</i> ascorbate [•] , H ⁺ / ascorbate ⁻ H ₂ O ₂ , H ⁺ /H ₂ O, OH [•] αT [•] , H ⁺ / αTH (α-tocopherol) HU ^{•-} , H ⁺ / ROOH (peroxyl) RS [•] / RS ⁻ (cysteine) O ₂ ^{•-} , 2H ⁺ /H ₂ O ₂ RO [•] , H ⁺ / ROH (aliphatic alkoxyl) CO ₃ ^{•-} , H ⁺ / ROH (aliphatic alkoxyl)	-0.46 -0.45 -0.40 (pH 7.3) -0.35 -0.32 -0.19 -0.18 -0.17 -0.12 -0.04 ~0.10 ~0.10 ~0.20 0.26 0.28 0.32 0.50 0.59 ~0.77-1.44a 0.92 0.94 1.06 ~1.60 (results variable) 1.78
Highly oxidizing	OH•, H+ / H ₂ O	2.31

Propagação da Lipoperoxidação

$$R^{\bullet} + O_2 \longrightarrow ROO^{\bullet}$$

[O₂] é mais elevada na membrana e determina a taxa de propagação da lipoperoxidação, ou seja, formação em cadeia de mais radicais de lipídeos através de ROO•.

 $ROO^{\bullet} + CH \longrightarrow ROOH + C^{\bullet}$

Propagação da Lipoperoxidação

Type of iron

ROOH + Fe²⁺ + H⁺
$$\longrightarrow$$
 RO $^{\bullet}$ + H2O + Fe³⁺

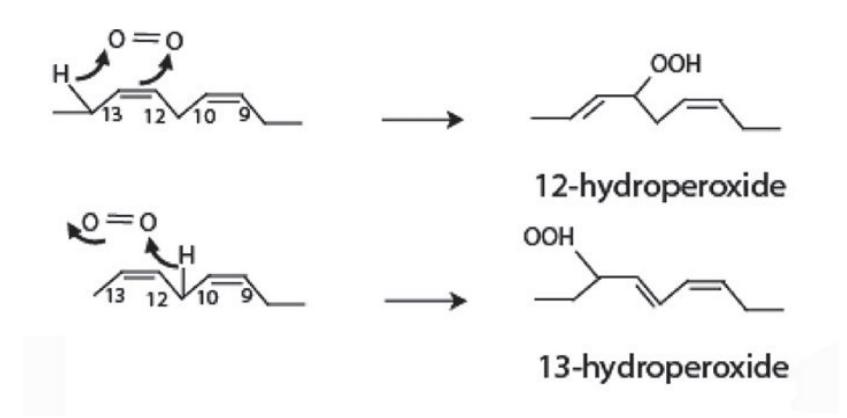
 $RO^{\bullet} + CH \longrightarrow ROH + C^{\bullet}$

 Table 5.10 Physiological forms of iron and their possible participation in RS formation.

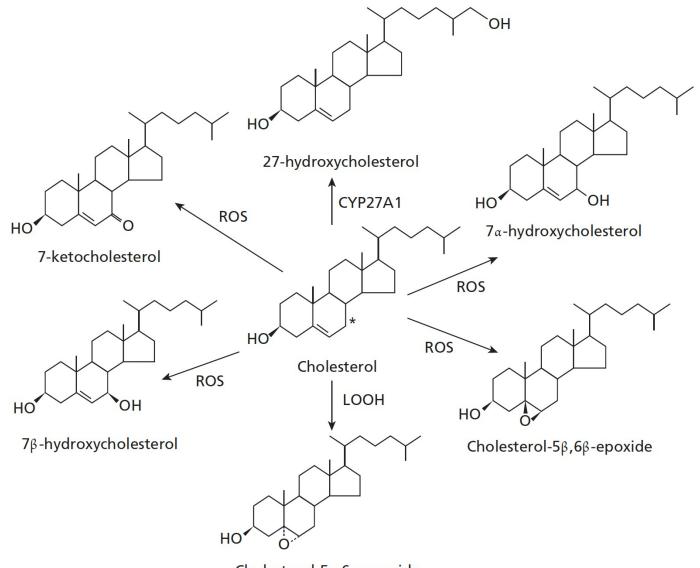
Will it decompose lipid

and/or peroxyl radicals?

peroxides to form alkoxyl

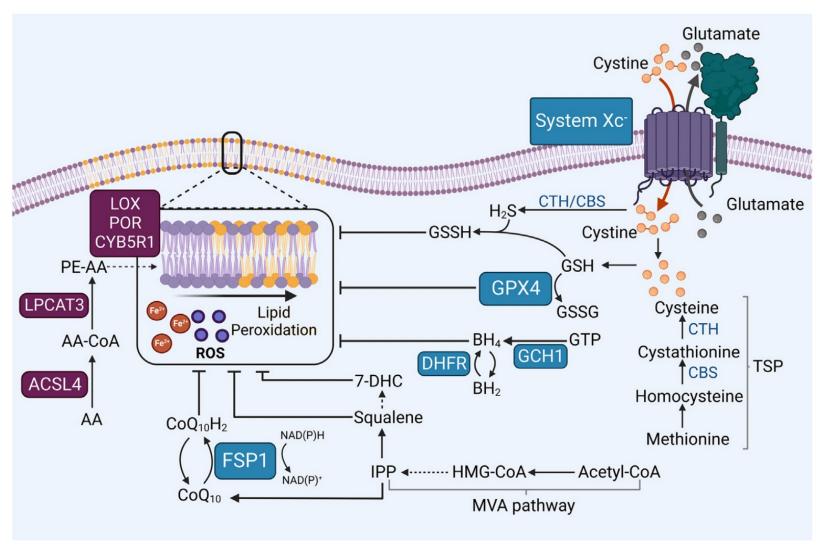

Can it form OH from

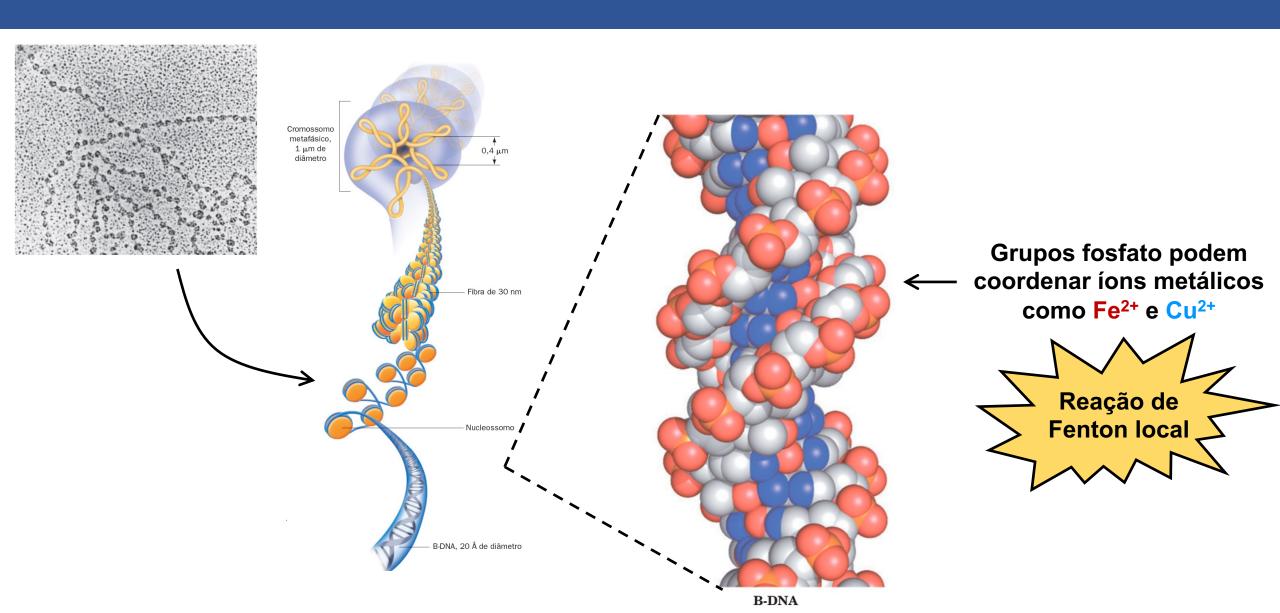
H₂O₂ by Fenton


chemistry?

		Iron ions bound to		
Reações tipo Fenton com hidroperóxidos de lipídeos catalisadas		Phosphate esters (e.g. ADP, ATP) Carbohydrates and organic acids (e.g. citrate, picolinic acid, deoxyribose) DNA Membrane lipids Loosely bound to proteins, e.g. albumin Iron bound to proteins (i) Non-haem iron Ferritin Haemosiderin Lactoferrin Transferrin Tartrate-resistant acid phosphatase ^d (ii) Haem iron Haem itself	Yes Yes Yes Yes Yes Yes Yes Probably no ^a No ^a No ^a No ^a Yes (if iron is released)	Yes Yes Yes Yes Yes Yes No ^a No ^a No ^a No ^a Yes (if iron is released) Probably no ^a
por ferro biológico	logico	Haemoglobin Leghaemoglobin Myoglobin Cytochrome c Cytochromes P450 Catalase	Yes Yes Yes Yes Yes, especially CYP2E1 Weakly ^b	Yes (only if iron is released) No ^c

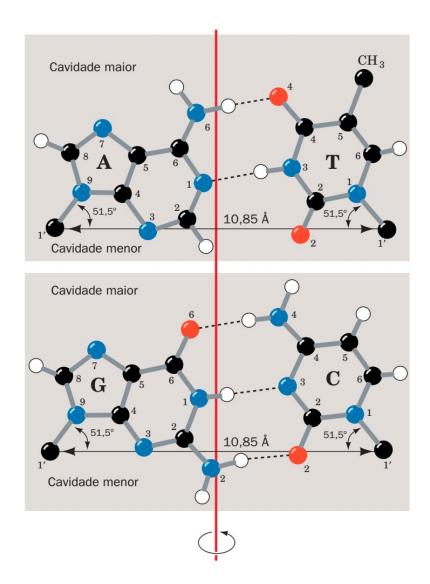
Lipoperoxidação por O₂ Singlete


Colesterol também sofre Oxidação

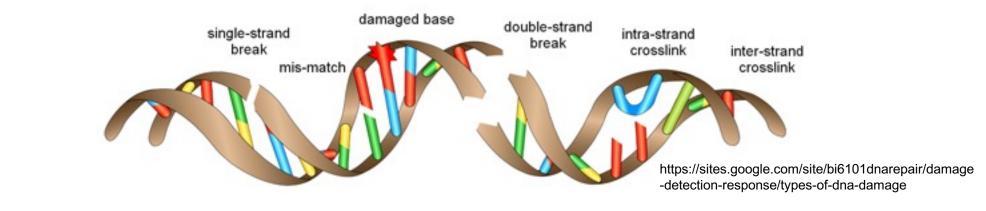

Cholesterol- 5α , 6α -epoxide

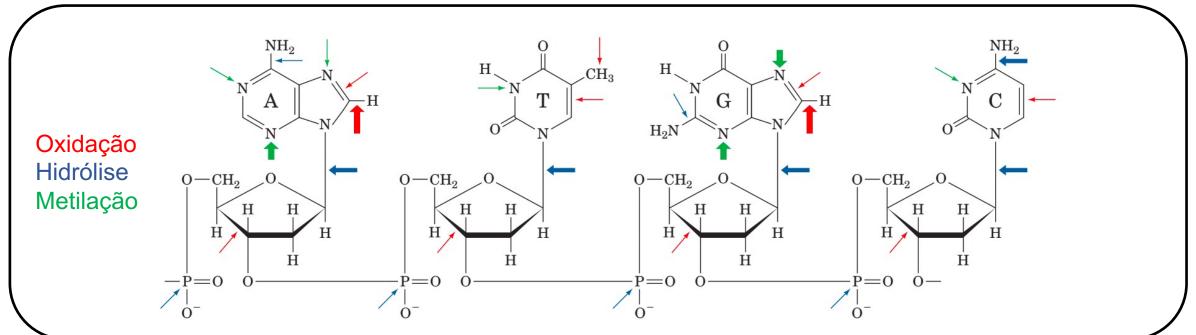
Consequências da Lipoperoxidação

- Fluidez da membrana alterada
- Permeabilidade da membrana comprometida
- Perda de função de proteínas de membrana
- Morte celular: ferroptosis
- Maior quantidade de PUFAs, mais suscetível a célula está para morrer por ferroptosis.

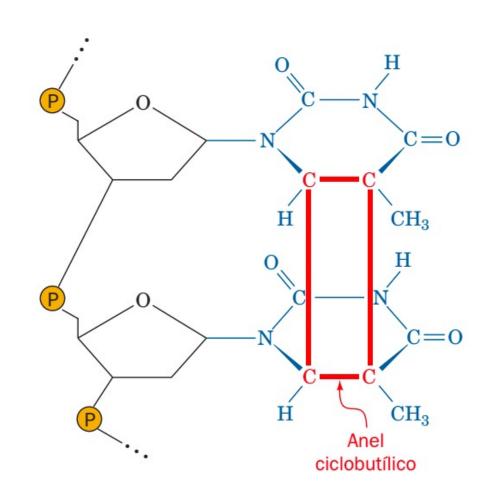


Estrutura do DNA

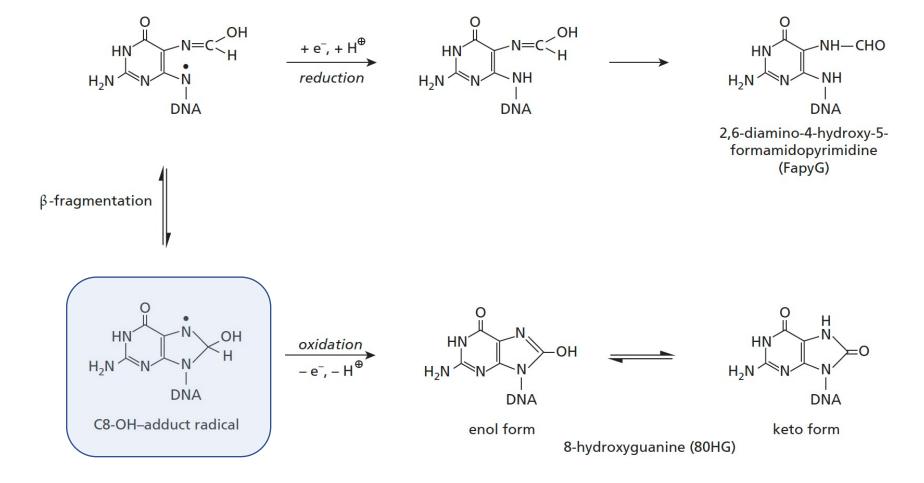



Bases Nitrogenadas do DNA

Fórmula da base	Base $(X = H)$	Nucleosídeo (X = ribose*)	Nucleotídeo** $(X = fosfato da ribose*)$
NH ₂ N N N X	Adenina	Adenosina	Ácido adenílico
	Ade	Ado	Adenosina-monofosfato
	A	A	AMP
H_{2N} N	Guanina	Guanosina	Ácido guanosílico
	Gua	Guo	Guanosina-monofosfato
	G	G	GMP
NH ₂ N N X	Citosina	Citidina	Ácido citidílico
	Cyt	Cyd	Citidina monofosfato
	C	C	CMP
H N N	Uracila	Uridina	Ácido uridílico
	Ura	Urd	Uridina-monofosfato
	U	U	UMP
O CH_3 O	Timina Thy T	Desoxitimidina dThd dT	Ácido desoxitimidílico Desoxitimidina-monofosfato dTMP



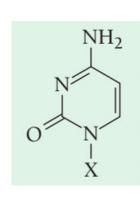
Sítios de Modificação no DNA



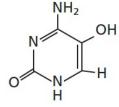
Radiação UV Gera Dímeros de Timina

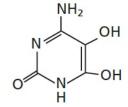
Ataque ao DNA pelo OH*

Oxidação da Guanina

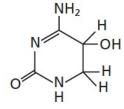


Ataque ao DNA pelo OH•


Oxidação da Citosina


Ataque ao DNA pelo OHº

Oxidação da Citosina



5,6-dihydroxycytosine

5-hydroxy-6-hydrocytosine

5-hydroxyuracil

5,6-dihydroxyuracil

5-hydroxy-6-hydrouracil

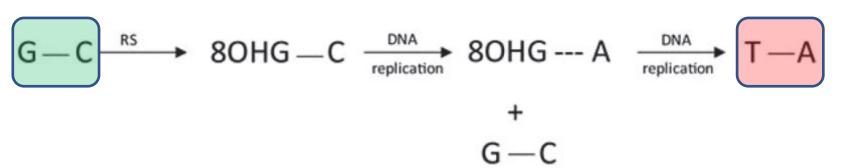
5-hydroxyhydantoin

alloxan

Ataque ao DNA pelo OH*

Oxidação da Timina

5-formyluracil


8-hidroxiguanine é um produto do ataque de outros oxidantes também

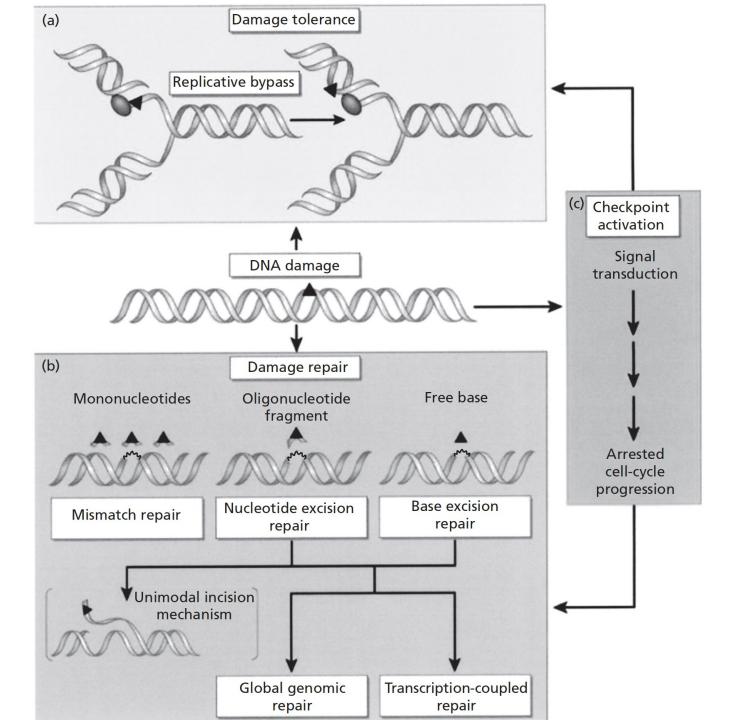
✓ Ataque por radical carbonato e oxigênio singlete também levam a formação de 8OHG

HOCI e ONOO podem causar cloração e nitração de bases, respectivamente

Existe literatura indicando que o mtDNA sofre mais oxidação que o DNA nuclear, mas esse assunto é controverso

Consequências do dano oxidativo ao DNA?

Silenciamento de genes


Doenças como câncer

Senescência e morte celular

Sistemas de Reparo

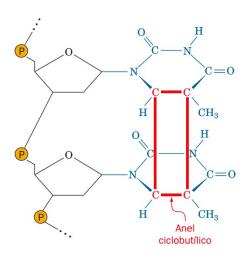
Reversão direta da lesão

- DNA-fotoliase
- Enzimas que hidrolisam bases modificadas e impedem sua incorporação ao DNA (Ex. NUDT1, hidrolisa 8OHdGTP e outros)
- Reparo por excisão de nucleotídeos: dímeros pirimidina
- Reparo por excisão de bases: bases oxidadas (Ex: 8OHG)
- Reparo por mal pareamento (erros no processo de replicação)

Sistemas de Reparo

Recombinação homologa

União de extremidades não homologas (quebra de fita dupla)


Doenças relacionadas a problemas nos sistemas de reparo do DNA

Xeroderma pigmentosum

Castro et al, Front Genet, 2022

Acumulação de dímeros de pirimidina

Defeitos em:

Reparo por excisão de nucleotídeos

Recapitulando as metas da aula

- Estrutura de lipídeos e membranas
- Mecanismos de início e propagação de lipoperoxidação
- Consequências da peroxidação de membranas
- Estrutura do DNA e nucleotídeos
- Lesões oxidativas no DNA
- Sistemas de reparo no DNA e doenças relacionadas

Bibliografia

- Halliwell and Gutteridge, Free Radicals in Biology and Medicine, 5th Edition, 2015.
- Donald Voet e Judith G. Voet, Bioquímica, 4ª edição, 2013.
- Manuscritos citados.

Questões de Acompanhamento

- 1. Esquematize o início e propagação de lipoperoxidação. Como a cadeia radicalar pode ser terminada?
- 2. Como ocorre a morte por ferroptosis?
- 3. Explique a vulnerabilidade do DNA a metais de transição como ferro.
- 4. Que modificação no DNA pode ser mais mutagênica?
- 5. Quais sistemas de reparo de DNA mamíferos devem utilizar para dímeros de timina?