LGN 5822 - Biometrical Genetics

L12 – Incomplete Block Design

Michele Jorge Silva Siqueira

2023

Introduction

- Frank Yates (1902-1994) was appointed as assistant statistician in 1931 at Rothamsted Experimental Station by Ronald Fisher
- He became the head of the Statistics Department on Fisher's departure in 1933 until his retirement in 1968
- He originated the idea of balanced incomplete block design

• The designs like CRD and RBD are the complete block designs

a	b	c	d
А	В	С	D
В	А	D	C
С	D	А	В
D	C	В	А

We now discuss the Incomplete Block Design (IBD)

- In some situations, it can be difficult to obtain enough homogeneous experimental units to construct complete blocks, for example, when the number of treatments is numerous, physical constraints, costs or time
- In other situations we might start with a complete block design but lose some observations during the study due to contamination, false recording, accidents, etc

So we have an **incomplete block design** because not every treatment appears in each block

- Incomplete Block Design (IBD) was introduced by Yates in order to eliminate heterogeneity to a greater extent when the number of treatments is large
- IBD mitigates heterogeneity between experimental units, so experimental units within each incomplete block are more homogeneous

• We can use **incomplete block** designs

Definition

Incomplete Block Designs

 The incomplete block design is so called because a block does not contain all treatments

 In other words, the block size (number of experimental units) is smaller than the number of treatments

Incomplete Block Designs

Incomplete Block Designs

Example - Potato yield

dat

	Y	Block	Trt	plot
5	13.7	1	F	1
1	11.9	1	А	2
2	12.4	1	В	3
3	10.1	1	С	4
4	11.5	1	D	6
6	13.9	2	Α	1
8	13.6	2	С	2
11	11.6	2	F	3
9	11.1	2	D	4
10	10.8	2	E	5
7	13.4	2	В	6
15	12.9	3	E	2
14	12.0	3	D	3
12	10.0	3	В	4
13	11.6	3	С	5
16	12.9	3	F	6
17		3	<na></na>	1
21		1	<na></na>	5

Incomplete Block Designs

- Let t represent the number of treatments and r the number of replications of each treatment
- Each of the *t* treatments appears in *r* incomplete blocks

- Experimental units are divided into *b* blocks of *k* units
 - *b* is the *total* number of blocks in the experiment
 - k represents the size (number of experimental units) of each incomplete block

- Let λ represent the number of times that pairs of treatments occur in the same incomplete block

$$\lambda = \frac{r(k-1)}{t-1}$$

Balanced Incomplete Block Designs (BIBD)

- Each treatment occurs at most once in a block
- Each treatment occurs the same number of times r
- Each pair of treatments occur together in a block the same number of times λ

In that case, we have that tr = bk is the total number of experimental units

Balanced Incomplete Block Designs (BIBD)

- In some cases, particularly when the number of treatments is large, achieving balance may be impractical
- Exceedingly large numbers of replicates
- Not all pairs of treatments are equally represented within the incomplete blocks
- Some pairs may never even occur in the same block
- Comparisons of treatment means are made with equivalent precision for all pairs of treatments

Example 01 - BIBD

• A BIB design for b = 5, r = k = 4 and $\lambda = 3$ in the following:

 λ represent the number of times that pairs of treatments occur in the same incomplete block

• Not all treatments occur in every block, such that some *i*, *j* combinations do not exist

Example 02 - BIBD

• A BIB design for b = 10, r = k = 5 and $\lambda = 2$ in the following:

Blocks Treatments

B_1	T_1	T_2	T_5
B_2	T_1	T_2	$T_{\rm 6}$
<i>B</i> ₃	T_1	T_3	T_4
B_4	T_1	T_3	T_{6}
B_5	T_1	T_4	T_5
B_6	T_2	T_3	T_4
В ₆ В ₇	T_2 T_2	T_3 T_3	T_4 T_5
Β ₆ Β ₇ Β ₈	T_2 T_2 T_2	T_3 T_3 T_4	T_4 T_5 T_6
Β ₆ Β ₇ Β ₈ Β ₉	T_2 T_2 T_2 T_3	T_3 T_3 T_4 T_5	T_4 T_5 T_6 T_6

Partially Balanced Incomplete Block Designs

- In some cases, particularly when the number of treatments is large, achieving balance may be impractical
- Not all pairs of treatments are equally represented within the incomplete blocks
- Some pairs may never even occur in the same block

Partially Balanced Incomplete Block Designs

• If each pair of treatments appears λ_1 or λ_2 times in the same block, the design is called a Partially Balanced Incomplete Block Design

Statistical Model

Let y_i represent the observed response of the *i*th treatment (i = 1, ..., t), in the *j*th block (j = 1, ..., r)

 For a BIB design (Balanced Incomplete Block), the corresponding model can be written as:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Where μ is the overall mean, τ_i are treatment effects, β_j are block effects and ε_{ij} are the associated error random variables

• Not all treatments occur in every block, such that some *i*, *j* combinations do not exist

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F-Statistic
Blocks	b - 1	SS_{Blocks}	$MS_{Blocks} = \frac{SS_{Blocks}}{b-1}$	
Trt_{Adj}	t-1	$SS_{Trt_{Adj}}$	$MS_{Trt_{Adj}} = rac{SS_{Trt_{Adj}}}{t-1}$	$F = \frac{MS_{Trt_{Adj}}}{MS_E}$
Error	bk-b-t+1	SSE	$MS_E = \frac{SS_E}{bk-b-t+1}$	
Total	bk-1	SS _{Total}	-	

Analysis of Variance

- The treatment sum of squares needs to be adjusted, because not all treatments are present in each block
- For each treatment, we sum over different blocks

Analysis of Variance

 If we model block *effects as fixed*, pairwise differences between treatments can be estimated in the blocks in which both treatments occur

- This is called the intrablock analysis of variance: examines variation in treatment outcomes within each block, without considering differences between blocks
- Differences between treatments in the same block are free from block effects

Analysis of Variance

 If block effects are treated *as random*, their totals may carry information about the treatment combinations

 Differences between treatments can be extracted from blocks that do not contain both treatments

- This results in the **interblock** analysis of variance
- The effective variance includes both the intrablock and interblock sources of variation

Lattice designs

- Lattice designs form an important class of useful incomplete block designs
- These designs were originally introduced by Yates (1936)

Lattice designs

- Square lattice
- Circular lattice
- Cubic lattice
- Rectangular lattice

- The example is from a soybean balanced incomplete block experiment
- Yield measurements (in bushels per acre) were made for 30 varieties
- There are 31 genotype levels, because one variety was duplicated (G07 and G14)
- The experiment consisted of 31 blocks of six plots each
- This data set can be found in the R package agridat and is originally from Weiss & Cox (1939) *Iowa State Agricultural Research Bulletin* 257. Ames, Iowa. p. 28.

To Do:

- Use the R function read.csv to import the data
- Fit the model with fixed (and/or random) effects
- Check if model assumptions are met
- Build the ANOVA table and test the null hypothesis of no difference between genotypes
- Use multiple comparisons to assess pairwise differences

	block	gen	yield
1	в01	G24	29.8
2	в02	G15	24.2
3	в03	G20	30.5
4	в04	G18	20.0
5	в05	G20	35.2
6	в06	G05	25.0
7	в07	G22	23.6
8	в08	G01	23.6
9	в09	G09	29.3
10	в10	G14	25.5
11	B11	G10	21.4
12	в12	G1 7	16.7
13	в13	G03	32.7
14	в14	G24	32.3
15	в15	G21	32.6
16	в16	G02	30.0
17	в17	G1 7	17.1
18	в18	G18	21.7
19	в19	G01	24.3
20	в20	G28	23.8
21	в21	G25	26.4
22	в22	G08	27.2
23	в23	G10	27.8
24	в24	G05	30.4

library(lattice)
xyplot(yield ~ reorder(gen, yield), data = dados, type = c("p", "a"))
xyplot(yield ~ reorder(block, yield), data = dados, type = c("p", "a"))


```
# Fixed Model
```

```
fm <- lm(yield ~ block + gen, data = dados)
anova(fm)</pre>
```

```
Analysis of Variance Table
```

```
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block 30 1642.61 54.754 15.272 < 2.2e-16 ***

gen 30 1841.28 61.376 17.119 < 2.2e-16 ***

Residuals 125 448.16 3.585

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Random Model

```
library(nlme) fme <- lme(yield ~ gen, random = \sim 1 |block, data = dados)
```

anova(fme)

Multiple Comparisons

```
library(emmeans)
fm_means1 <- emmeans(fm, "gen")
fm_means1
pairs(fm_means1)</pre>
```

> pairs(fm_means1)

-					
contrast	estimate	SE	df	t.ratio	p.value
GO1 - GO2	-2.33548	1.18	125	-1.982	0.9796
GO1 - GO3	-8.02903	1.18	125	-6.815	<.0001
GO1 - GO4	-2.37742	1.18	125	-2.018	0.9745
GO1 - GO5	-1.42903	1.18	125	-1.213	1.0000
GO1 - GO6	-7.40000	1.18	125	-6.281	<.0001
GO1 - GO7	0.40000	1.18	125	0.340	1.0000
GO1 - GO8	-3.01936	1.18	125	-2.563	0.7441
GO1 - GO9	-4.68710	1.18	125	-3.979	0.0339
GO1 - G10	0.14516	1.18	125	0.123	1.0000
GO1 - G11	-2.69032	1.18	125	-2.284	0.9010
GO1 - G12	-4.65806	1.18	125	-3.954	0.0367
GO1 - G13	-5.15161	1.18	125	-4.373	0.0087
GO1 - G14	0.40968	1.18	125	0.348	1.0000
GO1 - G15	-1.70645	1.18	125	-1.449	0.9999
GO1 - G16	-1.18387	1.18	125	-1.005	1.0000
GO1 - G17	4.70645	1.18	125	3.995	0.0321
GO1 - G18	-1.21290	1.18	125	-1.030	1.0000
GO1 - G19	-4.41290	1.18	125	-3.746	0.0696
GO1 - G2O	-8.58387	1.18	125	-7.286	<.0001
GO1 - G21	-6.55161	1.18	125	-5.561	0.0001
GO1 - G22	-0.67742	1.18	125	-0.575	1.0000
GO1 - G23	-5.22581	1.18	125	-4.436	0.0069
GO1 - G24	-9.11613	1.18	125	-7.738	<.0001
GO1 - G25	-2.40323	1.18	125	-2.040	0.9709

- 1. Casella, G. Statistical Design. (2008).
- 2. Patterson, H. D. & Williams, E. R. A new class of resolvable incomplete block designs. *Biometrika* 63, 83–92 (1976).