PSI3024 – Eletrônica

Aulas 31 e 32 2023

CIRCUITOS INVERSORES MOS

O circuito inversor é composto de dois dispositivos:

- um transistor de comando (por exemplo, nMOS)
- um elemento de carga.

O elemento de carga pode ser do tipo:

a) resistiva

b) transistor de enriquecimento em triodo

- c) transistor de enriquecimento em saturação
- d) transistor de depleção
- e) transistor tipo pMOS

Inversor pseudo-NMOS

[•] Figure 10.22 NOR and NAND gates of the pseudo-NMOS type.

• **Figure 10.21** VTC for the pseudo-NMOS inverter. This curve is plotted for $V_{DD} = 5$ V, $V_{tn} = -V_{tp} = 1$ V, and r = 9.

EXEMPLO 10.3

Considere o inversor pseudo-NMOS fabricado na tecnologia CMOS especificada no Exemplo 10.1, ou seja, $\mu_n C_{ox} = 115 \ \mu \text{A/V}^2, \ \mu_p C_{ox} = 30 \ \mu \text{A/V}^2, \ V_{tn} = -V_{tp} = 0.4 \text{ V e } V_{DD} = 2.5 \text{ V}.$ Seja a razão *W/L* de Q_N de $(0,375 \ \mu \text{m}/0.25 \ \mu \text{m})$ e r = 9. Obtenha:

- (a) V_{OH} , V_{OL} , V_{IL} , V_{IH} , V_M , $MR_H e MR_L$ (b) $(W/L)_p$
- (c) $I_{\text{estat}} \in P_D$
- (d) t_{PLH} , t_{PHL} e t_P , supondo uma capacitância total na saída do inversor de 7 fF

Portas Lógicas com transistores de passagem

Figure 10.23 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables *B* and *C*, when connected in series in the path between the input node to which an input variable *A* is applied and the output node (with an implied load to ground) realize the function Y = ABC. (b) When the two switches are connected in parallel, the function realized is Y = A(B + C).

0

 t_{PLH}

t

• Figure 10.27 e 10.28 – Transistor NMOS como chave de passagem .

1

0

Efeito de corpo

 Figure 4.41 Small-signal equivalent-circuit model of a MOSFET in which the source is not connected to the body.

Transistor PMOS como chave de passagem .

Figure 10.28 The use of transistor Q_R, connected in a feedback loop around the CMOS inverter, to restore the V_{OH} level, produced by Q₁, to V_{DD}.

• **Figure 10.24** Two possible implementations of a voltage-controlled switch connecting nodes *A* and *Y*: (a) single NMOS transistor and (b) CMOS transmission gate.

 $\overline{v}_C = 0$

(b)

0

 t_{PHL}

t

0

t

• **Figure 10.25** A basic design requirement of PTL circuits is that every node have, at all times, a low-resistance path to either ground or V_{DD} . Such a path does not exist in (a) when *B* is low and S_1 is open. It is provided in (b) through switch S_2 .

• Figure 10.30 Realization of a two-to-one multiplexer using pass-transistor logic.

• Figure 10.31 Realization of the XOR function using pass-transistor logic.

• **Figure 10.32** An example of a pass-transistor logic gate utilizing both the input variables and their complements. This type of circuit is therefore known as complementary pass-transistor logic or CPL. Note that both the output function and its complement are generated.