UM TEOREMA SOBRE TRANSFORMAÇÕES LINEARES

Denis de Assis Pinto Garcia

18 de novembro de 2023

Teorema 1. Sejam V e W espaços vetoriais, e seja $T: V \to W$ uma transformação linear. Nessas condições:

- (a) T é injetora se, e somente se, leva subconjuntos LI de V em subconjuntos LI de W;
- (b) T é sobrejetora se, e somente se, leva conjuntos geradores de V em conjuntos geradores de W; e
- (c) T é bijetora se, e somente se, leva bases de V em bases de W.

Demonstração. (a)

 (\Rightarrow)

Suponhamos, inicialmente, que T seja injetora. Nesse caso, é fácil ver que, se $B := \{v_1, \dots, v_k\}$, em que $k \in \{1, 2, 3, \dots\}$, é um subconjunto LI de V, então, para quaisquer $a_1, \dots, a_k \in \mathbb{R}$,

$$a_1T(v_1) + \ldots + a_kT(v_k) = 0_W \Rightarrow T(a_1v_1 + \ldots + a_kv_k) = 0_W = T(0_V)$$
$$\Rightarrow a_1v_1 + \ldots + a_kv_k = 0_V$$
$$\Rightarrow a_1 = \ldots = a_k = 0.$$

Logo, T leva subconjuntos LI finitos de V em subconjuntos LI de W. E, como um subconjunto (possivelmente infinito) de V ou de W é LI se, e somente se, cada um de seus subconjuntos finitos o é, disso resulta que T leva subconjuntos LI de V em subconjuntos LI de W.

 (\Leftarrow)

Suponhamos, agora, que T leve subconjuntos LI de V em subconjuntos LI de W. Como, para cada $v \in V$,

$$v \neq 0_V \Leftrightarrow \{v\}$$
 é um subconjunto LI de V
 $\Leftrightarrow \{T(v)\}$ é um subconjunto LI de W
 $\Leftrightarrow T(v) \neq 0_W$,

disso decorre que $\ker(T) = \{0_V\}$. Logo, T é injetora.

(b)

 (\Rightarrow)

Suponhamos que T seja sobrejetora. Para concluirmos que T leva conjuntos geradores de V em conjuntos geradores de W, fixemos um conjunto gerador qualquer de V, o qual chamaremos de G, e vamos mostrar que T(G) = W. Para tanto, notemos, inicialmente, que, como, por hipótese, T é sobrejetora, T(V) = W. Logo, dado $w \in W$, existe v em V tal que T(v) = w. Por sua vez, como G é um conjunto gerador de V, dado $v \in V$ tal que T(v) = w, podemos fixar $k \in \{1, 2, 3, \ldots\}, a_1, \ldots, a_k \in \mathbb{R}$ e $v_1, \ldots, v_k \in G$ de modo que $v = a_1v_1 + \ldots + a_kv_k$. Feito isso, notemos que, como $v_1, \ldots, v_k \in G$, e como

$$w = T(v) = T(a_1v_1 + \ldots + a_kv_k) = a_1T(v_1) + \ldots + a_kT(v_k),$$

 $w \in [T(G)]$. E, como w em W é completamente arbitrário, disso resulta, por fim, que [T(G)] = W. (\Leftarrow)

Se T leva conjuntos geradores de V em conjuntos geradores de W, então, como V é, ele próprio, um conjunto gerador de V, podemos concluir, em particular, que W = [T(V)] = T(V)— o que, por sua vez, mostra-nos que, nesse caso, T é sobrejetora.

(c)

 (\Rightarrow)

Se T é bijetora, então é também injetora e sobrejetora. Logo, nesse caso, T leva subconjuntos LI de V em subconjuntos LI de W e conjuntos geradores de V em conjuntos geradores de W e, por conseguinte, leva bases de V em bases de W.

 (\Leftarrow)

Suponhamos que T leve bases de V em bases de W e vamos mostrar que, nesse caso, T leva subconjuntos LI de V em subconjuntos LI de W e conjuntos geradores de V em conjuntos geradores de W. Disso resultará, em vista dos itens anteriores, que T é uma bijeção.

Prova de que T leva subconjuntos LI de V em subconjuntos LI de W.

Seja L um subconjunto LI de V, e seja B uma base de V tal que $L \subseteq B$. Como, por hipótese, B é uma base de V, T(B) é uma base de W. Por sua vez, como $L \subseteq B$, $T(L) \subseteq T(B)$. Logo, T(L) é LI (pois T(B) é LI, e todo subconjunto de um conjunto LI é também LI).

Prova de que T leva conjuntos geradores de V em conjuntos geradores de W.

Seja G um conjunto gerador de V, e seja B uma base de V tal que $B \subseteq G$. Como, por hipótese, B é uma base de V, T(B) é uma base de W. Por sua vez, como $B \subseteq G$, $T(B) \subseteq T(G)$. Logo, T(G) gera W (pois T(B) gera W, e todo conjunto que contém um conjunto gerador de W).