MAT0122 - Álgebra Linear I Lista 6 - 2023

- 1. Quais da funções T de \mathbb{R}^2 em \mathbb{R}^2 são transformações lineares?
 - (a) T(x,y) = (1+x,y);
 - (b) T(x,y) = (y,x);
 - (c) T(x,y) = (sen(x), y);
 - (d) T(x,y) = (x y, x).
- 2. Existe uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,1,1) = (1,0) e T(1,-1,1) = (0,1)?
- 3. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x,y,z) = (x-y+2z,2x+y,-x-2y+2z).
 - (a) Verifique que *T* é uma transformação linear.
 - (b) Determine uma base de KerT e uma base de ImT.
- 4. Construa uma transformação linear $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que $\mathrm{Im}T=[(1,0,1),(1,2,2)].$ Determine T(x,y,z).
- 5. Construa uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que KerT = ImT.
- 6. Seja $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ definida por T(X) = AX XA, onde A é uma matriz fixa. Mostre que T é transformação linear e descreva seu núcleo.
- 7. Seja V um espaço vetorial sobre \mathbb{R} e $T \in L(V)$. Prove que as afirmações a seguir são equivalentes.
 - (a) $Ker T \cap Im T = \{0\}.$
 - (b) Se para $v \in V$, T(T(v)) = 0 então T(v) = 0.
- 8. Seja V um espaço vetorial sobre \mathbb{R} e $T \in L(V)$. Suponha que $T \circ T = T$. Mostre que $V = \operatorname{Ker} T \oplus \operatorname{Im} T$. (Dê um exemplo de tal transformação linear com $T \neq 0$ e $T \neq I$.)
- 9. Determine uma base do núcleo e uma base da imagem de cada uma das transformações lineares a seguir.
 - (a) $T: \mathbb{R}^n \to \mathbb{R}^{n-1}$ definida por $T(x_1, x_2, \dots x_n) = (x_1, x_2, \dots, x_{n-1})$.
 - (b) $T: M_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$, definida por T(X) = AX onde $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - (c) $T: P_n(\mathbb{R}) \to P_{n+1}(\mathbb{R})$ definida por T(p(t)) = tp(t).
- 10. Sejam $T: \mathbb{R}^4 \to \mathbb{R}^3$ e $S: \mathbb{R}^3 \to \mathbb{R}^4$ transformações lineares.
 - (a) Prove que $S \circ T$ não é inversível.
 - (b) Dê um exemplo em que $T\circ S$ é inversível e outro em que $T\circ S$ não é inversível.
- 11. Seja V um espaço vetorial de dimensão finita e $T \in L(V)$. Prove que $V = \operatorname{Ker} T \oplus \operatorname{Im} T$ se, e somente se, $\operatorname{Ker} T = \operatorname{Ker} (T \circ T)$.
- 12. Sejam V e U espaços vetoriais sobre \mathbb{R} , $T \in L(U, V)$ e $S \in L(V, U)$. Assinale **V**(verdadeiro) ou **F**(falso) nas seguintes afirmações:
 - () $S \circ T$ sobrejetora $\Rightarrow S$ sobrejetora.
 - () $S \circ T$ sobrejetora $\Rightarrow T$ sobrejetora.
 - () $S \circ T$ injetora $\Rightarrow S$ injetora.
 - () $S \circ T$ injetora $\Rightarrow T$ injetora.

- 13. Ache uma base para o núcleo e para a imagem de cada uma das transformações lineares a seguir. Ache a matriz de *T* relativamente às bases canônicas dos espaços vetoriais.
 - (a) $T \in L(\mathbb{R}^3)$, T(x, y, z) = (-3y + 4z, 3x + 5z, -4x 4y);
 - (b) $T \in L(P_3(\mathbb{R}))$, T(p(t)) = p(t+1);
 - (c) $T \in L(P_n(\mathbb{R})), T(p(t)) = p'(t);$
- 14. Seja $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$ definida por

$$T(at^{2}+bt+c) = \left[\begin{array}{cc} a-2b & b+c \\ c-3a & a+b+c \end{array} \right].$$

Determine uma base de KerT e uma base de ImT.

15. **NOTAÇÃO:** Seja $A \in M_{m \times n}(\mathbb{R})$. Denote por $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ definida por $T_A(x_1, ..., x_n) = (y_1, \cdots, y_m)$ onde $A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$.

Determine bases do **núcleo** e da **imagem** das transformações lineares T_A definidas pelas matrizes A abaixo.

$$A = \begin{bmatrix} -1 & 4 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 13 & -16 & 2 & -1 \end{bmatrix}, B = \begin{bmatrix} 3 & -8 & -6 \\ -1 & 5 & 3 \\ 2 & -8 & -5 \end{bmatrix} e C = \begin{bmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & -4 \end{bmatrix}.$$

16. Seja $T \in L(\mathbb{R}^3)$ tal que

$$[T]_B = rac{1}{2} \left[egin{array}{cccc} 3 & 1 & 3 \ 0 & 2 & 0 \ -1 & -1 & -1 \end{array}
ight],$$

onde B é a base $B = \{(1,1,1), (1,2,1), (1,1,3)\}$. Determine $[T]_{can}$.

17. Considere $P_n(\mathbb{R})$ e $I \in L(P_n(\mathbb{R}))$ a identidade. Determine a matriz $[I]_{can,B}$, onde B é a base definida no Exercício 10 da Lista 5 e $can = \{1, t, t^2, \cdots t^n\}$. Note que você obtém uma demonstração do fato de que a matriz de Vandermonde

$$\mathbb{V} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ c_0 & c_1 & \cdots & c_n \\ \cdots & \cdots & \cdots & \cdots \\ c_0^n & c_1^n & \cdots & c_n^n \end{bmatrix}$$

com $c_i \neq c_j$ se $i \neq j$, é inversível.

- 18. Seja $T \in L(\mathbb{R}^{n+1}, P_n(\mathbb{R}))$ definida por $T(a_0, a_1, \dots a_n) = a_0 + a_1t + \dots + a_nt^n$ e $S \in L(P_n(\mathbb{R}), \mathbb{R}^{n+1})$ definida por $S(p(t)) = (p(0), p(1), \dots, p(n))$. Determine $[S \circ T]_{can}$ e note que essa matriz é inversível.
- 19. Seja V um espaço vetorial de dimensão 3. Seja $T \in L(V)$ tal que $T^3 = T \circ T \circ T = 0$ (isto é, $T^3(v) = 0$ para todo $v \in V$ mas $T^2 \neq 0$. Seja $u \in V$ tal que $T^2(u) \neq 0$. Mostre que $B = \{u, T(u), T^2(u)\}$ é uma base de V e determine $[T]_B$. Você consegue apresentar um exemplo de um operador linear $T \in L(P_2(\mathbb{R}))$ tal que $T^2 \neq 0$ e $T^3 = 0$?
- 20. Seja $T \in L(\mathbb{R}^2)$ tal que $T^2 = I$, e $T \neq \pm I$. Mostre que existe uma base B de \mathbb{R}^2 tal que, $[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.