Problema 11

Observação: Quando escrevi esta resolução não consegui colocar a seta em cima do AB, então toda vez que aparecer " \leftrightarrow AB" estarei me referindo à reta AB e não ao segmento. Também não consegui o sinal da não equivalência, então notem que sempre que eu escrever "não A \sim_r B" estarei dizendo que A não é equivalente a B em relação à r

Seja D um ponto de \leftrightarrow BC. Mostre que D pertence ao interior do ângulo \angle BAC se e somente se B * D * C.

Demonstração:

Vamos primeiramente mostrar a ida, ou seja, se D pertence ao interior de \angle BAC, então B * D * C. Se D pertence ao interior do ângulo, então, por definição de interior de ângulo, temos que: D \sim_{AC} B e D \sim_{AB} C. Por outro lado, D pertence à reta \leftrightarrow BC. D \neq B e D \neq C pois, por definição, B e D estão no ângulo \angle BAC enquanto, por hipótese, D está no interior. Logo, pelo axioma (B3) vale uma e somente uma das seguintes possibilidades:

```
(i) D * B * C
```

(ii) B * C * D

(iii) B * D * C

Se vale (i), temos que não D \sim_{AB} C, pois, por definição B pertence à $\leftrightarrow AB$ e neste caso D * B * C, contrariando a hipótese.

Analogamente, se vale (ii), temos que não D \sim_{AC} B, pois C pertence à \leftrightarrow AC e B * C * D, contrariando a hipótese.

Portanto, resta apenas a opção (iii), B * D * C.

Agora iremos mostrar a volta, ou seja, se B * D * C, então D pertence ao interior de \angle BAC. Vamos mostrar que D \sim_{AC} B e D \sim_{AB} C. Supondo que não D \sim_{AC} B, então, por definição, existe um ponto X em \leftrightarrow AC tal que D * X * B. Se D * X * B então, pela definição de reta, X pertence à \leftrightarrow DB. Por outro lado, o ponto C pertence à \leftrightarrow AC por definição e como, pela hipótese, B * D * C, então C pertence à \leftrightarrow DB. Logo, encontramos dois pontos de interseção entre as retas \leftrightarrow DB e \leftrightarrow AC, segue que X = C pela proposição 2.2. Mas, se X = C, temos que B * D * C e D * C * B, absurdo pelo axioma (B3). Portanto, D \sim_{AC} B.

Analogamente, Mostremos que D \sim_{AB} C. Supondo que não D \sim_{AB} C, então existe um X em \leftrightarrow AB tal que D * X * C. Se D * X * C então X pertence à \leftrightarrow DC. Por outro lado, B pertence à \leftrightarrow AB e pela hipótese, B * D * C, então B pertence à \leftrightarrow DC. Logo, encontramos dois pontos de interseção entre as retas \leftrightarrow DC e \leftrightarrow AB, segue que X = B pela proposição 2.2. Mas, se X = B, temos que B * D * C e D * B * C, absurdo pelo axioma (B3). Portanto, D \sim_{AC} B.

Por fim, como mostramos que vale D \sim_{AC} B e D $\sim_{AB},$ então D pertence ao interior de $\angle {\rm BAC}$