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An Overview of Analytic Rotation in
Exploratory Factor Analysis

Michael W. Browne
The Ohio State University

The use of analytic rotation in exploratory factor analysis will be examined.  Particular
attention will be given to situations where there is a complex factor pattern and standard
methods yield poor solutions.  Some little known but interesting rotation criteria will be
discussed and methods for weighting variables will be examined.  Illustrations will be
provided using Thurstone’s 26 variable box data and other examples.

Introduction

The rotation of a factor matrix is a problem that dates back to the
beginnings of multiple factor analysis.  In the early days before electronic
computers were available, the process of rotation had to be carried out by
hand.  It was tremendously time consuming, lasting weeks or even months.
During this arduous process, however, there was opportunity for
considerable subjective input.  Each decision as to the next change in
orientation of factor axes could be guided, not only by the current
configuration of points, but by background knowledge concerning the
manifest variables.

My first acquaintance with factor analysis occurred after computers had
arrived on the scene and reliable computerized methods for orthogonal
rotation had been developed.  Four authors (Carroll, 1953; Saunders, 1953;
Neuhaus & Wrigley, 1954; Ferguson, 1954) had independently proposed
rotation criteria with different rationales that yielded the same solution in
orthogonal rotation.  This solution was known as quartimax (see Harman,
1976, Section 13.3).  A little later, Kaiser (1958, 1959) had proposed his
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varimax criterion and associated algorithm.  This method was found to be
less prone to producing a general factor than quartimax and became very
popular.  Subsequently, generalizations of quartimax and varimax were
proposed and were shown to belong to a one parameter family of orthogonal
rotation criteria known as the orthomax family (Harman, 1976, p. 299).

Still, effective computerized methods for orthogonal rotation did not
constitute a final solution.  Thurstone (1935, 1947) had emphasized oblique
rotation and it was generally felt that correlated factors were a more
plausible representation of reality.  The development of an effective
computerized method for oblique rotation was somewhat of a struggle.  In the
days of hand rotation it had been customary to first carry out a rotation to a
simple reference structure (Thurstone, 1947; Mulaik, 1972, pp. 219-224 ;
Yates, 1987, pp. 18-20).  This rotation of the reference structure was
feasible and a method for rotating to a simple factor pattern was not
available.  It did not seem to matter as the columns of a simple reference
structure were rescaled to yield a primary factor pattern with a similar
configuration.  Difficulties were encountered, however, when computerized
methods were used to rotate the reference structure.  There was a strong
tendency for factor collapse, that is for correlations between factors to
approach one as the iterative procedure proceeded.  This approach of
optimizing a function of the reference structure was indirect.  It did not
involve the direct optimization of a function of the factor pattern loadings that
are inspected and used for interpretive purposes.

Two suggestions were made on how to by-pass the factor collapse
associated with the reference structure by using an orthogonal rotation to
detect a simple pattern of loadings.  Harris and Kaiser (1964) suggested the
orthoblique method which involves an orthogonal rotation of a column-scaled
principal axes factor matrix and a second column rescaling on the result to
yield the oblique factor pattern.  Hendrickson and White (1964) proposed the
two stage promax method that first derives a target from an orthogonal
rotation, and then obtains the factor pattern from an oblique target rotation.
These two methods do not optimize prespecified functions of the factor
pattern loadings to be interpreted and are also indirect, but in a different
manner to the reference structure approach.  Furthermore, each involves a
power parameter that must be chosen anew in each application.  This choice
noticeably affects the quality of the solution.

The problems of oblique rotation were solved by Jennrich and Sampson
(1966) who discovered a way of rotating directly to a simple factor pattern,
thereby eliminating the intermediate rotation to a reference structure.  This
direct approach eliminates the problem of factor collapse if the rotation
criterion to be minimized increases in value whenever elements of the factor
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pattern increase in magnitude (Jennrich & Sampson, 1966, p. 318; Yates,
1987, p. 55).  Jennrich and Sampson employed the quartimin criterion
(Carroll, 1953) and their direct quartimin procedure finally provided a usable
computerized approach to oblique rotation.  Direct quartimin, however, took
longer to gain wide acceptance than varimax did, possibly because of the
more or less simultaneous availability of effective methods for confirmatory
factor analysis (Jöreskog, 1969)

The development of effective computerized methods for rotation had a
number of consequences.  First of all the time consuming aspect of factor
rotation was eliminated.  Rotating factor matrices became quick and easy.
Secondly the opportunity for use of background knowledge concerning the
variables during the rotation process was eliminated.  Some regarded this as
a desirable change of direction to greater objectivity, since the rotation
process was no longer influenced by the investigator and depended only on
the choice of rotation algorithm.  Also, eliminating the need to learn
complicated hand rotation procedures made rotation available to many who
had little training in factor analysis and accepted the output of a rotation
program without question.  Varimax, in particular became universally used
and alternative rotation methods had difficulty in being accepted by users and
by journal reviewers.  Perfect cluster solutions were handled effectively by
varimax and direct quartimin, and were easy to interpret, so that little effort
was made to seek the more complex patterns originally regarded by
Thurstone as representative of reality.

Currently, orthogonal rotation with varimax still predominates in articles
published in prestigious psychological journals (Fabrigar, Wegener,
MacCallum & Strahan, 1999).  The varimax-based promax method for oblique
rotation (Hendrickson & White, 1964) is still included in some packages and
is fairly frequently employed.  Some informed users employ direct quartimin.

Confirmatory factor analysis procedures are often used for exploratory
purposes.  Frequently a confirmatory factor analysis, with prespecified
loadings, is rejected and a sequence of modifications of the model is carried
out in an attempt to improve fit.  The procedure then becomes exploratory
rather than confirmatory (see Nesselroade & Baltes 1984, pp. 272-273).  In
this situation the use of exploratory factor analysis, with rotation of the factor
matrix, appears preferable.  All statistical information produced by any
confirmatory factor analysis program, including standard errors for rotated
factor loadings, is currently also provided in a readily accessible exploratory
factor analysis program (Browne, Cudeck, Tateneni, & Mels, 1998).  The
discovery of misspecified loadings, however, is more direct through rotation
of the factor matrix than through the examination of model modification
indices.
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In this article, attention will be limited to single stage rotation methods
that minimize a smooth function of factor pattern coefficients to attain
simplicity.  Both orthogonal and oblique rotation will be considered, although
oblique rotation is probably more appropriate in most practical situations.
Particular emphasis will be given to situations where a perfect cluster
solution is inappropriate and more complex patterns are required.  An
overview of some rotation criteria will first be presented.  Most of these are
virtually unknown but are very interesting.  Methods for row standardization
of a factor matrix prior to rotation in order to improve the solution will also
be examined.  Some illustrative analyses will be carried out and general
conclusions will be drawn as to what can and what cannot be accomplished
in rotation.

Preliminaries

It will be convenient to provide a brief summary of salient features of
rotation before proceeding to the main purpose of the article.

Analytic Rotation

Analytic rotation methods involve the postmultiplication of an input p × m
factor matrix, A, by a m × m matrix, T , to yield a rotated primary factor
pattern matrix,

L = AT

that minimizes a continuous function, f(L), of its factor loadings.  This
function is intended to measure the complexity of the pattern of loadings in
L.  By minimizing the complexity function, f(L), the rotation procedure yields
a rotated matrix L with a simple pattern of loadings.

Let the factor correlation matrix after rotation be represented by F.
In orthogonal rotation the transformation matrix is required to satisfy the
m(m - 1)/2 constraints

(1) F = T9T = I

defining factors that are uncorrelated and have unit variances.  In direct
oblique rotation (Jennrich & Sampson, 1966) a complexity function, f(L), is
also minimized but now a smaller number, m, of constraints

(2) Diag Diag( -1( ) )F T T I= ′ =−1
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is imposed, defining factors that are correlated but still have unit variances.
This process defines a factor pattern, L, that directly minimizes (Jennrich &
Sampson, 1966) the complexity criterion.

Thus orthogonal and oblique rotation involve the same problem of
minimizing a complexity criterion, and only the constraints imposed differ.  It
is appealing to make use of complexity functions that are suitable for both
orthogonal and oblique rotation.  Since fewer constraints are imposed in
oblique rotation, it is generally possible to obtain a lower value of the
complexity function and consequent greater simplicity of the factor pattern
than in orthogonal rotation.

Simplicity of a Factor Pattern

Thurstone (1947) provided five rules concerning the ideal positioning of
zero loadings to aid the identification of a simple structure at a time when it
was routine to carry out oblique rotation on the reference structure.  Since
the factor pattern is obtained by scaling columns of the reference structure,
and the positions of zeros do not change, the same rules may be applied to
the factor pattern.  In orthogonal rotation the reference structure and factor
pattern coincide.

Thurstone’s (1947) rules for simple structure of a factor matrix with m
columns are:

1. Each row should contain at least one zero.
2. Each column should contain at least m zeros.
3. Every pair of columns should have several rows with a zero in one

column but not the other.
4. If m $ 4, every pair of columns should have several rows with zeros

in both columns.
5. Every pair of columns of L should have few rows with nonzero

loadings in both columns.
Yates (1997, p. 34) pointed out that Thurstone originally intended the first

condition to define simple structure and the rest were intended to yield
overdetermination and stability of the configuration of factor loadings.  For
example, m - 1 zero loadings per column are sufficient to identify the factor
matrix in oblique rotation, provided that certain rank conditions are met (e.g.
Algina, 1980), whereas Thurstone’s second condition requires m zeros.  The
requirement of more zeros than the minimum number is intended to yield
greater stability of the configuration.

The complexity of a variable in a factor pattern refers to the number of
nonzero elements in the corresponding row of the factor matrix.  A variable
with complexity one will be referred to as a perfect indicator.  If all
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variables are perfect indicators the factor matrix is said to have a perfect
cluster configuration as in the following example

L =

L

N

M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P

x
x
x
x

x
x

x
x
x

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0

where x refers to a nonzero quantity.  As will be seen, this configuration is
the one sought by most available complexity criteria.  Thurstone’s first rule,
however, is less stringent and is satisfied by a more complex configuration
where each variable has a complexity of at most m - 1, for example:

L =

L

N

M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P

x x
x

x x
x

x x
x x

x
x x

x x

0
0 0

0
0 0

0
0

0 0
0

0

Some Complexity Functions for Analytic Rotation

Thurstone (1947, pp. 140-142) constructed a data set to demonstrate the
utility of factor analysis as an approximation in situations where relationships
between factors are nonlinear, and also to illustrate his principles of simple
structure.  This data set was constructed from the height, length and weight
of thirty hypothetical boxes.  Twenty six nonlinear functions of these three
characteristics were calculated for each box and then correlated.  Thurstone
carried out a factor analysis extracting three factors, followed by a subsequent
hand rotation to demonstrate that it was possible to recover the simple
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structure of the problem despite the nonlinearity of the measurements.  On the
whole the variables are complex, and only three are perfect indicators.

Although a simple structure is known to exist, and can be recovered
making use of prior knowledge, Thurstone’s box data pose problems to blind
rotation procedures (Butler, 1964; Eber, 1966; Cureton & Mulaik, 1971).
Well known methods, such as varimax and direct quartimin, that are available
in statistical software packages, fail with these data.  This is due to the
complexity of the variables rather than to their nonlinearity.  Other artificial
data can be constructed to yield similar problems (e.g. Rozeboom, 1992)
without any involvement of nonlinearity.

In the present section we shall review some rotation criteria that have
been eclipsed by well known methods and are not generally available in
software packages.  Some are virtually unknown.  Their characteristics will
be demonstrated in subsequent sections by applying them in some selected
examples.  Particular attention will be paid to their performance when
applied to the box problem.

All rotation criteria to be considered are expressed as complexity
functions to be minimized to yield a simple pattern of loadings.  All of these
complexity functions have a greatest lower bound (GLB) of zero.  It will be
instructive to consider the hypothetical situations in which this GLB is
attained.  Sometimes these situations are unrealistic and would not occur
with real data.  One example is where there is only one non zero element per
row.  Nevertheless, knowledge concerning the GLB conveys insight into the
type of configuration that the rotation criterion seeks.

Crawford-Ferguson Family of Rotation Criteria

Let s be a (row or column) vector consisting of nonnegative elements, s
j
 $ 0,

j = 1,2,.  This vector is regarded as being simple if it has few nonzero elements and
complex if it has many.  A measure of complexity of s, due to Carroll (1953), is

(3)

c s s

s s s s s s s s s s s s
s s s s s s

j
jj

( )

... ...
...

s =

= + + + + + + +
+ + + +

≠
∑∑ l
l

1 2 1 3 1 4 2 1 2 3 2 4

3 1 3 2 3 4

It is immediately apparent from this definition that c(s)$ 0, and that its
GLB of zero is attained if and only if s has at most one nonzero zero element.
Also c(s) increases if any zero element of s is replaced by a nonzero element
(assuming s Þ 0).  In this manner c(s) measures the complexity of s.  Now
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consider the p × m matrix S of squared factor loadings, s
ij
 = l2

ij
, i = 1, ..., p,

j = 1, ..., m.  Let s
i
 be the 1 × m vector formed from the i th row of S and s

.j

be the p×1 vector formed from the j th column of S.
Crawford and Ferguson (1970) suggested a family of complexity

functions based on c(s) in Equation 3.  This family is indexed by a single
parameter, k (0 # k # 1 ), and its members are of the form:

(4)

f c ci
i

p

j
j

m

ij i
j

m

j

m

i

p

ij kj
k i

p

i

p

j

m

( ) ( ) ( ) ( )

( )

. .L = − +

= − +

= =

≠== ≠==

∑ ∑

∑∑∑ ∑∑∑

1

1

1 1

2 2

11

2 2

11

k k

k l l k l l

s s

l
l

Row(variable)complexity Column(factor)complexity

Thus the Crawford-Ferguson criterion is a weighted sum of a measure of
complexity of the p rows of L and a measure of complexity of the m columns.

The first term, or measure of row (variable) complexity, is Caroll’s
(1953) quartimin criterion which is motivated by Thurstone’s rules three,
four and five.  Although it attains its GLB for a perfect cluster configuration
it also attains the GLB when all nonzero loadings are in the first column and
zeros occur elsewhere.  Consequently the first term is insensitive to a general
factor.  The second term measures column (factor) complexity and will
attain the GLB if each column has a single nonzero element.  It reflects the
intent of Thurstone’s second rule by penalizing too many nonzero elements
in a column.

In orthogonal rotation the Crawford-Ferguson (CF) family is equivalent
to the orthomax family (Crawford & Ferguson, 1970, pp. 324-326).  Values
of k that yield particular members of the orthomax family are shown in Table
1.  Quartimax, varimax and equamax were previously known members of the
orthomax family.  Parsimax and factor parsimony were suggested by
Crawford and Ferguson (1970).  Parsimax results in equal contributions from

Table 1
The Orthomax Family of Rotation Criteria

k = 0 k = 
1
p k = 

m
p2 k = 

m

p m

−
+ −

1

2 k = 1

Quartimax Varimax Equamax Parsimax Factor
(Quartimin) Parsimony
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variable complexity and factor complexity when all elements of L are equal.
Factor parsimony consists of the factor complexity term in Equation 4 alone
and is primarily of theoretical interest.  The complexity function in Equation
4 resulting from a particular choice of k will be distinguished from the
corresponding member of the orthomax family by its name prefixed by CF.
Thus the varimax simplicity function is the original function maximized by
Kaiser (1958) while CF-varimax will refer to the complexity function that is
given by Equation 4 with

k= 1
p ,

and is to be minimized in the rotation process.  In orthogonal rotation varimax
and CF-varimax yield the same solution.  Their equivalence is a result of the
invariance of within-row sums of squared factor loadings in orthogonal rotation
(Crawford & Ferguson, 1970, pp. 324-325).  This invariance is no longer true
in oblique rotation, so that the equivalence no longer holds.  Oblique varimax
can result in factor collapse whereas oblique CF-varimax cannot.

A positive characteristic of the CF family is that none of its members can
result in factor collapse under direct oblique rotation of the factor pattern
(Crawford, 1975).

Yates’ Geomin

This criterion employs an adaptation of a measure of row complexity
first suggested by Thurstone [1935, p. 163; 1947, p. 355, (32)].  Again, let
the m × 1 vector s consist of nonnegative elements, s

j
, j = 1,...,m.  Thurstone’s

measure of complexity of the vector s is

(5)

c s s s s

s

m

j
j

m

( ) ...

,

s =

=
=

∏
1 2 3

1

which will be zero if at least one element of s is zero.  Thurstone’s measure
of complexity of s (Equation 5) differs from Carroll’s measure (Equation 3)
in that Equation 5 is zero if only one element of s is zero whereas Equation
3 requires m - 1 zeroes.  Also, unlike Equation 3, Equation 5 does not increase
if there are two or more zeroes and one of these becomes nonzero.
Consequently, in unmodified form, Equation 5 results in indeterminacy since
it remains at its minimum if one element of s is zero, no matter how the other
elements change.
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Thurstone [1935, p. 163; 1947, p. 355, (32)] proposed the first complexity
function for rotation to simple structure.  It is applied to the elements, lij , of
the reference structure, L , and consists of a sum of p row complexity
measures Equation 5 defining

si i i im= l l l1
2

2
2 2...d i

This complexity function is

(6)

f c i
i

p

ij
j

m

i

p

( ) ( )L s=

=

=

=

∑

∏∑
1

2

1

l
=1

It clearly attains its GLB of zero if Thurstone’s first rule for simple structure
is satisfied; that is each row of L  contains at least one zero.  Thurstone (1935,
pp. 185-197) gave details of an algorithm for minimizing f(L ) in Equation 6,
but it was not successful (Thurstone, 1935, p. 197) so that his complexity
function had little impact at the time.  It was modified by Yates [1987, p. 46,
(40a)] by replacing the sum of within row products of squared reference
structure elements by a sum of within row geometric means of squared
factor pattern coefficients

(7)

f c i
m

i

p

i

p m

( ) ( )L =

=
F
HG

I
KJ

=

=

∑

∏∑

s
1

1

1

1

lij
2

j

m

=1

where s
i
 is now redefined as a vector of squared factor pattern coefficients

si i i im= l l l1
2

2
2 2...d i

The complexity function in Equation 7, named “geomin” by Yates, also
attains its GLB of zero if Thurstone’s first rule for simple structure is
satisfied; that is each row of L contains at least one zero.  It has the
indeterminacy of Equation 5 in that, if any element in a row of L is zero, the
values of the other elements in the same row have no influence on the value
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of the function.  Yates (1987, pp. 67-74) devised a “soft-squeeze” algorithm
in an attempt to bypass this problem.  Here no attempt is made to provide an
algorithm that chooses one of several local minima.  Rather, Yates’
complexity function is altered slightly to reduce the indeterminacy of its
minimizer.  The complexity function in Equation 7 is modified by adding a
small positive quantity, e to lij

2  to obtain

(8) f ij
j

m

i

p m

( )L = +
L
N
M
M

O
Q
P
P==

∏∑ l e2

11

1

d i

A zero loading no longer results in difficulties and f(L) is not affected greatly
if e is small.  A value of e = .01 seems satisfactory for three or four factors.
It may need to be increased slightly for more factors.  Although the
complexity function in Equation 8 is a minor modification of Yates’ geomin,
it will be referred to subsequently as geomin for simplicity.

Yates intended geomin for oblique rotation only.  It can also be used for
orthogonal rotation but may not be optimal for this purpose.

Another more complex rotation scheme that involves iteratively
respecified weights was also suggested by Yates (1987, Chapter 6).

McCammon’s Minimum Entropy Criterion

McCammon (1966) suggested a rotation criterion based on the entropy
function of information theory.  For completeness, the entropy function will
first be defined.

Consider n nonnegative quantities, x
i
 $ 0, i = 1,...,n that sum to one,

xi
i

n

=
=
∑ 1

1

,,

and let x = (x
1
, x

2
,...,x

n
)9.  The entropy function is defined by

(9) Ent( ) ( )x = −
=
∑e xi
i

n

1

where

(10)
e x x x x

x
i i i i

i

( ) ( )= >
= =

ln if

if

0

0 0
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This entropy function has a GLB of 0 which is attained if a single x
i
 is equal

to 1 and the rest are equal to 0.  It has a least upper bound (LUB) of ln n which
is attained if all x

i
 are equal, x

i
 = 1/n, i = 1,...,n.  If the elements of x in

Equation 9 are obtained from elements of s by rescaling them to have a sum
of one,

x
s

s
i

i

k
n

k

=
=∑ 1

then c(s) = Ent(x) is a measure of the complexity of s that, like the Carroll
measure (Equation 3), implies that there is a single nonzero element of s at
its GLB of zero.  However Ent (x), unlike the Carroll measure, is
simultaneously a measure of equality of elements of s.  If Ent(x) attains it
LUB of ln n then all elements of s are equal.

Let S be the p × m matrix of squared factor loadings with typical element
s

ij
 = l2 

ij
.  Consider the following sums of squared factor loadings:

(11) S s S s S S si ij
j

m

j ij
i

p

j
j

m

ij
j

m

i

p

. . .= = = =
= = = ==

∑ ∑ ∑ ∑∑
1 1 1 11

McCammon’s minimum entropy complexity function is defined by

(12) f

e
s

S

e
S

S

e
s

S

e
S

S

j

m
ij

ji

p

j

j

m

j

m
ij

ji

p

j

j

m
( )

.

.

.

.

L =

−
F
HG

I
KJ

−
F
HG

I
KJ

=

F
HG

I
KJ

F
HG

I
KJ

= =

=

= =

=

∑ ∑

∑

∑ ∑

∑
1 1

1

1 1

1

The numerator consists of the sum of m within column entropy functions.  It
attains its GLB of 0 if each column has a single nonzero element.  This
suggests that the numerator encourages configurations with columns that
contain few large and many small elements.  The denominator is the entropy
function based on column sums of S.  It attains its LUB, thereby reducing the
criterion optimally, if all column sums, S

.j
, are equal.  Consequently the

minimum entropy criterion seeks solutions with simple columns and with
column sums of squares that do not differ widely.

McCammon intended his minimum entropy criterion for use in orthogonal
rotation only.  As will be seen subsequently, it is unsatisfactory in oblique
rotation.
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McKeon’s Infomax

McKeon (1968), in an unpublished manuscript, treated a matrix of
squared factor loadings as analogous to a two way contingency table and
derived a number of simplicity functions based on tests for association.  The
one he found most effective was based on the likelihood ratio test for
association (Agresti, 1990, p. 48, Equation 3.13), which is maximized for
maximum simplicity.  McKeon also pointed out that, if the squared factor
loadings are interpreted as frequencies, his criterion may be regarded as a
measure of information about row categories conveyed by column
categories and, simultaneously, as a measure of information about column
categories conveyed by row categories.  He consequently named it infomax.

Here McKeon’s infomax criterion is subtracted from its LUB to yield a
complexity function.  This infomax complexity function is given by

f m e
s

S
e

S

S
e

S

Sj

m
ij

ji

p
i

i

p
j

j

m

( )
.

. .
L = −

F
HG

I
KJ

+ F
HG

I
KJ +

F
HG

I
KJ= = = =

∑ ∑ ∑ ∑ln
1 1 1 1

using notation defined in Equations 10 and 11.  This complexity function
attains its GLB of zero when the factor matrix has a perfect cluster
configuration and the m within column sums of squared loadings are equal
(S

.1
 = S

.2
 = ... = S

.m
).  Thus infomax favors a perfect cluster configuration and

simultaneously discourages a general factor.
McKeon’s infomax criterion gives good results in both orthogonal and

oblique rotation.

Rotation to a Partially Specified Target

The first methods of this type were suggested by Tucker (1940, 1944) and
Horst (1941) for use specifically in locating reference axes in exploratory
hand rotation.  Ideally eigenvectors would have been required but, at that time,
their exact evaluation was not feasible, and approximations were necessary.
When computers, and effective algorithms for computing eigenvectors, were
available, Lawley and Maxwell (1964) and Jöreskog (1965) provided
algorithms for rotating reference structures to partially specified targets in
confirmatory rotation.  After the Jennrich-Sampson (1966) breakthrough,
Gruvaeus (1970) and Browne (1972 a, b) provided algorithms for directly
rotating the factor pattern to a partially specified target.
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Use of this approach to rotation requires the specification of target values
for selected factor pattern coefficients.  A p × m target matrix, B, with some
specified elements and some unspecified elements is required, for example:

B =

L

N

M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P

?
? ?
? ?

?
? ?

? ?
?

? ?
? ?

0 0
0

0
0 0

0
0
0 0
0

0

This target matrix reflects partial knowledge as to what the factor pattern
should be.  In the example all specified elements are zero, as is usually the
case in practical applications, and unspecified elements are indicated by the
? symbol.  Nonzero values can be employed for specified elements, b

ij
, but

it is usually easier to specify zeros for small elements than it is to specify
precise values for larger elements.  No information is provided by the
unspecified b

ij
 = ? and, after rotation, the corresponding rotated loadings, l

ij
,

may turn out to be large, moderate, or small.
Represent the set of subscripts for specified target loadings, b

ij
, in

column j by I
j
.  A suitable complexity function for minimization that yields l

ij

values that are close to the specified b
ij
 is

(13) f bij ij
i Ij

m

j

( ) ( )L = −∑∑
=

l
e

2

1

or sum of squared differences between loadings after rotation and specified
target values.  It is a suitable complexity function for both orthogonal
(Browne, 1972a) and oblique (Browne, 1972b) rotation.

Rotation to a partially specified target has similarities to confirmatory
factor analysis (Jöreskog, 1969) as values for some factor loadings must be
specified in advance.  There is a salient difference, however.  In
confirmatory factor analysis, specified factor loadings are forced to assume
the specified values of zero.  Misspecified elements may only be detected
indirectly through examination of the overall measure of fit supplemented by
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modification indices.  In target rotation, corresponding elements of the
rotated factor pattern matrix are only made as close to the specified zeros
as possible.  Differences can be large so that misspecified zeros are easily
detected.

The target may then be changed.  Previously misspecified elements of
B are now left unspecified.  Furthermore, any previously unspecified b

ij
 may

now be specified to be zero if the corresponding l
ij
 is near zero.  The altered

B may now be employed in a new target rotation.  This procedure may be
repeated until the investigator is satisfied with the outcome.  When a
sequence of targets is employed, the process ceases to be confirmatory and
becomes a non-mechanical exploratory process, guided by human judgment.
This sequential procedure is a modernization of Tucker’s (1944) “semi-
analytical method of factorial rotation.”

Standardization of Factor Loadings

The simplicity of the pattern of a rotated solution can sometimes be
improved by carrying out an initial standardization on rows of the initial factor
matrix.  Thus, if A is the initial factor matrix, the initial standardization is of
the form,

(14) A *  = D
v
 A

where D
v
 is a positive definite diagonal matrix.  The complexity function,

f(A*T), is minimized with respect to T, subject to the constraints of Equations
1 or 2, and L*  = A *T  is restandardized,

L = D
v
-1 L*

to yield the final simple pattern matrix, L.
The two standardization procedures to be considered here were both

originally derived with varimax in mind, but appear to be applicable to other
members of the Crawford-Ferguson family and to some other rotation
criteria.  They do not seem to be appropriate for rotation to a partially
specified target.

Kaiser Standardization

Kaiser (1958) noted that rows of A that yield low communalities have
little effect on the final varimax solution.  In order to ensure that all variables
have the same influence on the rotated solution he recommended that the
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standardization should yield an A *  with equal row sums of squares.  His main
motivation for this was to improve generalizability of the rotated solution
across batteries, where communalities for variables change.

In the Kaiser standardization, the weights are chosen to be inverse
square roots of communalities:

D
v
 = D

h 
 -1/2

where

(15) D
h
 = Diag(AA 9)

This standardization is frequently employed, not only with varimax, but
also with other rotation criteria, both in orthogonal and oblique rotation.

Cureton-Mulaik Standardization

Cureton and Mulaik (1975) demonstrated that orthogonal varimax
rotation yields an unsatisfactory solution when applied to the Thurstone box
data.  Since these data were artificially constructed, the optimal factor
pattern is known.  Twenty three of the twenty six variables are complex in
that they have non-negligible loadings on at least two of the three factors.
The remaining three variables are pure indicators with single non-negligible
loadings.  One serves as an indicator for each of the three factors.

Varimax is effective when a perfect orthogonal cluster solution exists
but gives poor results with complex factor patterns.  The aim of the Cureton-
Mulaik (CM) standardization is to provide a weighting system that
downweights complex variables and emphasizes pure indicators with single
non-negligible loadings.  This will improve the varimax solution.  Detection
of pure indicators and of complex variables must, however, be accomplished
without the use of a simple pattern, since this is unknown prior to rotation.
Two assumptions allow the forecasting of pure indicators before knowing
the optimal simple pattern.  The first is the assumption of a positive manifold
(Thurstone, 1947, pp. 341-343; Yates, 1987, pp. 87-89).  This assumption
was originally formulated in the language of multidimensional geometry, but
is equivalent to assuming that it is possible to find an orthogonal rotation of
the factor matrix where all non-negligible factor loadings for each variable
(i.e. in each row of L) have the same sign.  The second assumption is that
the set of test points is scattered on the positive manifold implying that a
substantial proportion of the variables will load on more than on factor.
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These two assumptions will now be illustrated graphically considering
the special case, where m = 2, that is illustrated in Figure 1.  Suppose that
A *  = D

h
-1/2A so that each row of A *  has length one.  When the points

corresponding to rows of A * are plotted they will fall on the circumference
of a unit circle.  Points corresponding to rows of A  would lie within the unit
circle.  Consequently the points plotted in the figure are referred to as test
points extended to the unit circle.  With a positive manifold it is possible
to find orthogonal axes, I and II in Figure 1, such that all extended test points,
marked by crosses, lie either on the first quadrant (between points marked
by dots I and II) or on the third quadrant (between points marked by dots I-
and II-).  Points lying on the first quadrant represent tests with two non-
negative factor loadings.  Those on the third quadrant represent tests with
two non-positive factor loadings.  All points on the third quadrant may be
reflected to the first quadrant by multiplying the appropriate row of A *  by -
1.  Consequently there is no loss of generality in assuming that all test points
lie on the first quadrant as is the case in Figure 1.

These extended test points are scattered fairly evenly on the first
quadrant thereby satisfying the second assumption.  Points coinciding with
dot I represent tests with a single nonzero loading on the first factor and a
zero loading on the second factor.  Those coinciding with dot II have a single

Figure 1
Cureton-Mulaik Standardization: Scatter of Points on Quadrant. m = 2 m-1/2 = .71
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nonzero loading on the second factor and a zero loading on the first factor.
Points in the center of the quadrant (coinciding with square 1) represent tests
with equal loadings on both factors.  Most tests have complexity two (two
nonzero loadings, not necessarily of the same size) as most test points
coincide neither with dot I nor dot II.

The location of the optimal orthogonal axes I and II is not known in
advance.  Cureton and Mulaik (1975) devised an ingenious method for
forecasting the complexity of each test from its loading on the first principal
axis alone.  Let a represent the p × 1 vector of loadings of tests on the first
principal axis or, equivalently the first principal component of AA 9. Also let
a*  = D

h
-1/2a be the vector of principal component loadings divided by square

roots of communalities.  Elements, a*
i
, of a*  will lie between -1 and 1.  If the

absolute value |a*
i
| = 1 then the i-th test will have a nonzero loading only on the

first principal axis.  Tests with a*
i
 = 1 will coincide with the square labeled 1

in Figure 1; those with a*
i
 = -1 will coincide with the square labeled 1-.  Other

elements of a*  will be orthogonal projections of test points onto the axis joining
the two squares labeled 1 and 1-.  If this assumption of evenly scattered test
points is true the principal axis, a*, joining 1 and 1- will pass through the center
of the scattering of extended test points on the positive manifold (see Figure
1).  Good indicators with a single substantial loading will be close to dots I, II,
I- or II- and will yield |a*

i
| < 1/ m  = 1 2  < .71.  Complex tests with

substantial loadings of the same sign will be close to the squares 1 and 1- in
Figure 1 and will yield |a*

i
| < 1.  Complex tests with substantial loadings of

different signs will be close to the squares 2 and 2- in Figure 1 and will yield
|a*

i
| < 0.
This information may be used to provide a weighting system that assigns

weights between zero and one to tests, or rows of A * , based only on the
absolute values 0 # |a*

i
| # 1 of elements of a* .  Weights of 1 to are assigned

to good indicators with elements of a* near to.71 in absolute value.  Weights
of zero are assigned to complex tests with elements of a*  that are near 0 or
near 1 in absolute value.

The reasoning presented here generalizes to m > 2 factors.  This only
requires the replacement of 1/2  by 1/ m  as the value of a*

i
 where a

maximum weight should be assigned.  Thus the weight assigned to the i-th test
should be w

i
 = 1 if |a

i
|* = 1 / m and w

i 
= 0 if either |a

i
|* = 1 or if |a

i
|* = 0.

Cureton and Mulaik (1975) proposed a weight assignment scheme for
this purpose giving two functions, one to be used if |a

i
|*$ 1/ m  and the other

if |a
i
|* < 1/ m .  This weight assignment scheme is expressed in an

algebraically equivalent form here, involving a single function.  The CM
weight for test i is given by
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(16) w
m a

m a m
i

i

i

=
−

−

L

N
M
M

O

Q
P
P

−

−
cos

acos acos
2
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1 2 2
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| |

,
.

d i d i
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d

p

( , )*
* /| |

a mi

ia m
=
R
S|
T|

< −
2

1 2

0

if

otherwise

Since these weights apply to rows of A *  the combined weight matrix D
v
 in

Equation 14 with weights for rows of A  is given by

D
v
 = D

w
D

h  
-1/2

where diagonal elements of D
w
 and D

h
 are given by Equations 16 and 15

respectively.
The shape of the function, w(a*

i
) defining the w

i
 in Equation 16 when m = 2

is shown in Figure 2.  It yields a zero weight at a* = 0, increases steadily to yield
a unit weight at a* = .71, and decreases again to yield a zero weight at a* = 1.
It is of interest that, although the function is continuous, there is a discontinuity
in its first derivative at a* = m-1/2.  Alternative functions of a*  were suggested
by Yates (1987, Chapter 5) for providing standardization weights.

Figure 2
Cureton-Mulaik Weight Function.  m = 2 m-1/2 = .71
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Although it was originally intended for orthogonal varimax, it will be seen
subsequently that the CM standardization can be helpful with other rotation
criteria, both in orthogonal and in oblique rotation.

It is worth bearing in mind that both the CM and the Kaiser
standardizations may have undesirable consequences in small samples since
they increase the influence of tests that have small communalities and
consequently yield unstable factor loadings (cf. MacCallum, Widaman,
Zhang, & Hong, 1999).

Computational Considerations

All computations reported subsequently were carried out with the
Comprehensive Exploratory Factor Analysis (CEFA) program (Browne,
Cudeck, Tateneni, & Mels, 1998).  Some facilities of this program that are
relevant to the present work will be described briefly.

A General Method for Rotation

In CEFA an arbitrary complexity function may be tried out in both orthogonal
and oblique rotation with minimal algebraic development and minimal additional
programming effort, involved only in computation of the complexity function.
Kaiser’s (1959) algorithm for orthogonal rotation and Jennrich and Sampson’s
(1966) algorithm for direct oblique rotation of the factor pattern were adapted
for use with arbitrary complexity functions.  This was accomplished by replacing
the closed form solution of a specific nonlinear equation for obtaining the angle
of rotation by Brent’s derivative free (Brent, 1973, Chapter 5; Press, Teukolsky,
Vetterling & Flannery, 1986, Section 10.2) unidimensional search algorithm.
While the methods employed may not be as rapid as special purpose algorithms,
they were found to be accurate and sufficiently efficient for routine use on the
fast personal computers currently available.

Detection of Multiple Local Minima of the Complexity Function

In some situations complexity functions will yield multiple local minima
and consequent multiple alternative rotations.  Some complexity functions
are more prone to local minima than others, but all dealt with here can yield
multiple local minima at least occasionally.  This instability will not be
detected by the user if a single rotation is carried out.  Special steps to seek
out local minima must therefore be taken.

Gebhart (1968) investigated the presence of local maxima in orthogonal
rotation and suggested the use of multiple starting points, generated by
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means of random orthogonal rotations of the initial factor matrix.  This
enabled him to show that, in certain circumstances, even the generally stable
varimax criterion is susceptible to multiple solutions.  Multiple starting points
have also been used by others.  Random orthogonal rotations were employed
to give starting points by Kiers (1994) for alternative oblique simplimax
solutions.  Rozeboom (1992) has strongly advocated the use of random initial
oblique rotations.

CEFA can carry out a random orthogonal rotation to yield a random
starting point, followed by a particular orthogonal or oblique rotation.  This
process may be repeated a specified number of times and is convenient for
detecting multiple solutions.  It has been applied repeatedly in this article.

Numerical Examples

The best known rotation methods, available in most commercial
software packages, are varimax (Kaiser, 1958) in orthogonal rotation and
direct quartimin (Jennrich & Sampson, 1966) or promax (Hendrickson &
White, 1966) in oblique rotation.  A number of promising but virtually
unknown rotation criteria have been surveyed in earlier sections of this
article.  In order to try these out initially, two well-known data sets were
used.  The first is a well known correlation matrix presented by Harman
(1976, Table 7.4) for twenty four psychological tests based on 145 cases.  It
was obtained from part of a data set collected by Holzinger and Swineford
(1939).  The derived factor matrix has been used repeatedly by Harman and
many other authors to demonstrate the effectiveness of various rotation
procedures.  The second is Thurstone’s (1947) artificially constructed box
data set described earlier.  A substantial number of different types of rotation
were applied to these matrices.  Some rotated factor matrices will be
reported but some results will be described without presentation of factor
matrices because of space considerations.  The computer program that was
used is available on the world wide web (Browne, Cudeck, Tateneni, & Mels,
1998) so that readers may replicate results described if they wish to do so.

Twenty Four Psychological Tests

Standard rotation methods give good results when applied to the twenty
four psychological tests.  They yield rotations in which about two thirds of
the variables are pure indicators.  Perfect clusters predominate.

The twenty four psychological tests were employed here to verify that
the rotation criteria considered are satisfactory in typical situations.  Four
factors were extracted by maximum likelihood.  The following exploratory
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rotation criteria were examined: CF-quartimax (equivalent to direct
quartimin in oblique rotation), CF-varimax, geomin, minimum entropy and
infomax.  These were applied with no standardization in both orthogonal and
oblique rotation and using 20 random starting points.  Although oblique
rotation is frequently to be recommended, there can be situations where
orthogonal rotation is required so both are considered here.  CM
standardization was also applied in conjunction with all orthogonal and
oblique rotation methods.

In orthogonal rotation it was found that each complexity function resulted
in convergence to a unique minimum with the exception of geomin.  This
yielded two local minima which differed somewhat from the other solutions
in that there was a greater incidence of variables with substantial loadings
on more than one factor.  It is worth noting that Yates (1987) did not intend
geomin for orthogonal rotation.  The infomax orthogonal rotation is reported
in Table 2.  It is typical of the rotations obtained and does not differ greatly
from the three orthogonal rotations reported in Harman (1976, Table 13.7).

CM standardization had only a slight effect in most cases.  This
standardization did, however, reduce orthogonal geomin’s tendency,
mentioned earlier, to yield more than one substantial loading per row of the
rotated factor matrix.

In oblique rotation minimum entropy alone proved unsatisfactory.  The
algorithm failed to converge within 500 iterations from all random starting
points.  When iteration was terminated, factor collapse was evident in that
two pairs of factors had correlations of one.  Since the minimum entropy
complexity function (Equation 12) need not tend to infinity as any interfactor
correlation coefficient tends to one, factor collapse is possible (cf. Jennrich
& Sampson, 1966, p. 318; Yates, 1987, p. 55).  McCammon did not intend
the minimum entropy complexity function to be used for oblique rotation.

The other rotation criteria, including geomin, all resulted in convergence
to a single minimum from all starting points.  As an example the infomax
oblique rotation is also shown in Table 2.  Other rotation criteria resulted in
similar configurations and all are reasonably similar to the direct quartimin
solution reported by Harman (1976, Table 14.10).

The main point demonstrated by these trials is that most complexity
functions are reasonably satisfactory in situations where a high proportion of
variables are perfect indicators.

Thurstone’s 26 Variable Box Data

As was pointed out by Yates (1987), the current tendency to select pure
indicators for factor analysis may be influenced by the fact that the generally
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Table 2
Holzinger and Swineford, 24 Psychological Tests: Infomax Rotations

Orthogonal Oblique

Fac1 Fac2 Fac3 Fac4 Fac1 Fac2 Fac3 Fac4

Var 1 0.71 0.18 0.10 0.12 0.74 -0.03 0.05 0.02
Var 2 0.44 0.13 0.03 0.07 0.47 0.01 -0.01 0.01
Var 3 0.56 0.15 -0.09 0.08 0.63 0.01 -0.15 0.02
Var 4 0.53 0.25 0.04 0.05 0.55 0.13 -0.01 -0.06
Var 5 0.20 0.75 0.20 0.11 0.00 0.77 0.12 -0.04
Var 6 0.20 0.78 0.05 0.20 0.01 0.80 -0.07 0.09
Var 7 0.20 0.81 0.13 0.03 0.02 0.88 0.06 -0.14
Var 8 0.36 0.58 0.20 0.09 0.22 0.53 0.14 -0.06
Var 9 0.19 0.82 0.03 0.19 0.00 0.86 -0.10 0.08
Var10 -0.01 0.17 0.84 0.14 -0.29 0.04 0.93 0.03
Var11 0.19 0.19 0.50 0.35 -0.03 0.00 0.48 0.31
Var12 0.30 0.02 0.69 0.06 0.16 -0.17 0.77 -0.07
Var13 0.50 0.20 0.47 0.04 0.42 0.01 0.50 -0.11
Var14 0.08 0.22 0.09 0.54 -0.12 0.07 -0.04 0.63
Var15 0.14 0.14 0.07 0.51 -0.01 -0.02 -0.05 0.59
Var16 0.43 0.10 0.03 0.51 0.35 -0.15 -0.11 0.56
Var17 0.11 0.16 0.23 0.56 -0.11 -0.03 0.12 0.63
Var18 0.35 0.05 0.31 0.43 0.21 -0.21 0.24 0.45
Var19 0.27 0.17 0.14 0.35 0.16 0.00 0.06 0.35
Var20 0.41 0.40 0.08 0.27 0.32 0.27 -0.02 0.21
Var21 0.44 0.19 0.39 0.19 0.33 -0.01 0.38 0.09
Var22 0.41 0.39 0.08 0.27 0.31 0.25 -0.02 0.21
Var23 0.53 0.39 0.19 0.20 0.44 0.23 0.12 0.09
Var24 0.22 0.38 0.48 0.27 -0.01 0.24 0.45 0.18

Factor Correlations

Fac1 Fac2 Fac3 Fac4 Fac1 Fac2 Fac3 Fac4

Fac1 1.00 1.00
Fac2 0.00 1.00 0.51 1.00
Fac3 0.00 0.00 1.00 0.41 0.41 1.00
Fac4 0.00 0.00 0.00 1.00 0.50 0.52 0.47 1.00
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available rotation procedures give reasonable results only in this situation.
This deviates from Thurstone’s original concept of simple structure where
variables of complexity at most m - 1 were regarded as admissible.  His box
data (Thurstone, 1947, p. 369) illustrate his principles of simple structure and
twenty one of his constructed variables are of complexity two.  These data
will be employed to investigate the extent to which the rotation criteria being
considered here can provide a complex solution when it exists.

Because of the manner in which they were constructed, Thurstone’s box
data involve virtually no error of measurement.  As a result of this and the
effect of rounding to two places, the correlation matrix given by Thurstone
(1947, p. 370) is indefinite.  Cureton and Mulaik (1975, Table 4) reported the
first three principal components obtained from Thurstone’s correlation
matrix.  They employed this matrix to demonstrate that their standardization
procedure enables varimax to reproduce Thurstone’s simple structure.  The
same matrix was used here to investigate the capabilities of the complexity
functions used earlier with the twenty four psycholgical tests.  CF-quartimax
(equivalent to direct quartimin in oblique rotation), CF-varimax, geomin and
infomax were applied to the box data in both orthogonal and oblique rotation.
Minimum entropy was employed only in orthogonal rotation because of its
tendency for factor collapse in oblique rotation.

At an early stage some authors (Butler, 1964; Eber, 1966; Cureton &
Mulaik, 1971) found that the box data yield more than one simple structure.
Consequently 100 random starts were used for each trial rotation in order
to yield a reasonable chance of discovering multiple solutions, or local
minima.  When no standardization was applied, it was found that minimum
entropy in orthogonal rotation, and geomin and infomax in both orthogonal
and oblique rotation, were capable of reproducing Thurstone’s simple
structure reasonably well at one of their local minima.  The best orthogonal
minimum entropy solution and best oblique geomin solution are shown in
Table 3.  Row headings show the manner in which the variable was
constructed from the measurement of height, h, length, l, and width, w.
Column headings name the height factor, H, length factor, L, and width
factor, W.  The oblique geomin solution shown in Table 3 and the best
oblique infomax solution were very close to the factor pattern obtained by
Thurstone (1947, p.  371) using hand rotation.

The three columns under Standardization-None in Table 4 give details of
the occurrence of local minima when analyzing the box data.  The number
of different local minima that occurred after 100 random starts is shown in
the column headed by #LM.  The column headed by %! shows the
percentage occurrence of the particular local minimum that was judged to
yield a satisfactory solution, in that the pattern of loadings reflected the
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Table 3
Thurstone, Box Problem: Orthogonal and Oblique Rotations

Orthogonal Oblique
Minimum Entropy Geomin (e = .01)

H L W H L W

h 0.98 0.04 0.12 0.99 -0.02 -0.01
l 0.19 0.93 0.21 0.06 0.94 0.05
w 0.14 0.15 0.96 0.00 0.06 0.97
hl 0.71 0.66 0.18 0.64 0.64 -0.01
h2l 0.88 0.42 0.18 0.84 0.38 0.01
hl2 0.49 0.82 0.22 0.39 0.81 0.03
2h+2l 0.63 0.72 0.17 0.55 0.71 -0.02
h2+l 2 0.62 0.71 0.18 0.54 0.70 -0.01
hw 0.68 0.09 0.72 0.60 0.00 0.65
h2w 0.84 0.06 0.51 0.79 -0.02 0.42
hw2 0.57 0.13 0.91 0.44 0.03 0.86
2h+2w 0.65 0.07 0.75 0.56 -0.02 0.69
h2+w2 0.62 0.08 0.74 0.53 -0.01 0.68
lw 0.15 0.66 0.73 -0.02 0.61 0.64
l 2w 0.15 0.79 0.57 -0.03 0.77 0.45
lw2 0.14 0.50 0.84 -0.03 0.44 0.78
2l+2w 0.16 0.66 0.72 -0.01 0.62 0.63
l2+w2 0.18 0.66 0.69 0.02 0.62 0.60
h/l 0.63 -0.77 -0.03 0.75 -0.83 0.01
l/h -0.63 0.77 0.03 -0.75 0.83 -0.01
h/w 0.69 -0.02 -0.70 0.82 0.01 -0.83
w/h -0.69 0.02 0.70 -0.82 -0.01 0.83
l/w -0.01 0.76 -0.65 -0.01 0.85 -0.80
w/l 0.01 -0.76 0.65 0.01 -0.85 0.80
hlw 0.58 0.54 0.60 0.45 0.48 0.47
h2+l 2+w2 0.47 0.58 0.61 0.34 0.53 0.49

Factor Correlations

H L W H L W

H 1.00 1.00
L 0.00 1.00 0.21 1.00
W 0.00 0.00 1.00 0.28 0.27 1.00
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manner in which the data were constructed from the attributes h, l and w.  It
is of interest that the standard methods, quartimax and varimax in orthogonal
rotation and direct quartimin (CF-quartimax) in oblique rotation, converged
consistently to a single minimum, but this minimum was unsatisfactory.  In
oblique rotation, CF-varimax showed great difficulty in converging and the
iterative procedure was usually terminated prematurely by the program after
a maximum of 500 iterative cycles had been reached.  In 6 instances,
however, fairly satisfactory solutions were obtained, but all occurred after
premature termination and they differed from each other.  Infomax and
geomin (orthogonal and oblique) and minimum entropy (orthogonal) yielded
several local minima but in each instance one of the local minima was
satisfactory.  In some cases the percentage of cases in which the
satisfactory solution was attained was fairly small.  The satisfactory solution
would probably be missed if random starts were not used.

The column of Table 4 headed by GMS indicates whether (Y) or not (N)
the global minimum (smallest local minimum) yielded a satisfactory solution.
In all cases, except for oblique geomin, a local minimum that was not the
global minimum was the one judged satisfactory.  There were no cases
where more than one local minimum could be judged satisfactory, bearing in

Table 4
Box Data: Random Start Results

Standardization

None CM 2Stage

#LM %! GMS ! !

CF-Quartimax 1 0 N Y N
CF-Varimax 1 0 N Y N

Orthogonal Infomax 3 15 N Y Y
Geomin (e = .01 ) 4 27 N Y Y
Minent 2 56 N Y Y

CF-Quartimax 1 0 N Y N
Oblique CF-Varimax ? 6 N Y Y

Infomax 6 12 N Y Y
Geomin (e = .01 ) 4 16 Y Y Y
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mind that oblique CF-varimax solutions that occur after premature
termination cannot be regarded as yielding local minima.

The results of the box data trials where no standardization was used may
be summarized as follows.  A complexity function that had a single minimum
never yielded a satisfactory solution.  A complexity function with several
local minima always had one that yielded a satisfactory solution.  This
satisfactory solution usually did not correspond to the global minimum.
Consequently, there was no way of choosing the satisfactory solution
without using knowledge of Thurstone’s data generation process.

The column of Table 4 headed CM indicates the result of the rotation
using the CM standardization.  In every case, in orthogonal rotation or oblique
rotation, using CF-varimax or other complexity functions, a satisfactory
solution was obtained.  The success Cureton and Mulaik (1975) experienced
when using their standardization procedure in conjunction with orthogonal
varimax was experienced again here using a variety of other criteria in both
orthogonal and oblique rotation.

The final column headed 2Stage gives the results obtained when using an
orthogonal rotation with the CM standardization to obtain a starting point and
then carrying out an orthogonal or oblique rotation using the same complexity
function with no standardization.  In the three situations, orthogonal CF-
quartimax, orthogonal CF-varimax and oblique CF-quartimax, where no
satisfactory solution could be obtained using random starting points, use of
an orthogonal rotation with the CM standardization to obtain a starting point
did not result in a satisfactory solution.  It seems clear that no satisfactory
solution exists in these three situations.  On the other hand, in all situations
where a satisfactory solution was found to exist, it was found that using the
CM standardization to obtain a starting point for a rotation with no
standardization always resulted in the satisfactory solution being obtained.

Recapitulation

After these results had been obtained, it seemed that a final solution to
the rotation problem had been found in the CM standardization.  This
standardization gave good results with the twenty four psycholgical tests and
some other classical data sets where other approaches also gave good
results.  It also gave good results with the Thurstone box data where other
approaches either had failed, or could only provide a satisfactory solution
from specific starting points.  If a satisfactory solution did exist, the CM
standardization could be used to provide a good starting point.  This obviated
the need for random starting points and the choice of a rotated factor matrix
from several alternatives.
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It was subsequently found, however, that one can construct situations
where the CM standardization will fail.  This will now be considered.

Possible Failure of the CM Standardization

Consider Figure 1 once more.  The first principal axis passes through the
center of test points evenly scattered on the first quadrant of the circle.  Both
optimal orthogonal axes make angles of 45º with the principal axis.  The CM
weight function shown in Figure 2 assigns high weights to points making an
angle of 45º with the principal axis and low weights to points close to the first
principal axis or to the second principal axis.

In the configuration of test points shown in Figure 1 many tests have
complexity greater than one.  Now consider Figure 3.  The variables form
two orthogonal and essentially perfect clusters.  (Perfect clusters are not
shown in the figure to avoid superimposition of test points.  Points adjoining
the squares marked 1 and 2 should be regarded as coinciding with them.) The
first principal axis passes through the denser configuration of points.  It
connects squares 1 and 1- and has the worst possible location.  Low weights
are assigned to the simple tests in the vicinity of squares 1, 1-, 2, 2- and high

Figure 3
Cureton-Mulaik standardization: Orthogonal Perfect Clusters. m = 2 m-1/2 = .71
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weights to any complex tests in the vicinity of dots I, I-, II, II-.  Thus in this
situation the CM procedure encourages the most complex configuration of
points possible and avoids the attainable perfect orthogonal cluster
configuration.

Similar reasoning will extend to more factors but is more difficult to
illustrate graphically.  The first factor matrix shown in Table 5 was
constructed to illustrate failure of the CM standardization in an example with
12 variables and 3 factors.  The first 10 variables exhibit a perfect orthogonal
cluster configuration with three factors.  If these 10 variables alone were
included in the battery, the principal axes would coincide with the perfect
cluster configuration shown and all CM weights would be zero.  The last two
variables are of complexity two but have very small communalities compared
to the first ten tests.  Consequently their inclusion in the battery has minimal
effect on the orientation of the principal axes.  These two complex variables,
however, determine the orientation of the rotated axes after CM
standardization.

Application of orthogonal CF-varimax with no standardization to the
constructed factor matrix yields a matrix that agrees with it to three decimal
places.  This solution is stable under random restarts.

The last column shows the Kaiser weights (h
i  i  
-1/2)Although they apply

considerable emphasis to the last two rows which have complexity two, CF-
varimax with Kaiser standardization yields a matrix with elements that differ
from those of the constructed matrix by not more than.01.  The solution is
stable under random restarts.

The Cureton-Mulaik weights w
i
, are also shown in Table 5.  They weight

the perfect indicators out of the rotation process so that it is influenced almost
entirely by the last two variables of complexity two.  As a result the CM
standardized varimax solution shown in the second part of Table 2 shows no
semblance of a simple pattern.  Whereas CM standardized varimax gives
good results for the box data where the best configuration is complex it gives
poor results in the present example where a near perfect orthogonal cluster
configuration is possible.

This artificial example has two characteristics.  Firstly a solution exists
where most tests are perfect indicators and there is a small number of
complex additional tests with low communalities.  Secondly, at the rotation
where most tests are perfect indicators, the factors are uncorrelated.  In
order to illustrate the necessity for this second condition two additional
examples were constructed.  The factor matrix given in Table 5 was used
again but, in one case all factor intercorrelations were taken to be.3, and in
the other they were taken to be .5.  Oblique CF-varimax with CM
standardization was now carried out with random starts in all three situations.



M. Browne

140 MULTIVARIATE BEHAVIORAL RESEARCH

Table 5
Illustration of a Failure of Cureton-Mulaik Standardization in Orthogonal
Varimax Rotation

Constructed Matrix

Fac1 Fac2 Fac3 K Wts.  h
ii

-1/2

Var1 0.90 0.00 0.00 1.11
Var2 0.90 0.00 0.00 1.11
Var3 0.90 0.00 0.00 1.11
Var4 0.90 0.00 0.00 1.11
Var5 0.00 0.80 0.00 1.25
Var6 0.00 0.80 0.00 1.25
Var7 0.00 0.80 0.00 1.25
Var8 0.00 0.00 0.70 1.43
Var9 0.00 0.00 0.70 1.43
Var10 0.00 0.00 0.70 1.43
Var11 0.10 0.10 0.00 7.07
Var12 0.10 0.00 0.10 7.07

Cureton-Mulaik Weighted Varimax

Fac1 Fac2 Fac3 CM Wts.w
i

Var1 0.52 0.52 0.52 0.00
Var2 0.52 0.52 0.52 0.00
Var3 0.52 0.52 0.52 0.00
Var4 0.52 0.52 0.52 0.00
Var5 -0.46 0.63 -0.17 0.00
Var6 -0.46 0.63 -0.17 0.00
Var7 -0.46 0.63 -0.17 0.00
Var8 -0.40 -0.15 0.55 0.00
Var9 -0.40 -0.15 0.55 0.00
Var10 -0.40 -0.15 0.55 0.00
Var11 0.00 0.14 0.04 0.92
Var12 0.00 0.04 0.14 0.92
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Results are shown in Table 6.  When all factor correlations were equal to r = 0
oblique CF-varimax gave a poor solution that differs a little from the
corresponding orthogonal rotation in Table 5.  With r = .3 the same approach
yielded a reasonably good approximation to a perfect cluster solution and this
improved further with r = .5.  The unfortunate effect of CM standardization
in this situation disappeared as r increased.

The conclusions to be drawn from this investigation is that CM
standardization can be very helpful under some circumstances and can result
in poor solutions in others.  It should form part of the kit of tools to be used
in rotation, but its results should be evaluated against alternative solutions
before being accepted.

Table 6
CM Fail Data: Effect of Interfactor Correlation Coefficient on Oblique CF-
Varimax with CM Standardization

r = 0 r = .3 r = .5

Fac1 Fac2 Fac3 Fac1 Fac2 Fac3 Fac1 Fac2 Fac3

Var 1 0.52 0.44 0.34 0.97 -0.08 -0.15 0.94 -0.03 -0.06
Var 2 0.52 0.44 0.34 0.97 -0.08 -0.15 0.94 -0.03 -0.06
Var 3 0.52 0.44 0.34 0.97 -0.08 -0.15 0.94 -0.03 -0.06
Var 4 0.52 0.44 0.34 0.97 -0.08 -0.15 0.94 -0.03 -0.06
Var 5 -0.47 0.74 -0.31 0.05 0.78 0.02 0.06 0.76 0.03
Var 6 -0.47 0.74 -0.31 0.05 0.78 0.02 0.06 0.76 0.03
Var 7 -0.47 0.74 -0.31 0.05 0.78 0.02 0.06 0.76 0.03
Var 8 -0.41 -0.35 0.72 0.05 0.02 0.68 0.06 0.04 0.66
Var 9 -0.41 -0.35 0.72 0.05 0.02 0.68 0.06 0.04 0.66
Var10 -0.41 -0.35 0.72 0.05 0.02 0.68 0.06 0.04 0.66
Var11 0.00 0.14 0.00 0.11 0.09 -0.01 0.11 0.09 0.00
Var12 0.00 0.00 0.14 0.11 -0.01 0.08 0.11 0.00 0.09

Factor Correlations

Fac1 Fac2 Fac3 Fac1 Fac2 Fac3 Fac1 Fac2 Fac3

Fac1 1.00 1.00 1.00
Fac2 0.04 1.00 0.34 1.00 0.47 1.00
Fac3 0.13 0.50 1.00 0.39 0.21 1.00 0.48 0.37 1.00
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A Practical Example: Investigation of the Simple Structure of the
WAIS

The examples considered up to this point either were artificial or well-
known in the literature for showing off rotation procedures to advantage.  An
application of the rotation methods discussed earlier in a practical situation
will now be discussed.

Over the years it has become apparent that the Wechsler Adult
Intelligence Scale (WAIS; Wechsler, 1955) measures a number of
intellectual abilities.  Because the battery consists of only eleven tests and
is therefore not suitable for a factor analysis extracting seven or more
factors, Dr. J. J. McArdle planned and executed a study in which the WAIS
was supplemented by tests from the Woodcock-Johnson Revised (WJR)
battery (Woodcock & Johnson, 1989).  He selected a subset of 16 WJR
subtests intended to measure eight Gf-Gc factors (Cattell, 1963; Horn &
Cattell, 1966).  The names of the 11 WAIS tests and the 16 WJR tests are
listed in Table 7.  A correlation matrix of the 16 WJR tests based on a sample
of size 763 was factor analyzed extracting eight factors.  An initial maximum
likelihood analysis yielded two Heywood cases.  Multiple Heywood cases
frequently indicate unstable solutions with multiple minima so that the
ordinary least squares solution with no Heywood cases was chosen for
further investigation.  Oblique rotations of the 16 × 8 factor matrix were
carried out using several complexity functions.  It was found that they yielded
similar perfect cluster solutions with two substantial loadings per factor.  The
CF-varimax and geomin solutions are shown in Table 8.  Each was obtained
consistently from 20 random starting points.  The similarity of the two
configurations obtained using totally different complexity functions suggests
that it is reasonable to regard the pairs of variables indicated by underlined
loadings as indicators of the same factor.

Another correlation matrix involving the 11 WAIS variables, 16 WJR
indicators and an additional set of 6 WJR variables was factor analyzed
extracting eight factors.  This correlation matrix had been obtained by
maximum likelihood using the EM algorithm (Marcantonio & Pechnyo, 1999)
from a data set collected by Dr. McArdle with data missing by design to avoid
burdening individual subjects with 33 tests.  The maximum number of
subjects involved for any block of correlation coefficients was 294.  Again
an ordinary least squares solution was obtained for consistency with the
preliminary factor analysis and because it is not clear that maximum Wishart
likelihood should be preferred for analyzing a correlation matrix based on
incomplete data.
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Oblique CF-varimax and geomin rotations were obtained once more.
The 16 × 8 WJR submatrices extracted from the 33 × 8 rotated factor
matrices are shown in Table 9.  Results are no longer as similar as they were
in Table 8 and the configuration appears to have changed particularly for
factors Gf and Glr.  This leads to some doubt concerning the matching of
factors between the two data sets.  Consequently a target rotation was
carried out.  The only loadings that were specified (= 0) in the target were
those in the 16 × 8 WJR indicator block that do not correspond to loadings
that are underlined in Table 9.  Target elements corresponding to underlined
loadings and all those in the 11 × 8 WAIS and 6 × 8 additional WJR blocks
were left unspecified.  Results of the oblique target rotation are shown in

Table 7
Tests in McArdle’s Battery

WAIS tests Original WJ-R tests Additional WJ-R tests

IN Information PV Picture Vocabulary SCScience Knowledge
CO Comprehension OV Oral Vocabulary SSSocial Studies
AR Arithmetic AS Analysis-Synthesis HUHumanities
SI Similarities CF Concept Formation PLS Power Letter Series
DSP Digit Span MN Memory for Names PNS Power Number Series
VO Vocabulary VAL Visual-Auditory Learn MAMatrices
DSY Digit Symbol MS Memory for Sentences
PC Picture Completion MW Memory for Words
BD Block Design VM Visual Matching
PA Picture Arrangement COU Cross-Out
OA Object Assembly IW Incomplete Words

SB Sound Blending
VC Visual Closure
PR Picture Recognition
CA Calculation
AP Applied Problems

WJ-R Factors

Gc Gsm Gv
Gf Gs Gq
Glr Ga
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Table 8
WJR Data - 16 Tests, 8 Factors, N = 763.

Oblique CF-Varimax Factor Matrix

Gc Gf Glr Gsm Gs Ga Gv Gq

PV 0.86 0.01 0.02 0.00 0.04 0.03 0.06 0.02
OV 0.53 0.08 0.06 0.15 -0.03 0.08 -0.04 0.25
AS -0.04 0.48 0.00 0.10 0.04 0.07 0.23 0.18
CF 0.06 0.64 0.08 0.02 0.11 0.08 0.01 0.04
MN 0.00 -0.01 0.98 -0.01 0.01 0.01 -0.01 -0.01
VAL 0.00 0.18 0.35 0.11 -0.06 0.07 0.32 0.17
MS 0.09 0.19 0.06 0.63 0.00 0.03 -0.09 0.00
MW -0.03 -0.09 0.01 0.67 0.09 0.08 0.10 0.07
VM 0.04 0.02 0.04 0.06 0.83 0.01 0.00 0.06
COU -0.03 0.12 0.06 0.00 0.61 0.12 0.14 0.04
IW 0.17 0.10 0.03 0.24 0.11 0.39 0.08 -0.15
SB 0.00 0.01 0.02 0.00 0.00 0.88 0.00 0.03
VC 0.18 0.07 0.04 -0.04 0.18 0.15 0.48 -0.04
PR 0.13 0.12 0.19 0.12 0.12 -0.02 0.36 -0.02
CA 0.01 0.07 0.05 0.02 0.15 0.09 0.05 0.66
AP 0.21 0.10 0.04 0.09 0.04 0.05 -0.03 0.61

Oblique Geomin Factor Matrix (e = .02 )

Gc Gf Glr Gsm Gs Ga Gv Gq

PV 0.88 -0.02 -0.01 -0.02 0.03 0.01 0.08 0.04
OV 0.57 0.06 0.04 0.12 -0.03 0.05 -0.02 0.28
AS -0.04 0.45 -0.01 0.05 0.03 0.03 0.30 0.20
CF 0.06 0.65 0.06 -0.01 0.12 0.05 0.05 0.04
MN 0.00 -0.02 0.96 -0.02 0.04 0.02 0.01 0.00
VAL -0.01 0.13 0.33 0.07 -0.07 0.04 0.40 0.20
MS 0.09 0.24 0.04 0.62 -0.02 0.01 -0.06 0.01
MW -0.04 -0.06 -0.01 0.66 0.07 0.06 0.14 0.08
VM 0.04 0.01 0.01 0.07 0.87 0.00 -0.02 0.04
COU -0.04 0.09 0.04 0.00 0.64 0.10 0.15 0.04
IW 0.15 0.11 0.02 0.25 0.09 0.37 0.10 -0.13
SB 0.00 0.00 0.02 0.02 0.00 0.85 -0.01 0.08
VC 0.15 -0.01 0.02 -0.06 0.16 0.12 0.56 -0.02
PR 0.11 0.07 0.18 0.09 0.11 -0.04 0.43 -0.01
CA 0.05 0.02 0.03 -0.02 0.17 0.04 0.06 0.70
AP 0.26 0.07 0.02 0.05 0.05 0.00 -0.01 0.65
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Table 10.  The correspondence with Table 8 is clearer, albeit not perfect, and
the interpretation of the WAIS tests in a framework provided by the WJR
markers has been facilitated.

The last column of Table 10 shows the CM weights.  There is no
tendency for the factorially simple tests in the WJR marker battery to have
higher weights than the complex WAIS variables.

Concluding Observations

Some diverse rotation criteria have been tried out in several different
situations and this has led to a number of observations.  Little has been proved
irrefutably but a number of plausible working hypotheses or conjectures have
been suggested.

It appears that in cases where a near perfect cluster configuration exists,
most complexity functions considered here will have a single minimum and
yield an acceptable solution.  In situations where the best factor pattern is
complex it seems that those complexity functions that are stable and yield a
single global minimum can also be expected to yield a poor solution.
Complexity functions that are capable of yielding a minimum accompanied
by a good solution can be expected to be unstable and to also yield other local
minima accompanied by poor solutions.  Unfortunately, in situations where
there are several minima, the lowest local minimum, or global minimum, need
not be accompanied by the best solution.  The choice of the best solution
therefore cannot be made automatically and without human judgment.

The CM weighting scheme can result in an acceptable solution using a
stable complexity function that would otherwise be unable to locate it.  When
used in conjunction with a complexity function that does yield an acceptable
solution at one of several local minima, the CM standardization can result in
a single global minimum which is accompanied by an acceptable solution.
These outcomes can be expected when there is at least one perfect indicator
of each factor and a substantial number of variables of higher complexity.
The solution is made possible by weighting out the complex variables so that
the solution is determined primarily by the perfect indicators.  Unfortunately
the CM approach can also result in an unacceptable solution when a good
unweighted solution is available.  This can be expected when most variables
are perfect indicators of uncorrelated factors and there are a few complex
variables with low communalities.  The CM standardization then weights out
the perfect indicators and allows the solution to be determined by the
complex variables.

It is clear that we are not at a stage where we can rely on mechanical
exploratory rotation by a computer program if the complexity of most
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Table 9
WJR +WAIS: 33 Tests, 8 Factors, N < 294.

Part of Oblique CF-Varimax Factor Matrix

Gc Gf Glr Gsm Gs Ga Gv Gq

M M M M M M M M
PV 0.41 -0.04 0.07 0.02 0.05 0.12 0.44 0.12
OV 0.59 -0.02 -0.04 0.10 0.16 0.26 0.11 -0.02
AS -0.12 0.40 0.09 0.16 0.02 0.39 0.10 0.08
CF 0.02 0.48 0.14 0.18 0.05 0.21 0.02 0.04
MN 0.12 0.42 0.24 0.23 0.09 0.04 0.01 -0.21
VAL 0.08 0.31 0.32 0.07 0.17 0.26 0.05 -0.11
MS 0.15 -0.04 0.29 0.61 -0.01 -0.04 -0.02 0.09
MW -0.02 0.02 -0.01 0.83 -0.01 0.01 0.04 -0.03
VM 0.03 0.02 0.04 0.10 0.82 -0.02 0.01 0.07
COU -0.15 0.10 0.22 0.06 0.50 0.06 0.28 0.05
IW 0.03 -0.01 0.00 0.43 0.12 0.20 0.41 -0.08
SB 0.05 0.15 0.04 0.35 0.14 0.34 0.16 -0.26
VC 0.01 0.33 0.26 -0.01 0.23 -0.07 0.42 -0.09
PR 0.04 0.27 0.14 0.15 0.23 0.01 0.17 -0.08
CA 0.11 0.07 0.07 0.04 0.38 0.43 -0.11 0.23
AP 0.00 0.17 0.09 0.09 0.15 0.22 0.09 0.50

M M M M M M M M
Part of Oblique Geomin Factor Matrix (e = .02 )

M M M M M M M M
PV 0.78 -0.02 0.01 0.01 -0.01 0.08 0.28 0.03
OV 0.78 0.06 -0.07 0.08 0.17 0.16 -0.03 -0.15
AS 0.04 0.74 -0.03 0.12 0.00 0.01 -0.04 0.20
CF 0.03 0.78 0.00 0.13 -0.01 -0.08 -0.02 0.02
MN -0.11 0.73 0.07 0.19 -0.02 0.01 0.07 -0.16
VAL 0.05 0.71 0.13 0.03 0.11 0.09 0.03 -0.01
MS 0.15 0.01 0.28 0.59 -0.01 -0.06 0.01 -0.06
MW -0.06 0.02 0.05 0.84 -0.02 0.02 0.02 0.01
VM 0.03 -0.04 0.02 0.10 0.81 -0.04 0.17 -0.04
COU -0.03 0.21 0.11 0.05 0.43 0.02 0.33 0.14
IW 0.24 0.08 -0.03 0.45 0.06 0.20 0.26 0.14
SB 0.05 0.44 -0.04 0.35 0.09 0.27 0.03 0.04
VC 0.02 0.51 0.05 -0.03 0.05 0.00 0.47 0.01
PR -0.01 0.42 0.02 0.13 0.13 0.00 0.21 -0.04
CA 0.35 0.26 0.03 0.00 0.47 0.02 -0.21 0.12
AP 0.40 0.21 0.05 0.05 0.21 -0.23 0.00 0.24

M M M M M M M M
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Table 10
WJR + WAIS 33 Tests 8 Factors, N = ± 294

Oblique Target Rotation: Factor Matrix

Gc Gf Glr Gsm Gs Ga Gv Gq CM Wts

IN 0.74 0.05 -0.09 0.07 -0.20 -0.09 0.01 0.39 0.58
CO 0.71 0.26 -0.26 0.12 -0.08 -0.34 0.26 0.13 0.62
AR 0.22 0.08 -0.04 0.37 0.08 -0.41 0.09 0.53 0.42
SI 0.45 0.14 0.28 0.00 0.00 -0.05 0.11 0.04 0.13
DSP -0.04 0.24 -0.17 0.53 0.26 -0.03 -0.13 0.13 0.53
VO 1.14 -0.04 0.13 0.18 -0.17 -0.40 -0.08 -0.07 0.83
DSY -0.03 -0.07 0.16 -0.03 0.75 0.11 0.02 0.08 0.47
PC 0.14 -0.09 -0.03 0.16 0.04 0.12 0.35 0.45 0.25
BD -0.19 -0.30 0.62 0.46 0.00 -0.11 0.20 0.41 0.36
PA 0.16 0.32 0.10 0.05 0.14 -0.16 0.34 0.13 0.19
OA 0.03 -0.42 0.56 0.35 0.09 -0.01 0.36 0.16 0.37

PV 0.76 -0.08 -0.05 0.00 -0.08 0.09 0.22 0.13 0.46
OV 0.83 0.03 0.07 0.00 0.01 0.06 -0.14 0.02 0.47
AS -0.04 0.42 0.15 0.00 -0.05 0.25 0.08 0.31 0.25
CF 0.05 0.43 0.21 0.10 0.01 0.02 0.12 0.17 0.19
MN 0.06 0.26 0.36 0.20 0.07 -0.00 0.15 -0.13 0.36
VAL 0.07 0.12 0.44 0.07 0.08 0.14 0.11 0.13 0.17
MS 0.07 -0.14 0.16 0.79 -0.02 -0.07 0.01 0.12 0.44
MW -0.09 0.12 -0.10 0.73 0.04 0.20 -0.07 -0.06 0.72
VM 0.02 -0.01 0.00 0.06 0.86 -0.02 0.00 0.09 0.48
COU -0.09 -0.05 0.11 0.03 0.51 0.19 0.27 0.18 0.32
IW 0.21 0.03 -0.09 0.20 0.08 0.48 0.12 0.00 0.33
SB 0.10 0.15 0.18 0.09 0.07 0.48 -0.05 -0.07 0.38
VC 0.15 0.11 0.17 -0.04 0.23 0.090.49 -0.05 0.35
PR 0.08 0.16 0.14 0.09 0.23 0.070.21 -0.04 0.21
CA 0.15 0.12 0.14 0.00 0.26 0.09 -0.210.47 0.27
AP 0.15 0.23 -0.09 0.15 0.09 -0.10 0.090.61 0.26

SC 0.37 0.03 0.26 0.04 -0.29 0.21 0.10 0.40 0.23
SS 0.66 -0.05 -0.03 0.12 -0.15 -0.08 0.08 0.42 0.47
HU 0.61 0.09 0.15 0.08 -0.08 0.08 0.08 0.08 0.18
PLS 0.12 0.21 0.22 0.21 0.08 -0.03 0.08 0.24 0.05
PNS 0.34 0.42 -0.06 -0.10 0.29 -0.15 0.04 0.29 0.19
MA -0.07 0.58 0.01 -0.01 0.09 -0.13 0.18 0.33 0.41
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variables is not close to one.  One approach that is open to the user is to try
more than one complexity function; for example, a member of the Crawford-
Ferguson family, infomax and either minimum entropy (orthogonal) or
geomin (oblique).  Multiple starting points are also to be recommended in
order to detect multiple minima of a complexity function.  In situations where
some information about the configuration is available it is worth trying a
sequence of rotations to partially specified targets.  The choice of
modifications to yield the next target would be guided by the results of the
present rotation.  All this involves human thought and judgment, which seems
unavoidable if exploration is to be carried out.  A choice from several
alternatives will be accompanied by capitalization on chance, requiring a
follow up confirmatory factor analysis on new data (cf. Nesselroade and
Baltes, 1984, pp. 272-273).  It does not seem realistic to expect that
exploration of the structure of a battery of tests should be accomplished with
the analysis of a single sample.
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