
1. Esquematize a estrutura típica de um gene codificador de proteína em procariotos e em eucariotos. Indique os produtos gerados pela transcrição dos genes.

Gene procariótico:

5'- Promotor – RBS1 – Gene 1 – RBS2 – Gene 2 – RBS3 – Gene 3 – Terminador – 3' **Produto da transcrição:**

5'UTR - RBS1 - Gene 1 - RBS2 - Gene 2 - RBS3 - Gene 3 - 3'UTR

Normalmente é policistrônico.

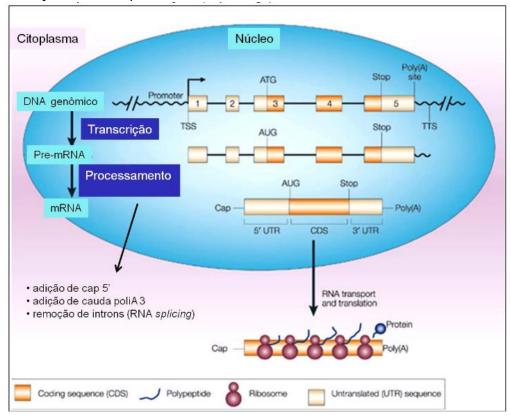
Vai gerar um mRNA com vários genes. Vai gerar várias proteínas.

Gene eucariótico:

5'- Elemento de controle distal – Elemento de controle proximal – promotor – Kozak sequence – Exon – Intron – Exon – Intron – Exon – Intron – Sinal para adição de PoliA – Terminador – Elemento de controle distal – 3'

Produto da transcrição:

Pré mRNA: 5'UTR – Kozak sequence – Exon – Intron – Exon – In


RNA processado: 5'UTR – Kozak sequence – Exon;Exon;Exon – PoliA – 3' UTR

Gene eucariótico é monocistrônico – produz um único gene – produz uma única proteína. O gene eucariótico além do promotor apresenta elementos reguladores adicionais os enhancers (quando ativam) e repressores (quando inativam), eles normalmente estão

próximos do promotor MAS podem estar muito distantes, tanto na extremidade 5' quanto 3'.

O mRNA eucariótico passa por modificações:

- 1- Splicing: remoção de introns
- 2- Adição do Cap 5'
- 3- Adição da cauda poli A na extremidade 3'

2. Quando uma cultura de E. coli em crescimento é submetida a um rápido aumento de temperatura, ocorre a ativação da transcrição de um conjunto de genes necessários para a adaptação da célula a esta nova condição ambiental altamente expresso. Explique o mecanismo molecular que controla esta alteração na expressão gênica.

Ao aumentar a temperatura um fator sigma específico se torna ativo. Nesse caso se trata do fator sigmaH, responsável pela heat shock response. Dessa forma, ao se tornar ativo, o fator sigma é capaz de expressar um grande conjunto de genes.

Species	σ-factor	Consensus sequence			Function	Group	
E. coli		-35			-10		
	σ ⁷⁰	TTGACA	- 17nt	-	TATAAT	Housekeeping genes	1
	σ ^S /σ ³⁸	TTGACA	- 17nt	-	TATACT	Stationary phase	2
	σE/σ24	GAACT	- 17nt	-	TCTGAt	Extracytoplasmic function	4
	σF/σ ²⁸	TAAAgt	- 15nt	-	GCCGATAA	Motility genes	3
	σ^H/σ^{32}	TTGAAA	- 15nt	-	CCCCATNT	Heat shock response	3
	σFecI/σ19	aaAAT	- 17nt	-	tTGTNt	Extracytoplasmic function	4
		-24		-12			
	σ^{N}/σ^{54}	TGGCAGG	- 4nt -	TTGC	A	Nitrogen metabolism	

- 3. A sequência de um segmento de uma molécula de DNA duplex é:
- (a) 5'-ATCGCTTGTACGGA-3'
- (b) 3'-TAGCGAACATGCCT-5'

Quando este segmento serve de molde para a RNA polimerase de *E. coli* ele dá origem a um segmento de RNA com a seguinte sequência:

(c) 5'-UCCGUACAAGCGAU-3'.

Indique:

- (a) 5'-ATCGCTTGTACGGA-3' → Fita molde = anti-senso
- (c) 3'-UAGCGAACAUGCCU-5'
- (b) 3'-TAGCGAACATGCCT-5' → Fita codificadora = senso

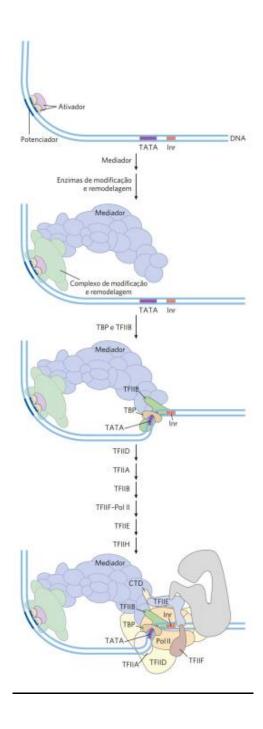
4. Explique as semelhanças e diferenças entre as enzimas DNA polimerase e RNA polimerase quanto aos seguintes aspectos:

- a. substratos utilizados
- b. produtos gerados
- c. processos em que participam
- d. orientação da síntese do produto
- e. taxa de erro de síntese

	DNA polimerase	RNA polimerase
substratos utilizados	dNTP (desoxirribonucleotídeos)	NTP (ribonucleotídeos)
produtos gerados	DNA	RNA
processos em que	Replicação	Transcrição
participam		
orientação da síntese	5′ → 3′	5′ → 3′
do produto		
taxa de erro de síntese	10^-7	10^-5

A DNA polimerase, replica o DNA durante a replicação, logo seu substrato é o ácido desoxirribonucleotídeo. Sua síntese ocorre no sentido $5' \rightarrow 3'$.

A RNA polimerase, transcreve o DNA em RNA durante a transcrição, logo seu substrato é o ácido ribonucleotídeo. Sua síntese ocorre no sentido $5' \rightarrow 3'$.


Como um erro durante a síntese de DNA significa uma mutação permanente no genoma, sua taxa de erro é muito menor que a taxa de erro da transcrição, pois mesmo que ocorra uma mutação ela afetará apenas temporariamente a célula, já que novos mRNA serão sintetizados corretamente

5. Quais as semelhanças e diferenças entre regiões promotoras e regiões "enhancers" presentes nos genes eucarióticos? Como esses elementos interagem para controlar a expressão gênica?

	1 -
Promotor	Fightages
Promotor	Enhancer
1	

Distância	Próximo ao TSS	Fica (mais) distante do TSS
	(transcription start site)	
Quem se liga?	RNA polimerase	Fatores de transcrição
	Fatores de transcrição	
	(complexo basal de	
	transcrição)	

Os ativadores primeiro se ligam ao DNA. Esses ativadores recrutam o complexo mediador, que por sua vez vai facilitar a ligação de fatores de transcrição ao TATA box (fator TBP e TFIIB), esses fatores recrutam os outros fatores do complexo basal de transcrição permitindo assim o início da transcrição.

