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Zika, chikungunya 
and co‑occurrence in Brazil: 
space‑time clusters and associated 
environmental–socioeconomic 
factors
Raquel Gardini Sanches Palasio 1*, Patricia Marques Moralejo Bermudi 1, 
Fernando Luiz de Lima Macedo 2, Lidia Maria Reis Santana 2,3 & Francisco Chiaravalloti‑Neto 1

Chikungunya and Zika have been neglected as emerging diseases. This study aimed to analyze the 
space-time patterns of their occurrence and co-occurrence and their associated environmental and 
socioeconomic factors. Univariate (individually) and multivariate (co-occurrence) scans were analyzed 
for 608,388 and 162,992 cases of chikungunya and Zika, respectively. These occurred more frequently 
in the summer and autumn. The clusters with the highest risk were initially located in the northeast, 
dispersed to the central-west and coastal areas of São Paulo and Rio de Janeiro (2018–2021), and 
then increased in the northeast (2019–2021). Chikungunya and Zika demonstrated decreasing 
trends of 13% and 40%, respectively, whereas clusters showed an increasing trend of 85% and 57%, 
respectively. Clusters with a high co-occurrence risk have been identified in some regions of Brazil. 
High temperatures are associated with areas at a greater risk of these diseases. Chikungunya was 
associated with low precipitation levels, more urbanized environments, and places with greater social 
inequalities, whereas Zika was associated with high precipitation levels and low sewage network 
coverage. In conclusion, to optimize the surveillance and control of chikungunya and Zika, this 
study’s results revealed high-risk areas with increasing trends and priority months and the role of 
socioeconomic and environmental factors.

Chikungunya and Zika are arboviral diseases caused by viruses from the families Togaviridae and Flaviviridae, 
respectively, transmitted through the bites of mosquitoes of the genus Aedes Meigen, 1818. The number of cases 
related to these diseases has been increasing worldwide, expanding geographically and reaching new territories1,2. 
Chikungunya and Zika have been reported in over 116 and 92 countries (https://wwwnc.cdc.gov/), respectively, 
mainly in Africa, Southeast Asia, and Latin America1,2. The chikungunya virus (CHIKV) has spread widely since 
2004, with an estimated eight million people infected worldwide. However, estimates might be underreported, 
as there may be approximately 100 million infections2. The number of Zika virus (ZIKV) infection cases has 
increased since 2007, with the first case confirmed in the Americas in 2014, and since 2015, the virus has been 
actively transmitted worldwide1,3.

These two infections are considered neglected tropical diseases (NTDs) and vector borne by Pan American 
Health Organization (PAHO)4. Chikungunya is recognized by the World Health Organization (WHO), but Zika 
has not yet been formally recognized. However, currently, chikungunya and Zika are indicated in the WHO 
report on NTDs in the group “Dengue and other arbovirus-related diseases”1. These diseases and dengue share 
the same vectors in the Americas, with the main one being the species Ae. aegypti (Linnaeus, 1762)5. The three 
diseases preferentially occur in regions with precarious socioeconomic and poor sanitation conditions, despite 
not being the prerogative of these areas6. Zika, chikungunya, and dengue are associated with the characteristics 
of their vectors, such as an association with deficient water supply, including still water storage, sanitary sew-
age, and rainwater drainage1,7. The co-circulation of these diseases is a matter of concern because their signs 
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and symptoms are similar, making clinical and laboratory diagnosis difficult and posing a challenge and public 
health problem8,9.

These diseases are considered emerging and reemerging5 because factors such as urbanization, deforestation, 
and climate change, including droughts and floods, can change environments, thereby favoring their emergence 
or resurgence10. For example, ZIKV was first reported in Africa in 1947, but until 2006, it was not considered 
a public health problem. It emerged in 2007, with its first major outbreak occurring in 2012 in the Federated 
States of Micronesia in French Polynesia. ZIKV was speculated to have been first introduced into Brazil, during 
the soccer world cup in July 201411. In February 2015, in Maranhão state, Brazil, reported cases of unknown 
exanthematic disease12,13, and Zika was subsequently confirmed. In March 2015 the first autochthonous cases 
were reported in Camaçari, Bahia state and Natal, Rio Grande do Norte state by RT-PCR (reverse transcrip-
tion polymerase chain reaction)11,14–16 . This disease became notorious later, with a disproportionate increase 
in cases of congenital microcephaly in Brazil3,5,11,14. Consequently, a national health emergency was declared 
in 2015 by the Brazilian Ministry of Health (MH)13,17 and a public health emergency of international concern 
(PHEIC) in 2016 by the WHO3. The same year, Congenital Zika Syndrome was reported, which was character-
ized by microcephaly, neurological and neurosensory central nervous system changes, cerebral calcifications, 
and ocular lesions18.

Chikungunya is also an emerging disease. CHIKV was discovered in 1952-1953 in Tanzania, spreading to 
Africa and Southeast Asia and accounting for a few cases. The disease emerged in 2005 in India and Sri Lanka, 
with an estimated 1.4-6.5 million cases, probably because of mutations that allowed viral adaptation to a new 
vector, Ae. albopictus (Skuse, 1894)19,20. It was first reported in Brazil in 2014 in Amapá and Bahia and currently 
exists in all Brazilian states9. This arbovirus is more likely to cause epidemics than dengue due to shorter intrinsic 
and extrinsic incubation times (in the mosquito) and a longer viremia period21.

The incubation period of CHIKV is 3–7 days, and the main symptoms are fever and arthralgia, which can 
lead to death. Furthermore, 70–90% of cases are symptomatic; this percentage is higher than that of other arbovi-
ruses, which is a matter of concern because it leads to higher care demands and overloading of health services9,21. 
Patients with Zika usually have a low-grade fever and less intense arthralgia than those with chikungunya, 
with a mean viral incubation period of 6 days9,22. However, most cases are asymptomatic; however, in the most 
severe cases, it can affect the central nervous system and induce neurological signs associated with the onset of 
Congenital Zika and Guillain-Barré Syndromes in adults23–25.

Regarding the above, identifying risk areas for these arboviruses is important for use in advance by health 
services26–30. Previous studies identified the areas with the highest risk of chikungunya and Zika in the Carib-
bean, Colombia, Mexico, China, the municipality of Fortaleza, and the state of São Paulo in Brazil using spatial 
scanning statistics, Bayesian modeling28–34, Getis-Ord Gi*(d)26,35 or using analytic hierarchy process models36 and 
also reported a relationship between spatial clusters and socioeconomic inequality27,30. Cavalcanti et al.37 analyzed 
cases of ZIKV-related microcephaly in Brazil and identified clusters predominantly in Northeast Brazil, mostly 
in Bahia, and smaller clusters in Minas Gerais and São Paulo. In addition, to our knowledge, few studies have 
focused on cluster analysis of the co-occurrence of Zika and chikungunya (Table 1). Besides, modelling multiple 
interrelated diseases simultaneously has recently been extended38. In the systematic review by Tesema et al.38 
with this approach, only two articles with Zika and chikungunya are cited. Desjardins et al.39, Freitas et al.40 and 
Martínez-Bello et al.34 studied the co-occurrence of both diseases in Colombia and Bisanzio et al.26 in Mexico. In 
addition to these, Freitas et al.41, Schmidt et al.42, Queiroz and Medronho43, Souza-Santos et al.44 and Rodrigues 
et al.45studied their co-occurrence spatial in the state of Rio Janeiro, Brazil. Pavani et al.46, Freitas et al.47, Carabali 
et al.30 and Costa et al.27 in other states of Brazil (Table 1). It is worth mentioning, Freitas et al.47, Rodrigues et al.45 
present an alternative of co-occurrence analysis in areas with more underreporting, in regions with low income, 
which these used the sum of the cases of the diseases and a univariate analysis instead of a multivariate analysis.

Thus, cluster analyses of the co-occurrence of Zika and chikungunya in all Brazilian municipalities have not 
been conducted, and this is the focus of the present study. Therefore, even considering these diseases separately, 
our results present, to our knowledge, the novelty of applying scan statistics to identify clusters of the entire 
country, instead of inside the cities44,48 and states47,49–51. In the literature, studies on the occurrence of Zika and 
chikungunya involving spatiotemporal analysis and climate variations are primarily reported on a global scale. 
The exceptions include the studies by Dong et al.31 which analyzed Zika, chikungunya and Dengue in Mexico, 
Perkins et al.52, which analyzed only Zika in America, and Aguiar et al.53, which applied the MaxEnt method 
with climate variables using 2015–2016 data in Brazil, which we have updated to 2021 in our study using cluster 
analysis. In addition, Anjos et al.54, Fuller et al.55, Pavani et al.46, and Raymundo and Medronho56 studied these 
diseases on the Brasilian state scale.

This study aimed to analyze the space-time patterns of the occurrence and co-occurrence of Zika and chikun-
gunya in Brazil. It explored the relationship among socioeconomic, demographic, and environmental variables 
to generate hypotheses for further testing in future studies.

Results
Descriptive analysis
During the study period (2015–2021), 1,154,535 and 404,779 cases of chikungunya and Zika, respectively, were 
reported in Brazil. Of these, 528,531 and 238,462 cases of chikungunya and Zika, respectively, were excluded 
for the following reasons: inconclusive classification or for being under investigation (525,221; 237,371), 
a symptom onset date outside the study period (3308; 1079), and residing in another country (2; 12). The 
database had 626,004 and 166,317 cases of chikungunya and Zika, respectively, confirmed using laboratory or 
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clinical-epidemiological criteria and distributed across 3042 and 2050 municipalities of residence, respectively 
(Fig. 1 and see Supplementary and Table S1a online). Of these, 850 (chikungunya) and 74 (Zika) patients distrib-
uted across 229 and 44 municipalities of residence, respectively, died during the study period (see Supplementary 
Fig. S1 and Table S1a and S2 online).

The incidence rates per 100,000 inhabitants-year in Brazil were 42.90 and 11.40 for chikungunya and Zika, 
respectively. Incidence rates were higher among women than among men, and in the age groups>15 years for 
chikungunya and>10 years for Zika, with differences that persisted to approximately 79 years (Fig. 2). There was 
also a predominance of black and pardo race/color for chikungunya (53.73%) and Zika (37.15%). Approximately 
60% of the records presented no data on the educational level (Table 2).

Table 1.   Table with previous studies considered cluster analysis of the co-occurrence of Zika and chikungunya 
analyzed simultaneously. *All incidence = Incidence of the sum of three diseases cases: dengue, CHIKV and 
ZIKV.

Methods Variables Events Location Period Main findings References

Scan statistics
multivariate

Dengue incidence
CHIK incidence

dengue
CHIKV Colombia 2015–2016

Seasonal factors may influence their
co-occurrence; clusters are a
consequence of precipitation,
temperature, and elevation ranges.

Desjardins
et al.39

Scan statistics
multivariate

Dengue incidence
CHIK incidence
ZIKV incidence

dengue
CHIKV
ZIKV

Colombia 2014–2018
35% of cluster simultaneous for tree
arboviruses; 2% dengue e CHIKV;
10% for dengue and ZIKV.

Freitas
et al.40

Bayesian
hierarchical
Poisson

Dengue incidence
ZIKV incidence

dengue
ZIKV Colombia 2015–2016 dengue high-risk associated

with Zika high-risk.
Martínez-
Bello et
al.34

Gi* local
spatial
Kendall
W test

Dengue incidence
CHIK incidence
ZIKV incidence

dengue
CHIKV
ZIKV

Merida
Mexico, 2008–2015

The three viruses had significant
agreement in their spatio-temporal
distribution

Bisanzio
et al26

Scan statistics
multivariate

Dengue incidence
CHIK incidence
ZIKV incidence

dengue
CHIKV
ZIKV

Rio de
Janeiro,
Brazil

2015–2016

56% of cluster simultaneously for tree
arboviruses, 16% for dengue and 
zika.
Simultaneous clusters were found
in areas of high population density,
low socioeconomic status,
rainy and warm seasons.

Freitas
et al.41

Bayesian
paradigm;
multivariate
Poisson

Dengue incidence
CHIK incidence
ZIKV incidence
Social development
index (SDI)
green area
pop. dens.

dengue
CHIKV
ZIKV

Rio de
Janeiro,
Brazil

2015–2016
Chikungunya was associated with a
smaller 16% for dengue and zika.
proportion of green area in
comparison to dengue and Zika.

Schmidt
et al.42

Bayesian
hierarchical
local
empirical
Bayesian
bivariate
global Moran

All incidence*
Dengue incidence
CHIK incidence
ZIKV incidence
SDI, water, income,
garbage, sewage,
pop. dens., Urban

dengue
CHIKV
ZIKV

Rio de
Janeiro,
Brazil

2015–2016

Tree arboviruses have a negative
relationship between mean
income. Zika had associated
with less sewage.
Chikungunya had associated a
more urban area.

Queiroz
and
Medronho
et al.43

Scan statistics
multivariate

Dengue incidence
CHIK incidence
ZIKV incidence
SDI

dengue
CHIKV
ZIKV

Rio de
Janeiro,
Brazil

2018
Over-risk for arboviruses in areas
with the worst socioeconomic
conditions.

Souza-
Santos
et al.44

multiple
multilevel
logistic
regression

All incidence*
socio-
demographic
income

dengue
CHIKV
ZIKV

Mangui-
nhos, Rio de Janeiro,
Brazil

2015–2016
High-rick of Arbovirus
infection in areas with poor
neighborhoods.

Rodrigues
et al.45

Bayesian
inference,
INLA

Dengue incidence
CHIK incidence
temperature,
humidity, rain,
water, garbage,
sewage, ruralility,
income, illiterate

dengue
CHIKV

Ceará,
Brazil 2016–2021

7% of cluster simultaneously,
which suggests a competition
between viruses.

Pavani
et al.46

Scan statistic
univariate

All incidence*
microcephaly
incidence

dengue
CHIKV
ZIKV
Microce-
phaly

Pernambuco,
Brazil 2014–2017

Vulnerable areas to underreporting
were identified, comparing
high risk clusters of microcephaly
overlapping with low-risk
clusters of diseases transmitted by 
Aedes.

Freitas
et al.47

Bayesian
hierarchical
Poisson
INLA

All incidence*
Dengue incidence
CHIK incidence
ZIKV incidence
education, overcrowding,
water, sanitation
health care centers

dengue
CHIKV
ZIKV

Medellin,
Colombia;
Fortaleza,
Brazil

2014–2017

Dengue had an association with
low socioeconomic status.
Chikungunya had association with
nonmonotonic socioeconomic 
measures.
Zika has association
few if any inequalities.

Carabali
et al.30

Univariate and
bivariate spatial,
global and
local Moran index

All incidence*
Dengue incidence
CHIK incidence
ZIKV incidence
pop. dens.,Gini

dengue
CHIKV
ZIKV

Maranhão,
Brazil 2015–2016

autocorrelation of incidence rates
of dengue and zika.
socio-demographic factors
influenced the occurrence
of three diseases.

Costa
et al.27
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Univariate and multivariate scan analyses included 608,388 and 162,992 confirmed cases of chikungunya 
and Zika, respectively (Supplementary Table S1b and S1c Online); however, in addition to the abovementioned 
excluded cases, 17,110 and 3,036 imported cases and 505 and 287 cases of chikungunya and Zika, respectively, 
were excluded for no data on the municipality of residence and/or sex.

Purely temporal and seasonal analysis
The purely temporal analysis revealed a higher risk cluster between February 2016 and June 2017 for chikun-
gunya, with a relative risk (RR) value of 3.58, and between January and May 2016 for Zika, with an RR of 57.37. 
A cluster with simultaneous conditions was also identified between January and May 2016 (Fig. 3a,b). Seasonal 
analysis revealed a higher risk of chikungunya between February and June (summer and fall) and a higher risk 
of Zika between January and May, with RRs of 4.28 and 10.32, respectively. The multivariate analysis revealed 
that the highest risk was between January and June (Fig. 3c,d).

Purely spatial analysis
Univariate (Chikungunya and Zika considered individually) and multivariate (evaluating the co-occurrence of 
both diseases) purely spatial analyses identified 38, 53, and 20 significant clusters, respectively (Fig. 4, see Sup-
plementary Tables S3 and S4 online). The Gini index for all the above analyses was 4% for the population of the 
scan windows. Chikungunya clusters were distributed across more municipalities (707) than those of Zika (520) 
and co-occurrence of both diseases (186).

Figure 1.   Map of South America, Brazil, and its regions (A), map of Brazil and its states, with the incidence 
rate (100,000 inhabitants-year) of confirmed chikungunya (B) and Zika (C) cases based on the municipality 
of residence, with symptom onset between 2015 and 2021. (B) Legend with the names of the states, (C) legend 
with the abbreviations of the states.

Figure 2.   Graph of absolute numbers based on age group and sex (A) and incidence rates (per 100,000 
inhabitants-year) (B) of chikungunya and Zika cases in Brazil, with symptom onset between 2015 and 2021.
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Regarding chikungunya clusters, the Brazilian region with the most municipalities was the northeast (552), 
followed by the southeast (113), north (39), central-west (2), and south (1). The distribution of Zika clusters 
had another pattern, with more municipalities in the central-west (284), southeast (117), northeast (68), and 
north (21); however, no municipality was identified in the south. Co-occurring clusters were distributed across 
103 municipalities in the central-west, 63 in the southeast, 11 in the north, eight in the northeast, and one in 
the south.

Spatial Zika clusters with the highest RR were identified in municipalities located in the state of Bahia (BA), 
one in Itabuna (cluster 1, RR = 118.04) and another in Uibaí (cluster 8, RR = 56.00). In contrast, the two spatial 
chikungunya clusters with the highest RR were identified in Itabuna and Barro Preto in BA (cluster 4, RR = 23.06) 
and Várzea Grande in Mato Grosso (cluster 7, RR = 15.74). In Itabuna and Barro Preto in BA, co-occurrence 
analysis also revealed the cluster with the highest RR for chikungunya and Zika (cluster 1, RR = 23.06 and 115.69, 
respectively) (Fig. 4, see Supplementary Tables S3 and S4 online).

Space‑time analysis
The space-time analysis for chikungunya, Zika, and co-occurrence revealed 24, 27, and 13 high-risk clusters, 
respectively. This analysis showed that most clusters began between January and April throughout the study 
period, except for chikungunya (cluster 6) and co-occurrence (cluster 5), which began in November 2015, chi-
kungunya (cluster 21) in June 2019, and Zika (cluster 21) in December 2016 and (cluster 20) in May 2020 (Fig. 5, 

Table 2.   Number of confirmed cases and epidemiological profile of chikungunya and Zika in Brazil, with 
symptoms onset between 2015 and 2021.

Chikungunya Zika

Case % Case %

Criterion

 Laboratory: PCR 11197 1.79

 Laboratory: Serological 126568 20.22

 Laboratory: Viral Isolation 990 0.16

 Laboratory: Other Methods 55983 8.94 18927 11.38

 Clinical-epidemiological 431266 68.89 147390 88.62

Classification

 Autochthonous 381571 60.95 126821 76.25

 Imported 17110 2.73 3038 1.83

 Undetermined 41446 6.62 36432 21.91

 Opened 185877 29.69 26 0.02

Sex

 Female 389460 62.21 111868 67.26

 Masculine 236032 37.71 54161 32.57

 Ignored 512 0.08 288 0.17

Race/color

 White 87537 13.98 34560 20.78

 Black/Pardo 336318 53.73 61785 37.15

 Others 7972 1.27 1417 0.85

 Ignored 194177 31.02 68555 41.22

Education

 Low 89085 14.23 21434 12.89

 Average 81225 12.98 24408 14.68

 High 22864 3.65 8663 5.21

 Not applicable 27406 4.38 11820 7.11

 Ignored 405424 64.76 99992 60.12

Hospitalization

 Yes 11263 1.80

 Not 296876 47.42

 Ignored 317865 50.78

Clinic

 Acute 438358 70.03

 Chronic 8414 1.34

 Ignored 179232 28.63

Total 626.004 100 166317  100
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see Supplementary Tables S5 and S6 online). For chikungunya, clusters that started in 2015–2017 predominated 
in the north and northeast regions, whereas in other regions, the clusters were identified predominantly between 
2018 and 2021. However, the most recent cluster was located in the northeast region between April and August 
2021 (cluster 8, RR = 17.08) (Fig. 5). For Zika, clusters that started in 2016–2017 predominated in all regions 
of Brazil, except for three clusters that occurred between 2019 and 2021 in Pernambuco (cluster 25), Roraima 
(cluster 20), and Paraíba (cluster 14). In multivariate analysis, clusters that started between 2015 and 2017 
predominated, except for three clusters that started in 2021 in the northeast: Paraíba and Pernambuco (cluster 
6) and Bahia (cluster 8), and in the south: Rio Grande do Sul (cluster 12) (Fig. 5, see Supplementary Tables S5 
and S6 online).

Spatial variation analysis in temporal trends
Spatial variations in the temporal trends for chikungunya and Zika decreased across the country by 13% and 
40%, respectively, with 47 and 28 significant clusters identified for chikungunya and Zika, respectively. Despite 
the decreasing temporal trend of chikungunya throughout the country, spatial variation clusters with a growing 
internal trend predominated in practically all states, with annual growth of 0.85%–96.56%. Only seven of the 
47 clusters of chikungunya demonstrated a decreasing trend. Spatial variation analysis of temporal trends for 
Zika identified 16 clusters with an increasing annual trend and 12 with a decreasing trend, with internal trends 
ranging from −32.96% to 53.03%. Clusters with annual increases were located in the north and northeast, in 

Figure 3.   Purely temporal analysis based on month of the distribution of chikungunya (A) and Zika (B) cases, 
seasonal analysis of the distribution of chikungunya (C) and Zika (d) cases, and multivariate analysis (red lines) 
in Brazil between 2015 and 2021.
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the states of Rio Grande do Sul, Mato Grosso, Minas Gerais, Bahia, and Espírito Santo, and on the coast of São 
Paulo (Fig. 6, see Supplementary Table S7 online).

T‑test of socioeconomic and environmental variables
The t-test for statistical comparison of socioeconomic and environmental variables between municipalities 
included in purely high-risk spatial clusters and those not included showed significant differences between 
groups. Municipalities included in high-risk clusters for both diseases had higher temperatures than those not 
included.

Municipalities included in high-risk clusters for chikungunya had lower precipitation levels and a lower 
percentage of households with a sewage system or septic tank, running water, and garbage collection by cleaning 
services than those not included. These municipalities also had lower Normalized Difference Vegetation Index 
(NDVI) values in urban areas and higher Brazilian Deprivation Index (BDI) measurements.

In contrast, Municipalities included in high-risk clusters for Zika had higher precipitation levels and a lower 
percentage of households with a sewage system or septic tank than those not included. These municipalities 
had lower BDI measurements, a higher percentage of households with garbage collection by cleaning services, 
and lower NDVI values in urban areas. All analyses resulted in significant p values, except for the percentage of 
households served piped water for Zika (Table 3, see Supplementary Fig. S2 online).

Discussion
Scan statistics were used to identify high-risk areas for chikungunya, Zika, and their co-occurrence in Brazil 
between 2015 and 2021. The results were consistent with those of previous studies, indicating northeast Brazil as 
the region with the highest incidence of these diseases between 2015 and 201653,57,58. These risk areas remained 

Figure 4.   Spatial analysis of chikungunya (A) and Zika (B) cases, and multivariate (C) analysis in Brazil 
between 2015 and 2021. N = clusters’ identification number. See Supplementary Tables S3 and S4.

Figure 5.   Space-time analysis of chikungunya (A) and Zika (B) cases, and multivariate (C) analysis in Brazil 
between 2015 and 2021. N = clusters’ identification number, see Supplementary Tables S5 and S6.
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active in 2017 for chikungunya. The results also showed a decline in the incidence of both conditions in Brazil 
between 2018 and 2021.

The spatial and temporal patterns of the two arboviruses have been changing, with the dispersion of their 
occurrence from the northeast to the central-west region, a change already reported in the literature for Zika58,59. 
A resurgence in the occurrence was identified in the northeast between 2019 and 2021 for Zika and in 2021 
for chikungunya. Dispersion and an upward trend were also observed for chikungunya along the coast of São 
Paulo, especially in Cubatão, Guarujá, Santos, and São Vicente in 202160 and in Rio de Janeiro between 2018 and 

Figure 6.   Spatial variation analysis in temporal trends of chikungunya (A) and Zika (B) cases in Brazil between 
2015 and 2021. N = clusters’ identification number, see Supplementary Table S7. Out = Outside the cluster. In = 
Inside the cluster.

Table 3.   Statistical comparison of the means (t-test) of environmental and socioeconomic variables of 
municipalities included in the highest risk cluster with those not included in the purely spatial clusters of 
chikungunya and Zika in Brazil between 2015 and 2021. *p value < 0.001 . **p value < 0.01 . NS Not significant. 
Numbers in parentheses indicate the standard deviation.

Chikungunya Zika

Variable High risk cluster No cluster t High risk cluster No cluster t

(Average) (N=707) (N=4863) (N=520) (N=5050)

Climate (2015–2021)

Temperature (C°):

 Maximum 29.80 (1.96) 28.44 (2.96) 15.997* 30.70 (1.90) 28.40(2,89) 24.790*

 Maximum in summer 30.82(1.22) 29.56 (1.73) 24.109* 30.42(1.09) 26.65(1.76) 14.282*

 Minimum 19.81(1.94) 17.21 (3.14) 29.675* 18.77 (1.71) 17.41(3.22) 15.587*

 Minimum in summer 20.94(1.55) 19.31 (2.01) 24.939* 20.21 (1.32) 19.44(2.14) 11.875*

Precipitation (mm):

 Average 80.65 (31.21) 111.98 (36.80) −24.335* 116.18(32.28) 107.16(38.02) 5.962**

 Average in summer 120.29(70.20) 178.66 (64.98) −20.847* 217.19 (63.10) 166.52(66.95) 16.626*

Environmental (2015–2021)

 NDVI in urban areas 0.49 (0.09) 0.52 (0.10) − 10.455* 0.51 (0.08) 0.52 (0.10) − 4.159*

Socio-economic (2010)

 BDI 0.73 (0.79) − 0.11 (0.98) 25.439* − 0.11 (0.72) 0.01(1.02) − 3.497*

% of households:

 Piped water 67.22(18.53) 69.45(20.00) − 2.963** 68.85(17.19) 69.20(20.08) NS

 Sewerage system 33.33(25.84) 43.62(31.78) − 9.587* 28.96(28.14) 43.69(31.26) − 11.240*

 Garbage collected 52.43(24.69) 63.16(26.20) − 10.712* 65.22(22.26) 61.45(26.61) 3.607*
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2021. However, some hypotheses for these pattern changes include the degree of susceptibility of populations in 
different Brazilian regions58,61 and climate change associated with greenhouse gas emissions62. For example, the 
highest temperature increase in the state of São Paulo over the last few decades was observed in municipalities 
located on the São Paulo coast63.

Seasonal scan analysis revealed that the greatest risk of occurrence of these diseases in the first months of the 
year was during summer when higher temperatures occur in the Brazilian regions, consistent with the results of 
our statistical analyses. This was related to the increased Ae. aegypti infestation levels due to the decreased time 
for larval development and increased proportion of infectious mosquitoes, given the decreased intrinsic incuba-
tion periods of the viruses in the vector58,64. Studies conducted in China, the United States, and the states of Rio 
de Janeiro and São Paulo also indicated that temperature influenced the distribution patterns of Ae. aegypti and 
Ae. albopictus, consequently influencing the incidence of diseases they transmit65–69.The small but significant 
differences (from 0.7 to 2.6 ◦ C) in the average temperature between the high-risk and no-risk areas for both 
diseases are worth consideration. Banu et al.70 showed that an increase of 1 ◦ C could be related to a future rise 
in arbovirus cases.

In recent decades, consistent and widespread warming has been observed throughout Brazil, with greater 
extreme heat occurring during spring and summer71. Increased temperatures are also expected in the coming 
years in Brazil, mainly in the Amazon, Tocantins, and Paraná River basins, based on future climate change 
scenarios and considering increased greenhouse gas levels72. This may indicate a greater risk of the occurrence 
of arboviruses in the future.

Furthermore, several factors may be associated with the inverted results obtained for precipitation behavior 
in clusters at high risk of chikungunya and Zika. One of the hypotheses is that the risk may increase after extreme 
conditions, either in places with a lot of drought or rain, as reported in dengue cases in Brazil73. In addition, 
these authors related extreme precipitation levels to urbanization and socioeconomic factors. They concluded 
that the risk of dengue was higher under extremely wet conditions in more rural areas and after extremely dry 
conditions in highly urbanized areas with a higher frequency of water shortage73.

This is consistent with the present study because the areas at high-risk of chikungunya were more socioeco-
nomically unfavorable and had lower precipitation levels and a lower percentage of water supply. Lower pro-
portions of households with water supply, sewage systems, garbage collection, and higher BDI values (a larger 
percentage of the population with per capita income below half of the minimum wage, illiterate people, and 
inappropriate households) in high-risk clusters for chikungunya indicate that these are vulnerable areas from a 
socioeconomic point of view74. In addition to the lower levels of precipitation identified in these clusters, these 
could lead to increased breeding sites and an abundant mosquito population owing to inadequate water stor-
age and waste disposal, thereby raising the incidence of the disease1,7,53. The risk of Zika in places with higher 
precipitation levels, as highlighted by Lowe et al.73 regarding dengue, also indicates that these areas are suitable 
for developing Aedes by providing an increased number of artificial and/or natural breeding sites.

Despite the significant difference, the similarity between BDI means for areas at high-risk of Zika and other 
diseases may indicate that socioeconomic variables had little influence on their distribution in the Brazilian 
territory. The differences between worse sewage collection indicators and better garbage collection indicators in 
areas at risk of Zika may be associated with a large proportion of municipalities in high-risk clusters located in 
the central-west region of Brazil, a region that, despite having good piped water and garbage collection coverage, 
has precarious sewage system coverage75,76. According to the 2017 Brazilian National Basic Sanitation Survey 
(PNSP), the central-west has, second to the north region, the lowest proportion of municipalities with sewage 
system services (38.1%)76.

The positive relationship with garbage collection in municipalities with high-risk clusters for Zika can be a 
confusing factor. Municipalities have cleaning services; however, this does not assure proper solid waste disposal, 
which may end in dumping grounds (open pits). In 2008, the central-west, north, and northeast regions ofBrazil 
had the highest proportions of municipalities with this type of disposal. In addition, the central-west and north-
east regions had the highest proportion of municipalities with waste pickers in dumps or landfills at 46.6% and 
43.1%, respectively75. These conditions increase the number of possible vector-breeding sites in urban areas.

Brazil has continental dimensions, with social inequalities, precarious socioeconomic levels, heterogeneous 
basic sanitation services, and climatic differences between the five regions, mainly regarding precipitation. A 
study that analyzed the Brazilian regions’ seasonal and climatic trends between 1961 and 1981 reported that the 
northeast region underwent changes during a drier climate, mainly in the summer. In the southern region and 
southern parts of the central-west region, the climate became more humid; however, there were no significant 
changes in the other regions during this period71. Therefore, in addition to studies considering climate change sce-
narios with greater greenhouse gas emissions, more studies should be conducted at different geographic scales58.

A lower amount of vegetation in the urban area was statistically significant for chikungunya and Zika risk 
areas; nonetheless, their average values were similar. High-risk areas for Zika were associated higher precipitation 
levels, which could be associated with the greater presence of Ae. albopictus in these areas. This vector is most 
likely found in colder and wetter suburban and rural areas36; therefore, this could be a hypothetical explanation 
for the differences between diseases. Ae. albopictus naturally infected with ZIKV has already been reported in 
Brazil77. In addition, rapid index surveys for Aedes (LIRA) have shown that Ae. albopictus expanded its geo-
graphic distribution in Brazil between 2015 and 2020 and was registered in 37.4% of the surveyed municipali-
ties. The central-west region demonstrated the most significant increase in this species among all the Brazilian 
regions78. However, previous studies reported that Ae. aegypti has a higher transmission rate and is more easily 
infected by ZIKV than CHIKV79. The interactions between the vectors (Ae. albopictus and Ae. aegypti) and viruses 
are subject to constant mutations; consequently, vector competence may change over time59.

The absence of a perfect overlap between spatial and space-time clusters for Zika and chikungunya in the 
present study is consistent with the results of other studies41,59,80. Differences between the risk areas for both 
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diseases could be associated with the abovementioned factors. However, simultaneous risk areas for both diseases 
stand out, such as Itabuna, BA, a place with a high incidence of dengue81.

This study had some limitations, including the use of socioeconomic data from the 2010 census and PNSP 
data on solid waste, which was updated in 2008, and the use of secondary data on Zika and chikungunya, with 
a significant percentage of cases confirmed using clinical-epidemiological criteria. The MH recommends these 
criteria, which are used after confirmed sustained transmission in a certain geographic area9.

In conclusion, this study’s results are useful for selecting areas at greatest risk, areas with increasing trends, and 
the months with the highest incidence, to optimize surveillance and control actions for Zika and chikungunya. 
This is necessary, considering the high costs associated with arboviruses (dengue, chikungunya, and Zika). In 
Brazil, costs for combating the vector and medical costs (direct and indirect) accounted for approximately 2% 
of the planned budget for the entire health area in 2016, showing a relevant impact on society82. The indirect 
costs of productivity loss during periods of medical leave for chikungunya and Zika accounted for a reduction 
of approximately 429 and 48 million dollars (mean BRL/USD exchange rate for the year 2016), respectively, 
compared with the 2016 GDP. The direct medical costs reached USD 291 million for both diseases82. This 
indicates that directing and optimizing the implementation of surveillance and control measures can provide 
a more rational use of available resources. It is also important to consider socioeconomic, basic sanitation, and 
climatic factors in decision-making. These can also help implement surveillance and control activities to avoid 
or minimize analyzed diseases.

Methods
The study area covers the Brazilian territory and its 5570 municipalities as units of analysis, which were grouped 
into five regions (Fig. 1), with a territorial area of 8,510,820,623 km² and an estimated population of 213,317,639 
people in 202183.

Data on the date of symptom onset, patient age, sex, race/color, disease progression, municipality of residence, 
classification, epidemiological profile, and confirmation criteria for the Zika and chikungunya cases notified in 
Brazil between 2015 and 2021 were obtained from the databases of the Notifiable Diseases Information System 
(SINAN) using the website of the Department of the Unified Health System of the Brazilian MH84. The spatial 
analysis included cases with laboratory and clinical-epidemiological confirmations. Imported cases, cases with 
no information on sex, and patients not residing in Brazil were excluded from the scan analyses in this study.

Incidence and mortality rates (per 100,000 inhabitants-year) were mapped by the municipality of residence 
between 2015 and 2021 and by each condition using Quantum Geographic Information System (QGIS) soft-
ware version 3.2285. In addition, graphs (based on age group and sex) were created for the absolute numbers 
and incidence rates of each disease in Brazil during the study period using R software version 4.1.086. Estimates 
considered the mid-period population (2018) obtained from the Brazilian Institute of Geography and Statistics 
(IBGE) and cartographic materials (municipal and regional meshes)87,88.

High-risk areas for the occurrence of chikungunya and Zika were identified based on scan statistics; relative 
risks (RR), which correspond to the ratios between the incidence rates inside and outside the clusters, were 
obtained. Three tables were built: a) chikungunya and Zika cases based on the municipality of residence, age 
group (classified into 11 groups: 0–4, 5–9, 10–14, 15–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and >= 
80 years), and sex for each symptom onset date; b) 2018 population based on age group (11 groups described 
above) and sex; and c) centroid coordinates of Brazilian municipalities88. Scan statistics were performed using 
the SatScan software version 10.0.0289.

Univariate scan analyses were performed for chikungunya and Zika cases (considered individually), and mul-
tivariate analyses were performed for both diseases (together) to assess co-occurrence. These analyses compared 
the number of observed and expected cases inside and outside possible clusters in multiple window sizes. The 
windows are circles (in the space and spatial variation in temporal trend analysis) or cylinders with a circular 
base and a time interval as the height (in the space-time analysis). The expected cases were obtained through an 
indirectly standardized method considering sex and age90. The SaTScan considers, for the analyses carried out 
in this study, the discrete Poisson model, where the number of cases in each location is Poisson-distributed. This 
probability distribution is well-suited for analyzing event count data, such as disease occurrences. This model 
was used under the following conditions: circular shape clusters, no geographical overlapping, adjustment for age 
and sex, and using the Monte Carlo method with 999 repetitions to estimate probabilities. Purely spatial, purely 
temporal, seasonal, and space-time analyses were performed to find high-risk rates, and spatial variation in tem-
poral trend analysis was performed to find clusters with high and low temporal trends90. The RR for each cluster 
is the estimated risk within it divided by the estimated risk outside it, as presented in the following formula90:

where, C and E[C] are respectively, the observed and expected number of total cases, and c and E[c] are, respec-
tively, the observed and expected number of cases within the possible cluster90. The Gini index was used in the 
univariate and multivariate purely spatial analyses were used to determine the maximum population size of the 
scan windows. This Gini index was used to optimize the size of the population included in a specific cluster, to 
avoid finding the big ones only91. The same value obtained for purely spatial analysis was considered in space-
time and spatial variation in the temporal trend analyses. The month range was used as the aggregation time for 
purely temporal, seasonal, and space-time analyses, whereas the year range was used for spatial variation analysis 
in temporal trends.. In this last analysis, the scan statistics estimate the annual percentage increase (or decrease) 
of temporal trends inside and outside the possible clusters. It identifies clusters where the inside temporal trends 
are statistically different from the outer ones90. In addition, multivariate analyses (purely spatial and space-time) 

RR =

c/E[c]

(C − c)/(E[C] − E[c])
=

c/E[c]

(C − c)/(C − E[c])
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revealed only simultaneous clusters for chikungunya and Zika, with RR >=1 for both diseases. High-risk clusters 
with p values < 5% were considered significant. Subsequently, SatScan results were imported into QGIS software 
version 3.1685 to create thematic maps.

The values of environmental (temperatures, precipitation, and NDVI) and socioeconomic (BDI, sewage, rain-
water system, and septic tank) variables of the sets of municipalities considered to be at high-risk in purely spatial 
univariate analyses for both diseases were statistically compared, with the respective values for municipalities 
with no risk (not included in the high-risk clusters) using a t-test between means. The normality of distributions 
and homogeneity of variances were evaluated using the Shapiro-Wilk, Anderson-Darling, and Levene tests. The 
comparison between the means of the groups and the tests was performed using the rstatix and car packages in 
the R software86. The two-sample Welch’s t-test for independent samples was used for normally distributed data 
with non-homogeneous variance. Statistical significance was set at p value < 5%.

The data obtained from Worldclim Version 2.192 on maximum and minimum temperatures and mean pre-
cipitation for each month between 2015 and 2021, at 2.5 min resolution ( 21 km2)93, were statistically analyzed 
using t-test. The rasters obtained were used to calculate the mean of the summers (considering January, Febru-
ary, and March) and the annual mean for 2015–2021 for the three climatic variables described above and for 
each municipality in the present study. These means were obtained by considering the climatic variable values 
contained in the pixels within each Brazilian municipality. Notably, these means were weighted based on the 
size of the area ( km2 ) of each pixel to deal with those located at the borders, which were only partially contained 
in a given municipality. Geographic operations (transformation in plane coordinates [Albers South America, 
ESRI:102033], raster vectorization, cutting, intersection, and dissolution of layers) from QGIS software version 
3.1685 and ArcGis Pro software version 2.894 were used.

Vegetation information was also considered using the NDVI values for each year from 2015 to 2021. The 
chosen source was the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 
Indices Combined 16-Day NDVI (MCD43A4) Version 6.1 satellite95, with a resolution of 463 m present on the 
Google Earth Engine (GEE) platform. Because Zika and chikungunya occur mostly in urban areas, NDVI values 
were obtained for the urban areas of the municipalities acquired from IBGE96. NDVI pixel means were calculated 
for these areas using Python language and geemap97 and eemont98 packages.Then, the average of 2015–2021 was 
calculated for the urban area of each municipality, and these values were used in the t-test.

BDI data calculated from income, education, and living condition indicators of the population in each munici-
pality were used, considering the 2010 IBGE census. The data were obtained from Cidacs/Fiocruz Bahia74 (https://​
cidacs.​bahia.​fiocr​uz.​br/​ibp/). The percentage of permanent private households per municipality was also used 
according to the type of sewage system (sewage, rainwater system, and septic tank), type of piped water supply, 
and destination of the garbage collected by cleaning services. This information was obtained from IBGE99.These 
data were statistically analyzed using t-test.
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