AGM5823 – Tópicos em química atmosférica

Ozônio troposférico Parte 2 – smog fotoquímico (processos com interferência humana)

Profa. Adalgiza Fornaro

São Paulo, outubro de 2023

Processos e reações em atmosfera urbana poluída (Fornaro, 1991).

Cid.Universitária-USP-Ipen - 12/10/2014

	NO2			СО			03			MP2.5	
	μ	g/m³		ppm			µg/m³			µg/m	3
Hora	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /
	Horária	Qualidade	horária	8 h	Qualidade	horária	8 h	Qualidade	horária	24 h	Qualidade
1:00	88	18	1.6	1	4	2	51	20	58	46	73
2:00	87	17	1.5	1.1	5	1	35	14	52	46	73
3:00	83	17	1.3	1.2	5	2	23	9	50	45	71
4:00	78	15	1.2	1.3	6	6	15	6	47	44	70
5:00	47	9		1.3	6	18	10	4	48	43	68
6:00	26	5	0.6	1.3	6	23	9	4	38	42	67
7:00	30	6	0.6	1.2	5	21	9	4	23	40	64
8:00	40	8	0.8	1.1	5	50	15	6	32	37	59
9:00	44	9	0.7	0.9	4	105	28	11	53	36	57
10:00	42	8	0.7	0.8	4	142	46	18	56	36	57
11:00	31	6	0.5	0.7	3	167	67	27	44	36	57
12:00	12	2	0.4	0.6	3	175	88	35	27	36	57
13:00	10	2	0.4	0.6	3	188	109	52	31	36	57
14:00	8	2	0.4	0.6	3	174	128	77	28	36	57
15:00	9	2	0.4	0.5	2	189	149	105	26	36	57
16:00	11	2	0.4	0.5	2	195	167	134	33	37	59
17:00	15	3	0.6	0.5	2	193	178	156	44	39	62
18:00	20	4	0.6	0.5	2	184	183	165	46	40	64
19:00	32	6	0.7	0.5	2	194	186	171	54	41	65
20:00	51	10	0.9	0.5	2	136	182	163	49	42	67
21:00	55	11	0.9	0.6	3	83	168	136	36	43	68
22:00	68	14	1	0.7	3	44	152	109	30	42	67
23:00	77	15	1.1	0.8	3	27	132	83	44	42	67
24:00	96	19				4		51	43		65
			1.3	0.9	4		108			41	

Cid.Universitária-USP-Ipen - 13/10/2014

	NO2		СО		03			MP2.5			
	μg	/m³		ppm			µg/m³	3		µg/m³	3
Hora	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /
	Horária	Qualidade	horária	8 h	Qualidade	horária	8 h	Qualidade	horária	24 h	Qualidade
1:00	105	21	1.5	1	4	2	84	33	51	41	65
2:00	99	20	1.8	1.1	5	2	61	24	54	41	65
3:00	103	21	3.1	1.5	7	1	37	15	56	41	65
4:00	96	19	2.1	1.6	7	2	20	8	63	42	67
5:00	99	20		1.7	8	2	10	4	68	43	68
6:00	99	20	2	1.8	8	1	5	2	67	44	70
7:00	97	20	1.4	1.9	8	5	2	1	65	46	73
8:00	97	20	1.1	1.9	8	20	4	2	69	47	75
9:00	102	20	1	1.8	8	59	12	5	63	48	76
10:00	83	17	1	1.7	8	125	27	11	64	48	76
11:00	27	6	0.6	1.3	6	173	48	19	58	49	78
12:00	22	4	0.5	1.1	5	192	72	29	44	49	78
13:00	15	3	0.4	1	4	206	98	39	34	50	79
14:00	17	3	0.5	0.8	4	234	127	75	32	50	79
15:00	20	4	0.6	0.7	3	246	157	115	50	51	82
16:00	23	5	0.7	0.7	3	258	187	173	69	52	83
17:00	27	5	0.7	0.6	3	261	212	205	81	54	86
18:00	60	12	0.9	0.6	3	196	221	208	93	56	90
19:00	69	14	0.8	0.6	3	101	212	205	63	56	90
20:00	78	15	0.9	0.7	3	76	197	193	36	56	90
21:00	44	9	0.7	0.7	3	117	186	171	15	55	88
22:00	42	8	0.7	0.7	3	103	170	140	26	55	86
23:00	49	10	0.7	0.8	3	96	151	108	38	54	86
24:00:0	47	9				96		82	35		86
0				0.8	3		131			54	

Ibirapuera - 13/10/2014

	NO2		СО		03			MP2.5			
	μg	/m³		ppm			µg/m³			µg/m³	
Hora	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /
	Horária	Qualidade	horária	8 h	Qualidade	horária	8 h	Qualidade	horária	24 h	Qualidade
1:00			1.5	1.4	6	18	54	21	80	53	85
2:00	59	12	1.2	1.5	7	40	41	16	80	55	88
3:00	66	13	1.3	1.5	7	26	26	10	64	55	88
4:00	68	14	1.3	1.5	7	21	19	8	44	54	86
5:00	56	11		1.5	7	34	20	8	46	53	85
6:00	51	10	1.1	1.4	6		21	8	69	55	88
7:00	64	13	1.2	1.3	6	26	24	10	22	54	86
8:00	90	18	1.5	1.3	6	20	27	11	60	55	88
9:00	116	23	1.6	1.3	6	37	29	12	91	55	88
10:00	97	19	1.4	1.3	6	90	36	14	92	55	88
11:00	38	8	0.9	1.3	6	157	55	22	86	55	88
12:00	23	5	0.7	1.2	5	182	78	31	79	54	86
13:00	19	4	0.7	1.1	5	199	102	43	59	53	85
14:00	20	4	0.7	1.1	5	204	114	59	34	53	85
15:00	21	4	0.8	1	4	231	140	93	46	52	83
16:00	25	5	0.8	0.9	4	241	168	136	67	53	85
17:00	25	5	0.9	0.9	4	235	192	183	51	53	85
18:00	39	8	1	0.8	4	189	205	202	56	52	83
19:00	66	13	1.2	0.8	4	108	199	197	24	52	83
20:00	78	16	1.3	0.9	4	69	185	169	26	53	85
21:00	53	11	1	0.9	4	93	171	142	4	53	85
22:00	44	9	0.9	1	4	112	160	119	25	53	85
23:00	50	10	0.9	1	4	97	143	97	35	54	86
24:00	62	12	1	1	4	68	121	68	16	52	83

Cid.Universitária-USP-Ipen - 14/10/2014

	N	02		СО			03			MP2.5	;
	μg,	/m³		ppm			µg/m	3		µg/m³	
Hora	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /
	Horária	Qualidade	horária	8 h	Qualidade	horári	8 h	Qualidade	horári	24 h	Qualidade
1 00	20	0				a		F 2	a		05
1:00	39	8	0.6	0.8	3	89	109	52	31	53	85
2:00	29	6	0.6	0.7	3	56	92	37	28	52	83
3:00	16	3	0.4	0.6	3	67	88	35	13	50	79
4:00	13	3	0.4	0.6	3	71	87	35	2	48	76
5:00	14	3		0.6	2	70	81	32	10	45	71
6:00	27	5	0.4	0.5	2	45	74	29	10	43	68
7:00	43	9	0.5	0.5	2	37	66	26	12	41	65
8:00	51	10	0.7	0.5	2	36	59	23	21	39	62
9:00	48	10	0.9	0.5	2	53	54	21	19	37	59
10:00	57	11	0.8	0.6	3	61	55	22	24	35	56
11:00	22	5	0.6	0.6	3	90	58	23	31	34	54
12:00	20	4	0.5	0.6	3	106	62	25	22	33	53
13:00	32	6	0.6	0.6	3	146	72	29	17	32	51
14:00	40	8	0.7	0.6	3	190	90	36	27	32	51
15:00	57	11	0.9	0.7	3	267	119	65	38	32	51
16:00	66	13	0.9	0.7	3	289	150	106	60	31	50
17:00	63	12	1	0.8	3	316	183	165	66	31	50
18:00	66	13	1.1	0.8	3	299	213	205	65	30	48
19:00	122	24	1.4	0.9	4	185	225	209	59	29	46
20:00	140	28	1.7	1	4	151	230	211	57	30	48
21:00	127	26	1.5	1.1	5	102	225	209	77	33	53
22:00	52	11	0.8	1.1	5	90	212	205	53	34	54
23:00	39	8	0.6	1.1	5	84	190	179	43	34	54
24:00	25	5	0.5	1	5	75	163	126	32	34	54

Cid.Universitária-USP-Ipen - 15/10/2014

	NO2 CO		03			MP2.5					
	μο	J/m³		ppm			µg/m [:]	3		µg/m	3
Hora	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /	Média	Média	Índice /
	Horária	Qualidade	horária	8 h	Qualidade	horária	8 h	Qualidade	horária	24 h	Qualidade
1:00	15	3	0.4	1	4	86	134	86	25	34	54
2:00	8	2	0.3	0.9	4	102	109	52	24	34	54
3:00	10	2	0.3	0.8	3	96	98	39	21	34	54
4:00	13	3	0.4	0.6	3	95	91	36	30	35	56
5:00	16	3		0.5	2	97	91	36	37	36	57
6:00	17	3	0.6	0.4	2	87	90	36	34	37	59
7:00											
8:00	41	8	1.2	0.5	2	72	91	36	8	38	61
9:00	38	8	1.3	0.7	3	103	93	37	13	37	59
10:00	35	7	1.1	0.8	4	123	96	38	24	37	59
11:00	32	6	1.1	0.9	4	114	99	39	38	38	61
12:00	31	6	1.1	1.1	5	147	106	48	42	39	62
13:00	28	6	1	1	4	122	110	53	43	40	64
14:00	21	4	1	1.1	5	96	111	55	37	40	64
15:00	21	4	1	1.1	5	89	108	51	38	40	64
16:00	28	6	1.1	1.1	5	73	108	51	38	39	62
17:00	35	7	1.4	1.1	5	59	103	44	34	38	61
18:00	32	6	1.4	1.1	5	59	95	38	35	37	59
19:00	36	7	1.5	1.2	5	52	87	35	32	35	56
20:00	23	5	1.4	1.2	5	69	77	31	35	34	54
21:00	21	4	1.3	1.3	6	68	71	28	22	32	51
22:00	25	5	1.4	1.3	6	67	67	27	16	31	48
23:00	22	5	1.3	1.4	6	74	65	26	21	30	48
24	18	3	1.3	1.4	6	75	65	26	19	29	46

Hora		03 µg/m ³	1	МР2.5 µg/m ³			
	Média horária	Média 8 h	Índice / Qualidade	Média horária	Média 24 h	Índice / Qualidade	
01:00	46	58	23	13	24	38	
02:00	23	49	20	12	23	36	
03:00	25	44	18	12	23	36	
04:00	42	43	17	7	22	35	
05:00	34	42	17	9	22	35	
06:00		39	16	14	21	33	
07:00	47	38	15	22	21	33	
08:00	49	38	15	21	21	33	
09:00	53	39	16	24	21	33	
10:00	70	46	18	39	21	33	
11:00	84	54	21	26	21	33	
12:00	95	62	25	17	21	33	
13:00	117	74	29	6	21	33	
14:00	142	82	33	19	21	33	
15:00	151	95	38	16	22	35	
16:00	158	109	52	16	21	33	
17:00	155	121	68	16	21	33	
18:00	130	129	78	30	21	33	
19:00	99	131	82	47	21	33	
20:00	71	128	77	42	22	35	
21:00	69	122	69	29	21	33	
22:00	56	111	55	22	21	33	
23:00	43	98	39	21	21	33	
24:00	29	82	33	23	21	33	

Estação de monitoramento de qualidade do ar Cid. Universitária-USP-IPEN Domingo, 07/05/2023

Dados sujeitos a validação posterior.

Fatores que favorecem o *smog* fotoquímico em regiões urbanas:

- altas concentrações de poluentes primários (e.x., NOx, COVs),
- poucas nuvens, permitindo alta intensidade de raios UV,
- inversões atmosféricas (e.x., São Paulo e Los Angeles),
- ventos fracos incapazes de dispersar poluentes.

Os processos que levam a formação de níveis elevados de O_3 , produzem também acidez atmosférica e material particulado.

Como ozônio é produzido na troposfera?

Na troposfera superior \rightarrow entrada de O₃ estratosférico

Lembrar: O_3 é uma molécula com 3 átomos de oxigênio.

$$O_2 + O \rightarrow O_3$$

Composição do ar seco: 21% oxigênio molecular, O₂,

Então:

na troposfera de onde vem oxigênio atômico?

Resposta: fotólise de NO₂

 $NO_2(g) + hv (\lambda < 420 \text{ nm}) \longrightarrow NO(g) + O(g)$

Estruturas da atmosfera

E) balanço das espécies de oxigênio;

F) radiação solar que chega à superfície da Terra.

Lenzi e Favero, 2009

Formação de ozônio troposférico: NOx (NO + NO₂)

$$NO_2(g) + hv \longrightarrow NO(g) + O(g) (\lambda < 420 \text{ nm})$$

$$O(g) + O_2(g) \xrightarrow{M} O_3(g)$$

$$O_3(g) + h\nu \longrightarrow O_2(g) + O(g)$$
 ($\lambda < 320 \text{ nm}$)
NO(g) + $O_3(g) \longrightarrow NO_2(g) + O_2(g)$

$$NO_{2}(g) + O_{3}(g) \longrightarrow NO_{2}(g) + O_{2}(g) \qquad (4)$$

$$NO_{2}(g) + hv \longrightarrow NO(g) + O(g) \quad (\lambda < 420 \text{ nm}) \qquad (2)$$

$$O(g) + O_{2}(g) \xrightarrow{M} O_{3}(g) \qquad (3)$$

$$Essa reação pode acontecer com outros oxidantes do tipo radicais peroxila RO2, portanto sem consumo de O3.
$$NO(g) + HO_{2}(g) \longrightarrow NO_{2}(g) + OH(g) \qquad (5)$$

$$NO(g) + RO_{2}(g) \longrightarrow NO_{2}(g) + RO(g) \qquad (6)$$

$$\frac{d[O_{3}]}{dt} = J_{NO_{2}}[NO_{2}] - k_{4}[NO][O_{3}] + (k_{5}[NO][HO_{2}] + k_{6}[NO][RO_{2}] + ...$$$$

Esquema simplificado dos ciclos do NO_x (NO + NO₂) e NO_y

Guy P. Brasseur

(Max Planck Institute for Meteorology and National Center for Atmospheric Research)

Reações envolvendo a família dos radicais HO_x (OH, HO_2) na oxidação do CO.

Produção de radical hidroxila, OH•

$$O_{3} + hv \rightarrow O_{2} + O(^{1}D) \qquad k_{1} = \text{fotolise de ozônio}$$

$$O(^{1}D) + M \rightarrow O + M \qquad k_{2} = \text{desativação do O(^{1}D)}$$

$$O(^{1}D) + H_{2}O \rightarrow 2OH \qquad k_{3} = \text{formação do radical hidroxila}$$

 $P_{OH} = 2k_3[O(^{1}D)][H_2O] = \frac{2k_1k_3}{k_2[M] + k_3[H_2]}$ $O_3][H_2O]$ $2k_1k_2$

ozônio

Jacob, 1999 (capítulo 11)

Tempo de vida de gases traço em função da reação com radial hidroxila (1/k[OH])

Metano (CH ₄)	10 anos
Metilclorofórmio (CH ₃ CCl ₃)	5 anos
Hidrogênio (H ₂)	2 anos
Monóxido de carbono (CO)	2 meses
Propano (C ₃ H ₈)	2 semanas
Dióxido de nitrogênio (NO ₂)	2 dias
Dimetil sulfeto (CH ₃ SCH ₃)	0,5 dia
Isopreno (C_5H_8)	1 hora

Importância da quantidade de NOx

Figure 12-6 Ozone production efficiency $\epsilon = P_{OS}/L_{NOx}$

Jacob, 1999 (capítulo 11)

Mecanismo de oxidação do CH₄ (metano)

 $CH_4 + OH \rightarrow CH_3 + H_2O$ $CH_3 + O_2 + M \rightarrow CH_3O_2 + M$

 $CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$

 $CH_3OOH+OH \rightarrow CH_2O+OH+H_2O$

 $CH_2O+OH \rightarrow CHO+H_2O$

 $CHO + O_2 \rightarrow CO + HO_2$

Em condições de "pouco" NOx $CH_3O_2 + NO \rightarrow CH_3O + NO_2$

 $CH_3OOH + OH \rightarrow CH_3O_2 + H_2O$ $CH_3OOH + h\nu \rightarrow CH_3O + OH$

 $CH_4 + 3OH + 2O_2 \rightarrow CO_2 + 3H_2O + HO_2$

Contribuição do formaldeído para produção de ozônio troposférico.

$$CH_3O(g) + O_2(g) \rightarrow HCHO(g) + HO_2$$

Além de reações químicas em fase gasosa, entre as principais fontes de formaldeído estão a queima de combustíveis, resinas, carpetes, isolantes, fumaça de cigarros, etc.

$$\begin{array}{ccccc} \mathsf{HCO}^{\cdot} + \mathsf{H}^{\cdot} & (\lambda < 334 \text{ nm}) \\ \mathsf{HCHO} + \mathsf{h}\nu \rightarrow & & \\ & \mathsf{CO} + \mathsf{H}_2 & (\lambda < 370 \text{ nm}) \\ \\ & \mathsf{HCHO} + \mathsf{OH}^{\cdot} \rightarrow \mathsf{HCO}^{\cdot} + \mathsf{H}_2\mathsf{O} \\ & & \\ & \mathsf{HCO}^{\cdot} + \mathsf{O}_2 \rightarrow \mathsf{CO} + \mathsf{HO}_2^{\cdot} \\ & & \\ & & \mathsf{H}^{\cdot} + \mathsf{O}_2 & \stackrel{\mathsf{M}}{\rightarrow} & \mathsf{HO}_2^{\cdot} \end{array}$$

Para um dia típico de smog de ozônio, a variação diurna de poluentes seguem um certo padrão:

>picos de NO e hidrocarbonetos pela manhã

formação de NO₂ às custas de NO

➢ formação de aldeídos às custas de hidrocarbonetos

➢ formação de ozônio

➤redução das concentrações à noite

Importante para produção de **OZÔNIO** troposférico, além de NOx:

Especiação dos COVs

Razão COV/NOx

Os compostos orgânicos voláteis (COVs) podem ser definidos a partir de suas propriedades físico-químicas, ou seja, compostos que a 20°C apresentam pressão de vapor igual ou maior do 0,01 kPa (European Union, EC Directive 1999/13/EC).

Porém, os COVs também são caracterizados como os compostos orgânicos que contribuem (reatividade) para a formação fotoquímica do ozônio.

Também podem ter impacto negativo à saúde humana, seja diretamente pela toxicidade individual de alguns compostos ou indiretamente a partir da formação de oxidantes atmosféricos e mesmo material particulado orgânico secundário (SOA, *secundary organic aerosol*).

Os COVs podem ser encontrados desde regiões remotas até áreas rurais e ambientes altamente urbanizados.

A principal fonte são as emissões biogênicas (BCOVs), sendo a estimativa da emissão global de isopreno (C_5H_{10}) na ordem de 500 TgC/ano seguido dos terpenos ($C_{10}H_{16}$) com emissões acima de 120 TgC/ano (IPCC, 2013).

Além de isopreno e terpenos as emissões biogênicas incluem alcanos, alcenos, alcoóis, ésteres, carbonilas e ácidos (Kesselmeier e Staudt, 1999).

Dentre todos os COVs, benzeno, tolueno, etilbenzeno e xilenos (BTEX) são os mais monitorados por estarem presentes em praticamente todo ambiente urbano moderno, muitas vezes em concentrações relativamente altas, assim como por serem classificados como carcinogênicos ou potencialmente carcinogênicos para humanos (Do et al., 2013 e Makar et al., 2003).

Hidrocarbonetos

1 a 4 carbonos \Rightarrow gases

> número de carbonos \Rightarrow líquidos ou sólidos no estado puro

< 8 carbonos \Rightarrow são os mais abundantes

> 12 carbonos \Rightarrow pequenas quantidades na atmosfera

Alcanos (ou parafinas ou alifáticos) $\Rightarrow C_n H_{2n+2}$

Alcenos (olefinas) $\Rightarrow C_n H_{2n}$

Alcinos $\Rightarrow C_n H_{2n-2}$ (acetileno, HC \equiv CH, emitido predominantemente por veículos) Terpenos $\Rightarrow C_{10} H_{16}$ (emitidos pela vegetação. Ex: isopreno, $C_5 H_8$)

Hidrocarbonetos

Produtos do Petróleo

http://labvirtual.eq.uc.pt/siteJoomla/index.php?option=com content&task=view&id=224&Itemid=415

http://labvirtual.eq.uc.pt/siteJoomla/index.php?option=com_content&task=view&id=224&Itemid=415

	Otto engine, four stroke without catalyst	Otto engine, four stroke three-way catalyst	Otto engine, two stroke without catalyst	Diesel engine
Paraffins				
Methane	4.0	14.0	7.0	2.4
Ethane	0.8	2.0	1.0	
Propane	0.3	0.5		
Butane	3.0	6.0	2.0	
Isobutane	2.0	3.0	0.3	
Pentane	2.0	2.5	3.0	
Isopentane	5.0	7.5	4.0	
Olefins	0.00000	0.0154	PLANEAU.	
Ethene	7.0	4.5	5.0	12.2
Propene	4.0	2.5	2.0	4.7
1-Butene	0.4	0.1		
Isobutene	2.5	1.5		0.8
cis-2-Butene	0.2	0.2	0.4	0.8
trans-2-Butene	0.8	0.6	0.2	0.7
1,3-Butadiene	0.6	0.4		1.1
Pentene	1.1	0.7		
Alkynes				
Ethyne	5.5	3.0	4.0	2.8
Aromatic hydrocarbons				
Benzene	5.0	6.0	5.0	1.9
Toluene	11.5	10.0	12.1	0.8
Xylene	10.0	9.0	11.0	0.8
Ethylbenzene	2.5	2.0	2.8	0.3
C _o aromatics	7.5	6.0	8.3	
Aldehydes				
Formaldehyde	1.5	1.0	0.6	8.1
Acetaldehyde	0.7	0.6	0.2	4.2
Acroleín	0.4	0.2	0.0	2.1
Benzaldehyde	0.3	0.2	0.2	1.8
Tolualdehyde	0.5	0.4	0.2	1.0
Ketones				
Acetone	0.6	0.5	0.1	1.5
Other VOCs	20.3	15.1	30.6	52.0

Patyk and Höpfner (1995).

Combustão

•Idealmente

- Combustível + ar \rightarrow CO₂ + H₂O + calor
- •Realidade
- Combustivel + ar \rightarrow CO₂ + H₂O + calor + NOx + SO₂ + CO + Partículas +
- + combustível não queimado (hidrocarbonetos)
- + COVs (compostos orgânicos voláteis)

Petróleo contém enxofre (0,1 até 3,7% em peso) em compostos chamados tiofenos. Quando os derivados de petróleo são queimados o enxofre é emitido na forma de dióxido de enxofre (SO_2) .

Thiophene

2,3-Benzthiophene

2-Ethyl-4,5-dimethylthiazole

COV – emissões biogênicas

Pg. 225-234, Finlayson – Pitts & Pitts, 2000

Cimeno é um alquilbenzeno relacionado aos Monoterpenos C10H14

Estrutura química de alguns compostos oxigenados orgânicos originados da emissão biogênica

(3Z)-Hexenyl acetate

Pg. 225-234, Finlayson – Pitts & Pitts, 2000

Thujone

Estimativas de tempo de vida de alguns COVs representativos na troposfera.

Organic	$OH \ (1 imes 10^6 \ \mathrm{cm}^{-3})$	О ₃ (100 ррb)	NO ₃ (50 ppt)	$(1 \times 10^4 \text{ cm}^{-3})$
<i>n</i> -Butane	5 days	≥ 1300 yr	205 days	5 days
trans-2-Butene	4.3 h	36 min	35 min	~4 days
Acetylene	14 days	$\geq 400 \text{ days}$	\geq 188 days	~ 22 days ^c
Toluene	2 days	\geq 400 days	138 days ^d	20 days
HCHO	1.2 days	\geq 463 days	16 days	16 days

Pg. 181, Finlayson – Pitts & Pitts, 2000

tolueno

Principal oxidante de COVs

Estimativas de tempo de viga de alguns COVs representativos na troposfera.

Tempo de vida de alguns compostos na troposfera livre (nível do mar)

ROG Species	Photolysis	$[OH] \\ 5 \times 10^{5} \\ molec. \ cm^{-3}$	$[HO_2] \\ 3 \times 10^8 \\ molec. \ cm^{-3}$	$[O] \\ 3 \times 10^{3} \\ molec. \ cm^{-3}$	$[NO_3] \\ 5 \times 10^8 \\ molec. \ cm^{-3}$	$[O_3] \\ 1 \times 10^{12} \\ \text{molec. cm}^{-3}$
<i>n</i> -Butane	_	9.2 d	6700 y	480 y	1.6 y	3250 y
trans-2-Butene	_	8.7 h	27 y	168 d	1.3 h	1.4 h
Acetylene	_	30 d	- '	67 y	-	2.7 y
Toluene	_	3.8 d	-	160 y	1.8 y	2.7 y
Isoprene	_	5.7 h	_	106 d	1.7 ĥ	23 d
Formaldehyde	7 h	2.5 d	11.7 h	67 y	40 d	16,000 y
Acetone	23 d	96 d	_	- '	-	-

Lifetime in free-tropospheric air at sea level

Reações de hidrocarbonetos na atmosfera

Emissões de hidrocarbonetos incluem fontes naturais (vegetação), e antropogênicas (queima de combustíveis fósseis, processos industriais).

Material orgânico na atmosfera é decomposto principalmente via radical hidroxila, que em atmosfera não poluída é formado através da reação de decomposição do ozônio pela radiação UV, formando oxigênio atômico e oxigênio singlete, que é extremamente reativo:

 $O_3 + hv (\lambda < 310 \text{ nm}) \rightarrow O_2 + O^1$

 O^1 + H_2O \rightarrow $2OH^{\bullet}$

A alta reatividade do radical hidroxila justifica sua baixa concentração na atmosfera.

Áreas urbanas com muita vegetação apresentam altos níveis de aldeídos atmosféricos.

Hidrocarbonetos alifáticos reagem com radical hidroxila com perda de

hidrogênio:

 $CH_3-CH_3 + OH^{\bullet} \rightarrow CH_3-CH_2^{\bullet} + H_2O$

 $CH_3-CH_2^{\bullet} + O_2 \rightarrow CH_3-CH_2-OO^{\bullet}$

$$CH_3-CH_2-OO^{\bullet} + NO \rightarrow NO_2 + CH_3-CH_2-O^{\bullet}$$

 CH_3 - CH_2 -O[•] + ROO[•] \rightarrow ROOH + CH_3 COH (acetaldeído)

Hidrocarbonetos olefínicos (duplas ou triplas ligações) têm

reações de adição com radical hidroxila:

 $RHC=CH_2 + \cdot OH \rightarrow RHC(\cdot)-CH_2(OH)$

 $RHC(\cdot)-CH_2(OH) + O_2 \rightarrow RHC(OO \cdot)-CH_2(OH)$

 $\mathsf{RHC}(\mathsf{OO}^{\bullet})\mathsf{-}\mathsf{CH}_2(\mathsf{OH}) + \mathsf{NO} \rightarrow \mathsf{NO}_2 + \mathsf{RHC}(\mathsf{O}^{\bullet})\mathsf{-}\mathsf{CH}_2(\mathsf{OH})$

RHC(O[•])-CH₂(OH) (decomposição espontânea) \rightarrow RHCO

Constantes de velocidade (<i>k</i>) para reações de alcanos com radical OH						
$OH + RH \rightarrow R' + H_2O$						
cadeia carbônica \uparrow valor de $k \uparrow$						
ramificação da cadeia↑ valor de <i>k</i> ↑						
Pg. 182, Finlayson – Pitts & Pitts, 2000						

Alkane	k (10 ⁻¹² cm ³ molecule ⁻¹ s ⁻¹) at 298 K
Methane	0.00618
Ethane	0.254
Propane	1.12
n-Butane	2.44
2-Methylpropane	2.19
n-Pentane	4.0
2-Methylbutane	3.7
2,2-Dimethylpropane	0.85
n-Hexane	5.45
2-Methylpentane	5.3
3-Methylpentane	5.4
2,3-Dimethylbutane	5.8
n-Heptane	7.0
2,2-Dimethylpentane	3.4
2,2,3-Trimethylbutane	4.2
n-Octane	8.7
2,2,4-Trimethylpentane	3.6
2,2,3,3-Tetramethylbutane	1.05
n-Nonane	10.0
n-Decane	11.2
n-Undecane	12.9
n-Dodecane	13.9
n-Tridecane	16
n-Tetradecane	18
n-Pentadecane	21
n-Hexadecane	23
Cyclopropane	0.084
Cyclobutane	1.5
Cyclopentane	5.02 (4.8) ^e
Cyclohexane	7.21 (7.2)⁼
Cyclohentane	13

Resumo da oxidação dos alcanos pelo radical OH no ar.

EPA, 2005

 $RH + 4O_2 + 2hv \rightarrow R'CHO + 2O_3 + H_2O$

 $\cdot OH + RH \rightarrow H_2O + \cdot R$ $\cdot R + O_2 + M \rightarrow RO_2 + M$ $RO_{2} + NO \rightarrow RO + NO_{2}$ HO_{2} + $NO \rightarrow OH + NO_{2}$ $RO + O_7 \rightarrow R'CHO + HO_7$ $2(NO_2 + hv \rightarrow NO + O)$ $2(O + O_2 + M \rightarrow O_3 + M)$

Resumo das reações de oxidação dos alcanos em presença de NOx, produzindo ozônio

Escalas de reatividade – conceito baseado na classificação dos COVs em termos do potencial para produção de ozônio.

Pode ser baseado em diferentes parâmetros: velocidades de reação, rendimento dos produtos e efeitos observados a partir da mistura VOC/NOx em presença de radiação.

Reações do radical OH

⇒ fato: responsável por processos que "consomem" a maioria dos hidrocarbonetos, produzindo mais radicais livres (HO₂, RO₂) que oxidam NO para NO₂, causando mais formação de O₃.

VOC/NO ₂ ratio Base case max O ₃ (ppb) ^b	4 72	6 160	8 214	10 215	12 209	16 194	20 180	40 139
Molecule (k ^{OB}) ^c		l.	ncremental r	eactivity (Mo	lecules of O3/C	atoms of VOC	added)	
CO (2.4 × 10 ⁻¹⁵) ^c	0.011	0.025	0.022	0.018	0.016	0.012	0.010	0.005
Ethane (2.5 × 10 ⁻¹³)	0.024	0.054	0.041	0.031	0.026	0.018	0.015	0.007
<i>n</i> -Butane (2.4×10^{-12})	0.10	0.22	0.16	0.12	0.098	0.069	0.052	0.019
Ethene (8.5 × 10 ⁻¹²)	0.85	1.65	0.90	0.64	0.50	0.33	0.30	0.14
Propene (2.6 × 10 ⁻¹¹)	1.28	2.04	1.03	0.61	0.51	0.39	0.25	0.14
trans-2-Butene (6.4 × 10 ⁻¹¹)	1.42	2.02	0.97	0.62	0.48	0.31	0.23	0.054
Benzene (1.2 × 10 ⁻¹²)	0.038	0.082	0.033	0.011	0.003	-0.002	-0.004	-0.002
Toluene (6.0 × 10 ⁻¹²)	0.26	0.52	0.16	0.04	-0.021	-0.036	-0.058	-0.051
Formaldehyde (9.2×10^{-12})	2.42	3.28	1.20	0.77	0.48	0.32	0.24	0.051
Acetaldehyde (1.6×10^{-11})	1.34	1.83	0.83	0.55	0.42	0.29	0.24	0.098
Benzaldehyde (1.3×10^{-11})	-0.11	-0.15	-0.27	-0.34	-0.37	-0.41	-0.41	- 0.40
Methanol (9.3 × 10 ⁻¹³)	0.12	0.27	0.17	0.12	0.091	0.066	0.055	0.029
Ethanol (3.2 × 10 ⁻¹²)	0.18	0.37	0.22	0.14	0.10	0.065	0.038	0.006

TABLE 16.8 Typical Calculated Incremental Reactivities and Maximum Ocone as a Function of the VOC/ NO_x Ratio⁴

^a From Carter and Atkinson (1989) calculated using the EKMA model with low dilution and an eight-component surrogate mixture of organics chosen to be representative of emissions into California's South Coast air basin. Note that the absolute values used may have changed for some components since the original publication due to further refinement of the model.

^b Peak ozone predicted from photolysis of initial base case mixture with the specified VOC/NO_z ratio.

^e Rate constants for reaction with OH at 298 K in units of cm³ molecule⁻¹ s⁻¹ taken from Atkinson (1989, 1994) and Atkinson et al. (1997a, 1997b).

(pg. 910, cap. 16, Finlayson-Pitts & Pitts, 1999)

VOC	MIR ^e (grams of O ₃ fo per gram of VOC	added)	
Carbon monoxide	0.054		
Methane	0.015	Ethyne (acetylene)	0.50
Ethane Propane n-Butane	0.25 0.48 1.02	Benzene Toluene m-Xylene	0.42 2.7 8.2
Ethene Propene 1-Butene	7.4 9.4 8.9	1,3,5-Trimethylbenzene Methanol Ethanol	10.1 0.56 1.34
2-Methylpropene (isobutene) 1,3-Butadiene 2-Methyl-1,3-butadiene (isoprene)	10.9 9.1	Formaldehyde Acetaldehyde Benzaldehyde	7.2 5.5 -0.57
α-Pinene β-Pinene	3.3 4.4	Methyl <i>tert</i> -butyl ether Ethyl <i>tert</i> -butyl ether Acetone C ₄ ketones Mathyl gitrite	0.62 2.0 0.56 1.18

TABLE 16.9 Maximum Incremental Reactivities (MIR) for Some VOCs

4 From Carter (1994).

(pg. 911, cap. 16, Finlayson-Pitts & Pitts, 1999)

Incremento máximo de reatividade (MR) de alguns COVs (massa de O3 produzido por massa de COV)

(pg. 912, cap. 16, Finlayson-Pitts & Pitts, 1999)

Isopletas de concentração de ozônio (ppb) baseadas em simulações químicas. NOx = $(NO + NO_2)$ e COVs = compostos orgânicos voláteis (pg. 237, Seinfeld & Pandis, 2006)

Reaction	Rate Constant (298K)
1. $RH + OH \xrightarrow{O_2} RO_2 + H_2O$	$26.3 \times 10^{-12 a}$
2. $RO_2 + NO \xrightarrow{O_2} NO_2 + R'CHO + HO_2$	7.7×10^{-12b}
3. $HO_2 + NO \longrightarrow NO_2 + OH$	8.1×10^{-12}
4. $OH + NO_2 \xrightarrow{M} HNO_3$	1.1×10^{-11} (at 1 atm)
5. $HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$	2.9×10^{-12}
6. $RO_2 + HO_2 \longrightarrow ROOH + O_2$	$5.2 imes10^{-12c}$
7. $NO_2 + hv \xrightarrow{O_2} NO + O_3$	Depends on light intensity ^d
8. $O_3 + NO \longrightarrow NO_2 + O_2$	1.9×10^{-14}

^aRate coefficient for propene (Table B.4). Other reactions consider R equal to CH_3 . Propene is selected because it is a relatively important constituent of the urban atmosphere. Even though OH-propene reaction proceeds by OH addition to the double bond of propene (Section 6.10.2), the net result after O₂ attack on the initial radical formed is a peroxy radical.

^bRate coefficient for $CH_3O_2 + NO$.

^cRate coefficient for $CH_3O_2 + HO_2$.

^dTypical photolysis rate coefficient for NO₂ is $j_{NO_2} = 0.015 \text{ s}^{-1}$.

(pg. 240-241, Seinfeld & Pandis, 2006)

FIGURE 6.12 Isopleths of maximum O₃ mixing ratio achieved over a 10-h period by integrating the rate equations arising from the mechanism in Table 6.3.

(pg. 240-241, Seinfeld & Pandis, 2006)

Isopletas tipicas de picos de ozônio geradas a partir de misturas iniciais de COV e NOx no ar:

- a) Representação bi-dimensional gerada a partir do modelo EKMA
- b) Representação tri-dimensional. A região COV-limitante (D) é encontrada em algumas regiões urbanas altamente poluídas, enquanto que a condição NOx-limitante (A) é típica de regiões suburbanas e areas rurais.

Atenção aos tipos de estudos:

-concentração atmosférica e inferências a partir deste tipo de dado;

- fatores de emissão (dinamômetro, túnel, câmara, etc.);
- medidas de fluxos (*eddy* covariância);
- reações em câmaras (condições controladas).

Medidas de concentrações atmosféricas: Média e desvio padrão para as concentrações de COVs observadas por medições de longo prazo em São Paulo e comparadas com os níveis em outras cidades do mundo.

Dominutti et al., One decade of VOCs measurements in São Paulo megacity: composition, variability, and emission evaluation in a biofuel usage context, Science of The Total Environment, 738, 2020, 139790.

Medidas de concentrações atmosféricas: Variações sazonais por famílias de compostos: a) contribuição de massa relativa calculada em base ppbC, b) potencial de formação de ozônio relativo calculado a partir da escala MIR (Carter, 2010), ambos calculados a partir de dados medidos entre 6 e 9 da manhã no MASP durante 2013.

Dominutti et al., One-year of NMHCs hourly observations in Sao Paulo megacity: meteorological and traffic emissions effects in a large ethanol burning context, Atmospheric Environment 142 (2016) 371-382.

Conceito de experimentos de smog fotoquímico em câmaras (smog chamber).

Lee SB., Bae GN., Moon KC. (2009) Smog Chamber Measurements. In: Kim Y.J., Platt U., Gu M.B., Iwahashi H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_8

Exemplo de câmara: EUropean PHOtoREactor (EUPHORE)

EUPHORE é uma das principais instalações internacionais de câmara de simulação externa para pesquisar processos químicos atmosféricos. A instalação possui duas câmaras gêmeas de simulação atmosférica externa (cada uma com volume ~200 m³), equipadas com grande número de instrumentos analíticos para medir parâmetros físicos, bem como uma ampla variedade de compostos biogênicos e antropogênicos e seus intermediários e produtos nas fases de gás e partículas.

Ao longo dos seus 20 anos de existência, sua localização na Espanha (Valência), com elevado número de dias de sol, permite que as câmaras sejam utilizadas em cerca de 2/3 dos dias de trabalho por ano.

http://www.ceam.es/WWWEUPHORE/home.htm

Perfis de poluentes primários e secundários típicos em irradiação de propeno e NO em uma câmara de *smog* (Fig. 16. 7., pg. 878, cap. 16, Finlayson-Pitts & Pitts, 1999).

Perfis de concentração-tempo dos principais poluentes primários e secundários **durante irradiação** de 0,53 ppm de propeno e 0,59 ppm de NOx em 1atm de ar purificado em uma câmara evacuável de smog.

Perfis de concentração em função do tempo para alguns poluentes primários e secundários durante irradiação de 2,2 ppm de n-butano e 0,61 ppm de NOx em uma câmara de smog evacuável sem (—) aldeído e com (– – –) 0,13 ppm aldeído.

Perfil horário da concentração horária na primavera para NO, $NO_2 e O_3$ medidos pela CETESB (Ibirapuera: janeiro de 2002 a dezembro de 2007.

Galichio, 2011

Perfil horário da concentração horária sazonal para NO, NO₂ e O₃ medidos pela CETESB (Ibirapuera: ja $-*-O_3$... NO ... NO

Bibliografia:

- C. Baird. "Química Ambiental", 2a.ed., Bookman, Porto Alegre, 2002.
- D.J. Jacob, "Introduction to Atmospheric Chemistry", Princeton University Press, Princeton, 1999.
- B.J. Finlayson-Pitts, J.N. Pitts Jr., "Chemistry of the upper and lower atmosphere – theory, experiments and applications, Academic Press, San Diego, 1998.
- Brasseur, G.P., Orlando, J.J., Tyndall, G.S., Atmospheric Chemistry and Global Change, Oxford University Press, New York, 1999.
- J.H. Seinfeld e S. N. Pandis, "Atmospheric Chemistry and Physics: from air pollution to climate change", John Wiley & Sons, New York, 1998.

http://www.abema.org.br/ (Associação Brasileira de Entidades Estaduais de Meio Ambiente)

http://www.cetesb.sp.gov.br/

http://www.epa.gov/air/

Do, D.H.; Langenhove, H.V.; Walgraeve, C.; Hayleeyesus, S.F.; Wispelaere, P.D.; Dewulf, J.; Demeestere, K., 2013: Volatile organic compounds in an urban environment: a comparison among Belgium, Vietnam and Ethiopia, International Journal of Environmental Analytical Chemistry, 93(3), 298-314.

Kesselmeier, J., Staudt, M., 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, Journal of Atmospheric Chemistry, 33, 23–88.

Maka, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A., 2003. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone, Journal of Geophysical Research: Atmospheres, 108 (D2), ACH 2-1–ACH 2-51.

Martins, L.D.; Andrade, M.F.; Freitas, E.D.; Pretto, A.; Gatti, L.V.; Albuquerque, E.L.; Tomaz, E.; Guardani, M.L.; Martins, M.H.R.B.; Junior, O.M.A., 2006. Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil, Environ. Sci. Technol, 40, 6722-6729.

Penuelas, J.; Staudt, M., 2010. BVOCs and global change, Trends in Plants Science, 15(3), 133-144.