MAT0220 - Lista 1

1) Seja $f: \mathbb{C} \to \mathbb{C}$ dada por

$$f(z) = f(x + iy) = e^y e^{ix},$$

para todos $x, y \in \mathbb{R}$.

Determine os pontos de \mathbb{C} em que f é

- (a) contínua.
- (b) diferenciável.
- (c) analítica.
- 2) Seja Ω um aberto conexo de \mathbb{C} . Prove que, se uma função analítica $f:\Omega\to\mathbb{C}$ é tal que $f(z)\in\mathbb{R}$ para todo $z\in\Omega$, então f é constante.
- 3) Prove que se f e \bar{f} são analíticas em um domínio (i.e., um conjunto aberto e conexo não-vazio), então f é constante.
- 4) Seja $f:\mathbb{C}\to\mathbb{C}$ uma função analítica. Mostre que, se |f| é constante, então f é constante.
- 5) Seja Ω um aberto conexo de \mathbb{C} . Determine todas as funções $f:\Omega\to\mathbb{C}$ com a seguinte propriedade: para todo $z\in\Omega,\,f(z)=0$ ou f'(z)=0.
- **6**) Encontre todas as funções analíticas $f: \mathbb{C} \to \mathbb{C}$, f(x+iy) = u(x,y) + iv(x,y) $(u,v: \mathbb{R}^2 \to \mathbb{R})$, tais que $u(x,y) = x^2 y^2$ para todos $x, y \in \mathbb{R}$.
- 7) Calcule $\int_{\gamma} f(z) dz$ onde:
 - (a) $f(x+iy) = y x 3x^2i$ e γ é o segmento de reta ligando 0 a 1+i.
 - (b) $f(x+iy) = y x 3x^2i$ e γ é o segmento de reta ligando 0 a i concatenado com o segmento de i a 1+i.
- 8) Seja γ o contorno do triângulo de vértices 0, -4 e 3i no plano complexo. Prove que

$$\left| \int_{\gamma} (e^z - \bar{z}) \, dz \right| \le 60.$$

9) Calcule

$$\int_{\gamma} \frac{dz}{z^2 + 4},$$

onde γ é a circunferência de centro i e raio 2, percorrida no sentido anti-horário.

- 10) Seja f analítica num domínio limitado D e contínua no fecho \bar{D} . Suponha que $f(z) \neq 0$ para todo $z \in \bar{D}$. Sendo m o valor mínimo de |f| em \bar{D} , prove que |f(z)| > m para todo $z \in D$, a menos que f seja constante.
- 11) Dê um exemplo para mostrar que |f(z)| pode assumir seu valor mínimo num ponto interior de um domímio em que f é analítica, se esse valor mínimo é zero.
- 12) Seja f analítica num domínio limitado D e contínua no fecho \bar{D} . Sendo M o valor máximo de Re(f) em \bar{D} , prove que Re(f(z)) < M para todo $z \in D$, a menos que f seja constante.
- 13) Seja f uma função inteira tal que $|f(z)| \ge 1$ para todo $z \in \mathbb{C}$. Prove que f é constante.