Lista de Exercício 5 Resistência ao Cisalhamento e Estabilidade de taludes

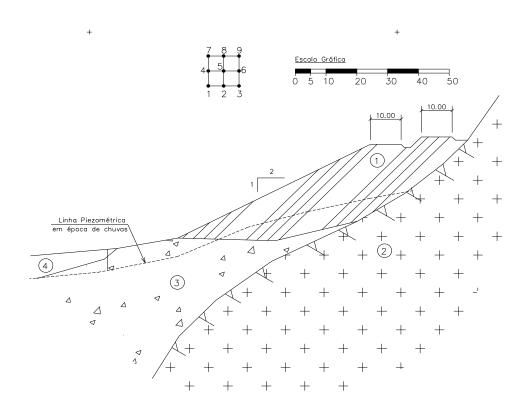
 Na tabela abaixo estão apresentados os resultados de três ensaios de cisalhamento direto (Já calculados). Apresente as curvas tensão cisalhante versus deslocamento e determine a envoltória de ruptura.

σn = 50 KPa				σn = 150 KPa				σn = 300 KPa			
Desl. vertical	Desl. horizontal	τ		Desl. vertical	Desl. horizontal	τ		Desl. vertical	Desl. horizontal	τ	
(mm)	(mm)	(KPa)		(mm)	(mm)	(KPa)	Ī	(mm)	(mm)	(KPa)	
0	0	0.00		0	0	0.00	Ī	0	0	0.00	
-0.011	0	11.89	Ī	0	0	11.89	Ī	-0.014	-0.04	33.62	
-0.021	0.04	21.90		-0.002	0.02	22.84	Ī	-0.023	0.04	52.48	
-0.028	0.06	32.86		-0.009	0.06	32.86		-0.021	0.13	70.30	
-0.038	0.1	42.90		-0.011	0.08	43.84		-0.023	0.16	94.73	
-0.059	0.17	51.55		-0.014	0.12	53.89		-0.03	0.21	117.01	
-0.109	0.34	55.56		-0.022	0.18	63.02		-0.036	0.25	140.43	
-0.241	0.84	43.58		-0.02	0.23	72.64		-0.04	0.32	160.64	
-0.31	1.17	39.75		-0.031	0.28	82.28	Ī	-0.041	0.46	173.36	
-0.41	1.75	35.92	Ī	-0.042	0.38	101.62	Ī	-0.06	1.02	166.64	
-0.446	2.3	33.52		-0.064	0.53	118.75	Ī	-0.062	1.73	143.23	
-0.477	2.83	32.09		-0.084	0.98	122.25		-0.067	2.37	127.62	
-0.503	3.35	31.13		-0.103	1.72	110.62		-0.069	2.91	123.16	
-0.53	3.88	29.69		-0.115	2.48	98.00		-0.071	3.44	119.81	
-0.555	4.4	28.73		-0.124	3.23	85.88		-0.072	3.97	116.47	
-0.576	4.91	28.26		-0.129	3.85	80.05	Ī	-0.073	4.51	112.01	
-0.591	5.42	27.78		-0.132	4.5	72.78		-0.074	5.04	108.66	
-0.608	5.94	26.82		-0.125	5.06	69.86		-0.075	5.55	107.55	
-0.625	6.68	27.30		-0.122	5.6	67.92		-0.073	6.06	106.43	
-0.627	6.94	26.82		-0.119	6.12	66.95		-0.072	6.6	101.97	
-0.63	7.46	25.86		-0.112	6.65	65.50		-0.072	7.12	99.74	
-0.633	7.98	24.90		-0.103	7.17	64.53		-0.071	7.63	98.63	
-0.636	8.5	23.94		-0.084	7.7	63.07		-0.069	8.15	96.40	
-0.638	9.01	23.47		-0.065	8.22	62.10		-0.067	8.66	95.28	
-0.64	9.53	22.51		-0.042	8.75	60.65		-0.065	9.17	94.17	

- 2. Quais parâmetros você utilizaria para uma análise de estabilidade de um talude? Discuta as opções.
- 3. A Figura a seguir representa um trecho de uma importante rodovia. Como pode ser observado na figura, a estrada foi construída à "meia-encosta" com aterro, e está apresentando os seguintes problemas:
- recalques da plataforma originando ondulações na pista;
- trincas longitudinais no pavimento; e
- movimentação das guias e canaletas de drenagem em pontos localizados.

Por meio de monitoração específica (indicadores de nível d'água – INA's) ao longo do ano, constatou-se que em períodos de seca não se observa a presença do lençol freático na camada de aterro. Entretanto, em períodos de chuva intensa constatou-se que o lençol freático pode atingir a camada de aterro (com a água percolando em direção ao vale), em tal posição que a linha piezométrica resultante é a que está indicada na Figura.

A tabela a seguir apresenta alguma das características dos materiais observados na seção transversal apresentada.


Lista de Exercício 5 Resistência ao Cisalhamento e Estabilidade de taludes

Solo	Descrição	γ. (kN/m ³)	c' (kN/m²)	φ' . (°)
1	Aterro de material argiloso	18	5	25
2	Basalto muito fraturado	21	50	35
3	Argila siltosa com fragmentos de rocha (SR)	18	5	30
4	Areia fina pouco argilosa (aluvião)	18	0	28

adotar, por simplificação, para efeito de cálculos de estabilidade que $\gamma_{nat} = \gamma_{-sat.}$

Pede-se:

- a- Discutir o significado dos problemas que estão sendo observados na rodovia.
- b- Discuta, conceitualmente, no caso de uma eventual ruptura, por onde deveria passar a superfície de ruptura. Por quê?
- c- Apresente soluções para solucionar os problemas observados.
- d- Utilize um software para avaliar a estabilidade com e sem a solução adotada. **(opcional)**

