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The 1-D thermal diffusion equation for constant k (thermal conductivity) is almost identical to the solute
diffusion equation:
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The most important difference is that it uses the thermal diffusivity α = k
ρcp

in the unsteady solutions, but
the thermal conductivity k to determine the heat flux using Fourier’s first law
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For this reason, to get solute diffusion solutions from the thermal diffusion solutions below, substitute D for
both k and α, effectively setting ρcp to one.

1-D Heat Conduction Solutions

1. Steady-state

(a) No generation

i. Cartesian equation:
d2T

dx2
= 0

1Most texts simplify the cylindrical and spherical equations, they divide by r and r2 respectively and product rule the
r-derivative apart. This gives
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for spherical coordinates. I prefer equations 2 and 3 because they are easier to solve.
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Solution:
T = Ax + B

Flux magnitude for conduction through a plate in series with heat transfer through a fluid
boundary layer (analagous to either 1st-order chemical reaction or mass transfer through a
fluid boundary layer):

|qx| =
|Tfl − T1|

1
h + L

k

(Tfl is the fluid temperature, analagous to the concentration in equilibrium with the fluid in
diffusion; T1 is the temperature on the side opposite the fluid.)
Dimensionless form:

πq = 1− 1
1 + πh

where πq = qxL
k(Tfl−T1)

and πh = hL
k (a.k.a. the Biot number).

ii. Cylindrical equation:
d

dr

(
r
dT
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)
= 0

Solution:
T = A ln r + B

Flux magnitude for heat transfer through a fluid boundary layer at R1 in series with conduc-
tion through a cylindrical shell between R1 and R2:

|r · qr| =
|Tfl − T2|
1

hR1
+ 1

k ln R2
R1

iii. Spherical equation:
d
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)
= 0

Solution:
T =

A

r
+ B

(b) Constant generation

i. Cartesian equation:

k
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+ q̇ = 0

Solution:

T = − q̇x2

2k
+ Ax + B

ii. Cylindrical equation:
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Solution:

T = − q̇r2
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iii. Spherical equation:
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(c) (Diffusion only) first-order homogeneous reaction consuming the reactant, so G = −kC

i. Cartesian equation:
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Solution:
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or:
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)
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)
ii. Cylindrical and spherical solutions involve Bessel functions, but here are the equations:
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2. Unsteady solutions without generation based on the Cartesian equation with constant k and ρcp:

∂T

∂t
= α
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where α = k
ρcp

.

(a) Uniform initial condition T = Ti (or T = T∞), constant boundary condition T = Ts at x = 0,
semi-infinite body; or step function initial condition in an infinite body.
Solution is the error function or its complement:

T − Ts

Ti − Ts
= erf
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(
x

2
√

αt

)
Semi-infinite criterion:

L

2
√

αt
≥ 2

Note: this also applies to a “diffusion couple”, where two bodies of different temperatures (or
concentrations) are joined at x = 0 and diffuse into each other; the boundary condition there is
halfway between the two initial conditions. This works only if the (thermal) diffusivities are the
same.

(b) Fixed quantity of heat/solute diffusing into a (semi-)infinite body (same semi-infinite criterion as
2a), no flux through x = 0, initial condition T = Ti everywhere except a layer of thickness δ if
semi-infinite or 2δ if fully infinite where T = T0.
Short-time solution consists of erfs at the interfaces, like a diffusion couple.
Long-time solution is the shrinking Gaussian:

T = Ti +
(T0 − Ti)δ√

παt
exp

(
− x2

4αt

)
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(c) Uniform initial condition T = Ti, constant boundary condition T = Ts at x = 0 and x = L (or
zero-flux boundary condition qx = −k∂T/∂x = 0 at x = L/2), finite body; or periodic initial
condition (we’ve covered sine and square waves) in an infinite body.
Solution is the Fourier series:

T = Ts + (Ti − Ts)
∞∑

n=0

an exp
(
−n2π2αt

L2

)
sin
(nπx

L

)
For a square wave or uniform IC in a finite body, an = 4

nπ for odd n, zero for even n, Ts is the
average temperature for a periodic situation or the boundary condition for a finite layer, L is the
half period of the wave or the thickness of the finite layer.
The n = 1 term dominates when π2α

L2 t ≥ 1.

(d) *Uniform initial condition T = T∞, constant flux boundary condition at x = 0 qx = −k dT
dx = q0,

semi-infinite body (same semi-infinite criterion as 2a).
Solution:

T = T∞ +
q0

k
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(e) *Uniform initial condition T = T∞, heat transfer coefficient boundary condition at x = 0 qx =

−k dT
dx = h(Tfl − T ), semi-infinite body (same semi-infinite criterion as 2a).

Solution:

T − Tfl

T∞ − Tfl
= erfc
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)
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k
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)
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h
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)
*These solutions are neither covered nor required, but are here for your edification and future reference.

3. Moving body

If a body is moving relative to a frame of reference at speed ux and conducting heat only in the
direction of motion, then the equation in that reference frame (for constant properties) is:
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+
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Note that this is the diffusion equation with the substantial derivative instead of the partial derivative,
and nonzero velocity only in the x-direction. Recall the definition of the substantial derivative:

D

Dt
=

∂

∂t
+ ~u · ∇

Applied to temperature with uy = uz = 0:
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Therefore:
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When this reaches steady-state, so ∂T
∂t = 0, then the solution in the absence of generation is

T = A + Beuxx/α
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