1-D Thermal Diffusion Equation and Solutions
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The 1-D thermal diffusion equation for constant & (thermal conductivity) is almost identical to the solute

diffusion equation:
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The most important difference is that it uses the thermal diffusivity a = p% in the unsteady solutions, but

the thermal conductivity & to determine the heat flux using Fourier’s first law
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For this reason, to get solute diffusion solutions from the thermal diffusion solutions below, substitute D for
both k and «, effectively setting pc, to one.

1-D Heat Conduction Solutions

1. Steady-state

(a) No generation
i. Cartesian equation:
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IMost texts simplify the cylindrical and spherical equations, they divide by r and 72 respectively and product rule the

r-derivative apart. This gives
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for spherical coordinates. I prefer equations 2 and 3 because they are easier to solve.
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ii.
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Solution:
T=Ax+ B

Flux magnitude for conduction through a plate in series with heat transfer through a fluid
boundary layer (analagous to either lst-order chemical reaction or mass transfer through a
fluid boundary layer):
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(T is the fluid temperature, analagous to the concentration in equilibrium with the fluid in
diffusion; 77 is the temperature on the side opposite the fluid.)
Dimensionless form:
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where 7, = WEE) and 7p, = % (a.k.a. the Biot number).

d (AT
drrdr_

T=Alnr+B

Tq =
Cylindrical equation:

Solution:

Flux magnitude for heat transfer through a fluid boundary layer at R; in series with conduc-
tion through a cylindrical shell between R; and Rs:
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Spherical equation:
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T=—+B
r
(b) Constant generation
i. Cartesian equation:
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ii. Cylindrical equation:
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iii. Spherical equation:
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(Diffusion only) first-order homogeneous reaction consuming the reactant, so G = —kC'

i. Cartesian equation:
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or:
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ii. Cylindrical and spherical solutions involve Bessel functions, but here are the equations:
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2. Unsteady solutions without generation based on the Cartesian equation with constant & and pc,:

where o« = .
PCp

(a)

or _ T
ot ‘o2

k

Uniform initial condition T' = T; (or T' = T, ), constant boundary condition T" = T at = = 0,
semi-infinite body; or step function initial condition in an infinite body.

Solution is the error function or its complement:
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Note: this also applies to a “diffusion couple”, where two bodies of different temperatures (or
concentrations) are joined at = 0 and diffuse into each other; the boundary condition there is
halfway between the two initial conditions. This works only if the (thermal) diffusivities are the
same.

Fixed quantity of heat/solute diffusing into a (semi-)infinite body (same semi-infinite criterion as
2a), no flux through & = 0, initial condition T' = T; everywhere except a layer of thickness § if
semi-infinite or 2§ if fully infinite where T' = Tj.

Short-time solution consists of erfs at the interfaces, like a diffusion couple.
Long-time solution is the shrinking Gaussian:
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(¢) Uniform initial condition T' = T}, constant boundary condition T' = T at + = 0 and z = L (or
zero-flux boundary condition ¢, = —k0T/dx = 0 at x = L/2), finite body; or periodic initial
condition (we’ve covered sine and square waves) in an infinite body.

Solution is the Fourier series:
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For a square wave or uniform IC in a finite body, a,, = % for odd n, zero for even n, T is the
average temperature for a periodic situation or the boundary condition for a finite layer, L is the
half period of the wave or the thickness of the finite layer.

The n = 1 term dominates when %t > 1.

(d) *Uniform initial condition T = Ty, constant flux boundary condition at x = 0 ¢, = fk% = qo,
semi-infinite body (same semi-infinite criterion as 2a).
Solution:
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(e) *Uniform initial condition T' = T, heat transfer coefficient boundary condition at z = 0 ¢, =
—k49L = h(Ty, — T), semi-infinite body (same semi-infinite criterion as 2a).

T—Tp erfe < x ) . (hx N h2at> erfe < x N h\/@)
_— = _— — ex _— —_— . —_— —_—
Too — Ty 2ol P A% ™2 N AL

*These solutions are neither covered nor required, but are here for your edification and future reference.

Solution:

. Moving body

If a body is moving relative to a frame of reference at speed u, and conducting heat only in the
direction of motion, then the equation in that reference frame (for constant properties) is:
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Note that this is the diffusion equation with the substantial derivative instead of the partial derivative,
and nonzero velocity only in the z-direction. Recall the definition of the substantial derivative:
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Applied to temperature with uy = u, = 0:
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When this reaches steady-state, so %—th = 0, then the solution in the absence of generation is

T = A + Bet=®/e



