INTEGRAIS DE LINHA

1. Integral de linha de campos escalares

Definição 1.1. Seja $\gamma(t) = (x(t), y(t), z(t)), t \in [a, b]$ uma curva lisa (ou lisa por partes) e $f: D \subset \mathbb{R}^n \to \mathbb{R}$ uma função contínua definida em um domínio D contendo o traço de γ . A integral de linha de f ao longo de γ é definida por

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \| \gamma'(t) \| \, dt$$

$$= \int_{a}^{b} f(x(t), y(t), z(t)) \| \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} \, dt.$$

Observação 1.2.

- Nesse contexto, a função real f acima é frequentemente denominada um campo escalar (em contraste com campos vetoriais, dos quais trataremos em seguida).
- Se f for positiva, a integral de linha pode ser interpretada como a massa de um arame com formato dado pelo traço da curva e densidade f.

Exemplo 1.3. Calcule as seguintes integrais de linha ao longo da curva parametrizada indicada

- (1) $\int_{\gamma} z \, ds$, $\gamma(t) = (t \cos t, t \ sent, t)$, $0 \le t \le 2$.
- (2) $\int_{\gamma} x \, ds$, $\gamma(t) = (\cos t, \ sen t)$, $-\frac{\pi}{2} \le t \le \frac{pi}{2}$.
- (3) $\int_{\gamma} x \, ds$, $\gamma(t) = (sen 2t, sen 2t)$ $0 \le t \le \pi$.

Date: November 6, 2023.

Como os exemplos (2) e (3) sugerem, a integral de linha de um campo escalar ao longo da curva γ depende apenas do traço da curva e não da parametrização particular. Para tornar esta afirmação mais precisa, precisamos antes da seguinte definição.

Definição 1.4. Sejam $\gamma_1 : [a,b] \to \mathbb{R}^n$ e $\gamma_2 : [c,d] \to \mathbb{R}^n$ duas curvas parametrizadas lisas. Dizemos que γ_1 e γ_2 diferem por reparametrização se existe uma função $\alpha : [a,b] \to [c,d]$ bijetora, de classe \mathcal{C}^1 tal que $\gamma_2(\alpha(t)) = \gamma_1(t)$, para todo $t \in [a,b]$. A função α é denominada então uma mudança de parametrização.

Vale então o seguinte resultado:

Proposição 1.5. Se $\gamma_1:[a,b]\to\mathbb{R}^n$ e $gamma_2:[c,d]\to\mathbb{R}^n$ diferem por reparametrização e $f:D\subset\mathbb{R}^n\to\mathbb{R}$ é uma função contínua definida em um domínio D contendo o traço de γ_1 então $\int_{\gamma_1} f \, ds = \int_{\gamma_2} f \, ds$.

Em vista da proposição, podemos calcular a integral de uma curva dado apenas seu traço C, usando qualquer parametrização.

Exemplo 1.6. Seja C a curva no espaço, dada pela interseção da superfícies $y=x^2$ com o plano $z=x,\ 0\leq x\leq 1$. Calcule $\int_{\gamma}z\,ds$.