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Martin’s axiom, known as MA, can be stated in a number of different 
ways. The topological form of MA is easy to remember. The Boolean 
algebra form is sometimes reassuringly familiar. But the partial order form 
is the useful one. It is an unfamiliar hurdle for nonlogicians. But it is more 
or less necessary for efficient use of MA; it is a first step in forcing 
techniques; and it is really not difficult. 

If (P ,  2) is a partially ordered set, then D C P  is dense provided, for 
each p E P, there is a d E D with p 2 d. A subset Q of P is compatible 
provided, for each finite subset F of Q, there is a q E P such that p L q for 
all p E F. ccc is read countable chain condition a n d  (P ,  L ) is ccc provided 
every pairwise incompatible subset is countable. 

MARTINS AXIOM: Suppose that (P,  L ) is a ccc partially ordered set and 9 is 
a family of less than 2” dense subsets of P. Then there is a compatible subset 
Q of P which meets every member of 9. 

In Section 6 of Chapter B.4 Burgess proves: 

1. THEOREM. If ZFC is consistent, then ZFC + MA + i CH is consistent. 

MA is also known to be independent of i C H .  
We begin by proving that the above partial order form of MA implies the 

A topological space is ccc if every family of disjoint open sets is 
topological form; actually they are equivalent. 

countable. 

2. THEOREM (MA)*. If X is a ccc compact H a u s d o g  space, then X is not 
the union of less than 2’ nowhere dense sets. 

PROOF. Suppose that o I A < 2’, that X is a ccc compact Hausdorff space, 
and that {X,},.EA is a family of nowhere dense subsets of X. 

Let P be the set of all nonempty open sets in X and partially order P by 
p I q if p Cq. Since X is ccc so is P. For a E A, define D, = 
{ p  E P I fl X, = 0); each D, is dense in P. Hence there is a compatible 
Q C P which intersects every D,. Q is a basis for a filter and X is compact, 
so there is an x E n(4 I q E Q}. For each a E A there is a q E 0 with 
4 n X, = 0, so x 6  X.. Hence X# U,,,X,. 0 

If CH, then Theorem 2 is just the Baire category theorem, so as no 
surprise: 

We write “Theorem (MA)” to indicate that we use Martin’s Axiom to  prove the theorem. 
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3. THEOREM. CH implies MA. 

493 

PROOF. Suppose that {D.}.Ew is a family of dense subsets of a ccc partially 
ordered set (P,  2). By induction choose d,  E D. such that d. > dB+l for all 
n. Then {d.}nEw is a compatible subset of P which meets every D.. 0 

A basic fact about partial orders is: 

4. THEOREM (MA + i CH). If (P, L ) is a ccc partial order and R C P is 
uncountable, then there is an uncountable compatible Q C R.  

PROOF. Without loss of generality I R I = wl. Let 

G = { p  E P I ) { q  E R I p and q are compatible}/ = w } .  

Let G* be a maximal pairwise incompatible subset of G. Let P* = 

{p E P I p is not compatible with any q E G *} and let R * = R fl P*. 
Since (P ,  L ) is ccc, G* is countable and R - R * is countable. Thus there 

is a one-to-one indexing {q,}aEu, of R* .  
Let P’ be the set of all finite, compatible in (P,  r), subsets of P*. 

Observe that if F E P‘ and p r q for all p E F, then q E P*. Thus P’, 
partially ordered by reverse inclusion is ccc. 

For each a E w l ,  define D, = {F E P’I F r l  {qs}a>,# 0).  
For each F E P’ there is a q E P *  with p r q for all p E F. Since q is 

compatible with uncountably many qs, each 0, is dense in P’. So there is a 
compatible Q‘CP’ which meets every D,. Thus Q = u Q‘ is an uncount- 
able compatible subset of P. 

’ 

0 

Recall (see Chapter B.3) that a Souslin tree is an uncountable tree with 
no uncountable chains or antichains. In a tree a compatible set in reverse 
order is a chain; so Theorem 4 yields: 

5. THEOREM (MA + i CH). There is no Souslin free. 

A Souslin tree can be used to build a Souslin line - a connected, linearly 
ordered, ccc space which is not separable. It is well known that the product 
of two Souslin lines is nor ccc. However: 

6. THEOREM (MA + i CH). The product of any family of ccc spaces is ccc. 

PROOF. By a simple A-system argument (not using MA, see Theorem 5.8 of 
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Chapter B.3), if a product is not ccc, then some subproduct of finitely many 
factors is not ccc. So to prove Theorem 6 we need only show that the 
product of any two ccc spaces is ccc. 

Suppose that X and Y are ccc and that {U, X V,},,,, are disjoint, 
nonempty basic open sets in X x Y. Let P be the set of all nonempty open 
sets in X partially ordered by inclusion. By Theorem 4 there is an 
uncountable compatible subset Q of { Ua},Eo,. But if U, and Up belong to 
Q, U, f l  U, # 0 so V, f l  V, = 0. Thus { V, I U, E Q} is a family of disjoint 
open sets which contradicts the fact that Y is ccc. 0 

MA was first discovered by MARTIN and SOLOVAY [ 19701, who observed 
that MA was inherent in a number of previous proofs of the consistency 
that there be no Souslin trees. Their original paper is a beautiful explana- 
tion of MA which I recommend. They stress the usefulness of MA as a 
viable alternative to CH. They point out that many of the traditional 
problems solved using CH can be solved using MA alone. Frequently the 
part of CH that is used is only MA. But almost equally often, a statement 
true under CH can be proved false under MA + 7 CH. Since MA + 1 CH 
is consistent with ZFC, any such statement is itself independent of ZFC. 

MA is severely limited by the fact that it only says something interesting 
about cardinals A where w < A < 2’. However these are precisely the 
cardinals which most often cause grief for nonlogicians. Certainly general 
topologists have found MA applicable to a rich variety of their problems. 
Those discussed by Juhlsz in Chapter B.7 give some feeling for its use and 
we will not attempt to give references for the multitude of other topological 
uses of MA. 

An analyst who works with Banach spaces recently asked me two 
questions. Must a compact Hausdorff space of cardinality I 2’ be sequen- 
tially compact? Must a ccc compact Hausdorff space with a point countable 
separating family of open F,’s be metrizable? Neither question can be 
answered in ZFC. The analyst already knew that MA + 1 CH implies that 
the answer to both questions is yes. Analysts too are beginning to use and 
recognize MA. 

An important recent result using MA is in algebra. Shelah has recently 
proved that Whitehead’s problem is undecidable in ZFC: if V = L, then 
every W-group is free; but if MA + i CH, there is a W-group which is not 
free. There is an excellent description of Whitehead’s problem and 
Shelah’s solution written for the Monthly by EKLOF [1977] so we will avoid 
the necessary definitions and heartily recommend the reading of Eklof‘s 
article. 
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Another recommended Monthly article, written by SHOENFIELD [ 19751, 
gives an elegant, elementary discussion of MA and proves many of the 
same theorems given here. 

Shelah’s solution of Whitehead’s problem illustrates the relationship 
between MA + i CH and V = L often seen in topology. Roughly speak- 
ing, MA + i C H  completely unravels the area between w = 2” while 
V = L holds it completely rigid. Anyway these two axioms are strongly 
contrasting and often yield contradictory theorems. 

Let us turn now to some of the combinatorial consequences of MA: 

7. THEOREM (MA). Suppose that d and 58 are families of cardinality less 
than 2” of subsets of w such that, for all finite subsets V of .d and elements B 
of 58, B - u V is infinite. Then there is an M C w such that B - M is infinite 
for all B E 58 but A - M is finite for all A E d. 

PROOF. Index d ={A,},,, and 58 = {B,}, ,* for some A <2”. Let P = 
{ (H,  K )  I H is a finite subset of A and K is a finite subset of w } .  Define 
( H , K ) r ( H ’ , K ’ )  in P provided H C H ‘ ,  K C K ’ ,  and ( K ’ - K ) r l  
U a E H A a  = 0. 

Any uncountable subset of P has two members with the same second 
element, say ( H ,  K) and ( H ‘ ,  K). Since ( H ,  K) 2 ( ( H  U H’), K) and 
(H’, K )  r ( ( H  U H’), K), P is ccc. 

For each a E A, define D, = {(H, K ) E  P I a E H}. For a E A and 
n E w, define Em,” = {(H, K )  E P 1 I K f l  B, 1 > n } .  It is easy to check that 
each member of 9 = {D, I a E A} U {E,.” I a E A and n E w }  isdense in P. 
Since 19 1 = A < 2”, MA implies that there is a compatible subset Q of P 
which meets every member of 9. 

Define M = w -  U { K I ( H , K ) E Q } .  If (YEA there is ( H , K ) E Q f l  
D,. If (H’, K’) is any other member of Q, since Q is compatible, there is 
( H ” ,  K”) E Q such that (H”, K ” )  5 (H, K)  and (H”, K ” )  5 (H’, K’). Since 
K’CK”and(K”-K’ )CA, ,  ( K ’ - A , ) C K . T h u s A , - M C K  s o A , - M  
is finite. 

Since for each n E w there is an (H, K)  E Q with I K r l  B, I > n, B, - M 
is infinite for all a E A. 0 

The proof of Theorem 7 is typical of MA proofs. With A = w, this 
theorem is a frequently used fact which does not need MA in its proof. But 
MA allows us to extend the theorem to all cardinals less than 2” although 
such an extension would be false without some set theoretic assumption 
beyond ZFC. 
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Two direct consequences of Theorem 7 which are sometimes more 
immediately applicable are: 

8. COROLLARY (MA). If 46 is a family of cardinality less than 2' of subsets 
of o with each finite subset of 46 having infinite intersection, then there is an 
infinite subset L of o such that L - B is finite for all B E 8. 

PROOF. Define d* = {(o - B) I B E 46) and B* = {o}. By Theorem 7 ap- 
plied to d * ,  93 *, there is an M such that A - M is finite for all A E d* 
but w - M is infinite. Define L = w - M. 0 

9. COROLLARY (MA). Suppose that d and 46 are families of cardinality less 
than 2" of subsets of o such that B - u V is infinite for all B E 46 and finite 
% C 46. Then, if 1 d U 48 1 = A, there is an infinite subset L of o such that 
A fl L is finite for all A E d and B f l  L is infinite for all B E 9. 

PROOF. By Theorem 7 there is an M C o  such that A - M is finite for all 
A E d and B - M is infinite for all B E 48. Define L = o - M. Then, for 
B E 48, B - M = B - (U - L )  = L - (o - B) = L n B is infinite. Similarly 
L fl A is finite for all A E d. 0 

A consequence of Corollary 8 is: 

10. COROLLARY (MA). If A < 2', then 2A is sequentially compact. 

PROOF. Let {fn},,=., be an infinite subset of 2*. We show that, if f is an 
arbitrary limit point of {fn}.Eu, then there is an L C o  such that {fn}.EL 
converges to f .  

Let G be the set of all functions into 2 which f extends whose domain is 
a finite subset of A. For g E G let B, = { n  E o I f .  extends g} .  Since 
1 G I = A, the hypotheses of Corollary 8 are satisfied and there is an infinite 
L C w  such that L - B, is finite for all g E G. L clearly has the desired 
property. 0 

Actually, in Corollary 10,2* may be replaced by any compact Hausdorff 
space of cardinality less than 2*'(see Corollary 1 to Theorem 1.7 in Chapter 
B.7). 

For an application of Corollae 9, define F = { f  : w + w }  with f < g in F 
provided there is an n E w with f ( k ) <  g ( k )  for all k > n. A subset G of F 
is dominating provided, for kvery f E F there is a g E G with g >f  
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{fP},<ACF is called a scale if it is dominating and a < /3 < A implies that 
f a  < f p  

11. COROLLARY (MA). Every dominating family has cardinality 2', and 
there is a scale. 

PROOF. Suppose that A < 2' and that { f n } n € A  CF. For a E A, define A, = 
{ ( i , j )E  w z  I j I f ( i ) }  and for i E w define B, = { i } X  w. By Corollary 9 
there is an L C w z  such that all A, f l  L are finite and B, f l  L are infinite. 
Choose f E F with (i, f ( i ) )  E L for all i E w. Then f ,  < f for all a E A. 0 

A trivial consequence of Corollary 11 is that 2" is regular. A conse- 
quence of Corollary 9 (which was first used to show the consistency of a 
counterexample to  the normal Moore space conjecture) is the following. 

12. THEOREM (MA). If X is a subset of the real numbers of cardinality less 
than 2", then every subset of X is a relative G8 set. 

PROOF. Suppose that Y C X  and that { U.}.€- is a countable open basis for 
the real numbers such that no pair of distinct numbers is in the intersection 
of infinitely many U.'s. 

Index Y = {y,},,, and X - Y = { x , } , ~ ~ :  we assume without loss of 
generality that neither is empty and repetitions do not matter. For a E A, 
let B, = { n  E w I y ,  E U.} and let A, = { n  E w I x, E U.}. Define d = 
{A,),EA and 46 = By Corollary 10 there is an L C w  such that 
L fl B, is infinite and L fl A, is finite for all a E A. For n E w define 
L. = u,,, U,. Since each B, n L is infinite, y ,  E n.,,L.. But each 
A, n L is finite so x,e n,,,,L.. Thus Y is a relative G,. 0 

I f  X is infinite, the cardinality of the set of all Gs sets in X is 2': and the 
cardinality of all subsets of X is 2". Thus Theorem 12 yields: 

13. COROLLARY (MA). If w I A < 2", then 2" = 2". 

Another Baire category type theorem is: 

14. THEOREM (MA). Suppose that O <  A < 2', that X is a space with a 
countable basis, and that {X,},EA is a family of nowhere dense subsets of X. 
Then u , , , X ,  is the union of countably many nowhere dense sets. 
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PROOF. Let { U,},,, be a basis for the topology of X: make sure that each 
basis element is indexed with infinitely many different n. Then define 
B, = {m E w I U,,, C U,}. For each a E A define A, = { n  E w I 
U. n Xu# 0). Let 48 = {B, I n E o} and d = {A, I a E A}. By Corollary 9 
there is an L C w  such that L n B, is infinite for all n E o but L n A, is 
finite for all a E A. Thus if Y, = X - u {m E L I m > n } ,  Y. is nowhere 
dense and, for each a E A, there is an n with X, C Y,. Therefore U,,,X, 
is the union of countably many nowhere dense sets. 0 

REMARK. All the consequences 7-14 of MA were in fact proved from 7. 
Actually, van Douwen has shown that the simpler 8 implies 7 (and hence 
7-14). To see this, let d, 48 be as in 7, and let 

9 = { [ w  - n]<" I n E w }  U {{s E [o]'" [ s n B# 0) I B E 48) 

U ( [ o - A ] < " ( A E d }  

(where [I]'" is the set of all finite subsets of I). Apply 8 to  Ed to get an 
L C[wlcW with L - X  finite for all X E  9, and let M = w - u L. It is 
known that 4-6 and 15-17 do not follow from 8. 

Baire category theorems, Bore1 hierarchy, and measure theory type 
theorems go together. One consequence of the following theorem is that 
the union of any family of less than 2" measurable sets of real numbers is 
measurable. We use R for the real line and m(X)  for the Lebesgue 
measure of X. 

15. THEOREM (MA). If 0 5  A < 2" and for each a E A, Xu C R  and 
m (x, ) = 0, then m ( U X, ) = 0. 

PROOF. Suppose that E < 0. We prove Theorem 15 by showing that there is 
an open subset Y of R such that m (Y) 5 E and X, C Y for all a E A. 

Define P = { U C R I U is open and m (U) < E }  and partially order P by 
reverse inclusion. 

Define 48 to be a countable family of open intervals which form a basis 
for R. Let 48* be the set of all finite unions of members of 48. 

If S is an uncountable subset of P, there is an uncountable subset S' of S 
and a 0 < n E o such that U E S' implies that m(S)+ l/n < E. For each 
U E S' choose U* C U such that U* E 46 * and m ( U  - U * )  < lln. Since S' 
is uncountable and 48 * is countable, there must be different terms U and V 
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of S‘ with U* = V*. Then U and V are compatible since m (U U V) < E ; 
thus (P, C)  is ccc. 

For each a E A define D, = { U E P I X,  C U}. Since D, is dense there is 
a compatible Q C P which meets every D,. Let Y = u Q. For all a E A, 
X ,  CQ. Since R is hereditarily Lindelof, countably many members of Q 
cover Y so, if m ( Y ) >  E ,  there is some finite subset Q’ of Q with 
m (  u 0‘)) E .  However, since Q is compatible, there is a Y’E P with 
u Q’ C Y’. Since m (Y’) < E we have a contradiction. Thus m (Y) 5 E and 
Y has all of the desired properties. 0 

An Aronszajn tree is a tree (T, 5 ) of cardinality w 1  having no uncount- 
able level or chain. A Souslin tree is an Aronszajn tree in which every 
antichain is countable (see Chapter B.3). MA + i CH denies the existence 
of a Souslin tree in an especially strong way: 

16. THEOREM (Baumgartner; MA + i CH). Every Aronszajn tree is the 
union of countably many antichains. 

(Such an Aronszajn tree is called special.) 

PROOF. Let (T ,  I ) be an Aronszajn tree. Our aim is to define a function 
q : T + Q (where Q is the set of all rational numbers) such that s < t in T 
implies that q ( s ) < q ( t ) .  Since q - ’ ( r )  for each r E Q  will then be an 
antichain, Theorem 16 will then be proved. 

Let P = { f :  S +Q 1 S is a finite subset of T and s < t in S implies 
that f ( s )  < f ( t ) } .  Define f 2 g in P provided g extends f. For each t E T 
define D, = {f E P I t E domain of f } .  Each D, is dense in P and 1 TI = wi 
so, if P is ccc, there is a compatible P ’ C P  which meets every D,. Thus 
there is a q : T + 0 which extends every f E P’, and this q has the desired 
properties. 

It remains to prove that P is ccc. Assume that C P and that the 
domain off, is S,. We prove that P is ccc by showing that there are a < p 
in w 1  and f E P such that f extends both f ,  and f e .  

By a A-system argument (see Chapter B.3) we can choose an n E w, a 
k E w, and an infinite (uncountable) subset M of u1 such that: 

(a) For all a E M, S,  has n terms so,, sio,. . . , s ~ - ~ , , .  
(b) a# p in M and i E n imply f,(si,) = fe(sie). 
(c) a# p in M and i E k imply s,, = sie. 

(d) a < p in M and i and j in n - k imply that the level in T to which si, 
belongs precedes the level in T to which sje belongs. 
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(e) i E n - k implies that {s,,},~,, is an antichain. 
To see that you can get (e), recall that if M’ is any uncountable subset of 

wI, then { s , , } , ~ ~ ,  must contain an uncountable antichain since otherwise 
M’ (with the induced order) would be a Souslin tree which is denied by 
M A + i C H .  

Suppose that ( i ,  j )  is a pair of numbers in n - k.  We now use Ramsey’s 
theorem: w + (w) :  (see Chapter B.3). Let A = {pairs (a, p )  of terms of 
M I a < p and s,, < s,,} and let B = {pairs (a, p )  of terms of M I a < p and 
s,, P sa,}. There can be no a < p < y all of whose pairs are in A since then 
s,, < s, and sag < s, which by (d) would mean that s,, < s,, would 
contradict (e). So there is an infinite M’ C M all of whose pairs are in B. 

For different i and j in n - k choose successively smaller infinite M’s 
until we have an infinite M *  CM such that for all a < p in M *  and i and j 
in n - k, s,,P s,,. Then, for a < p in M*, f : (S ,  U S,)-*QD defined by f ( s )  
is f , ( s )  for s E S,, and f s ( s )  for s E S, is well defined and belongs to P and 
extends both f ,  and fa. 0 

A similar proof (with a different proof that P is ccc) would show that 
under MA + i C H ,  every Aronszajn tree (T, I) is normal (under the 
topology induced by taking all sets of the form {x E T I s < x I t }  where 
s < t in T as a basis). 

We close with a combinatorial theorem. A family d of sets is called 
almost disjoint if the  intersection of each pair of distinct elements of d is 
finite. 

17. THEOREM (Wage; MA). Suppose that K is regular and w < K 5 A < 2”. 
If d is a family of A almost disjoint countable subsets of K ,  then there is a 
B C K of cardinality K such that 1 U { B }  is almost disjoint. 

PROOF. Let d = {A,},EA. Define P = { (H ,  K) I H is a finite subset of d and 
K is a finite subset of K } .  Partially order P by ( H , K ) z ( H ’ , K ’ )  in  P 
provided H C H’, K c K‘, and ( K ‘ -  K) n ( u H) = 0. 

Let {(H, ,K,)}aEu,  be an uncountable subset of P. By a A-system 
argument (see Chapter B.3), there is an uncountable M C w l ,  n E w, H C A, 
and K C K such that a # p in M implies that H, n H, = H and K,  f l  K,  = 
K,  and a E M implies that K,  - K has n terms. Observe that { K ,  - K}, ,M 
are disjoint and { u (Ha - H ) } a E M  are almost disjoint. Let C be any 
infinite countable subset of M. Since each u U E c H ,  is countable and 
{K ,  - K } O I E M  are disjoint, we can choose an L C M such that ( L  I > n and 
(U,,,UH,)~(U,,,K,-K)=O. Since ( L I > n ,  I K , - K ( = n  for all 
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a E C, and { u (H,  - are almost disjoint, there is an a E C and 
/3 E L such that (K,  - K) rl ( u (H,  - H)) = 0. Hence (H,, K , )  2 
((Ha U H , ) ,  ( K  U K, ) )  and (H,, K O )  2 ( (H,  U H,),  (K, U K,)) .  Thus P is 

For a E A, let X, = {(H,  K ) E  P I a E H} and, for /3 E K let Ye = 
{(H,  K )  E P I ( K  - B) rl K #  0). Since both X, and Ye are dense in P for all 
a E A and /3 E K ,  there is a compatible Q which meets every X, and Y,. 
Let B = u { K  C K  I ( H , K ) E  a}. Since Q rl Y,#Bfor all /3 E K,  IBJ = K. 

If a E A, there is an (H,  K) E Q f l  X,. If ( H f ,  K') is any other member of 
Q, there is (H", K") E P with (H,  K) L (H",  K") and ( H f ,  K') L (H", K"). 
Since (K" - K) rl A, = 0 and K' C K", K' rl A, C K. Thus B r l  A, C K so 
B f l  A, is finite. 

ccc. 

From this mixed bag of theorems can we generalize about when we 
should expect M A  to  be useful? In topology M A  + i CH can be used to 
construct a variety of normal but not collectionwise normal spaces. M A  can 
be used to deny the existence of certain pathologies in ccc spaces. M A  
often has something to say about problems involving compact Hausdorfl 
spaces. For instance many of the traditional theorems about /3N (the 
Stone-eech compactification of the integers) proved using CH have a more 
general version proved using only MA. Baire category and measure theory 
theorems proved traditionally for countable sets can often be extended to 
sets of cardinality less than 2". And in any field of mathematics when one 
would like to prove a theorem for o, sets and one knows an inductive 
proof of the theorem for countable sets, there is a natural setup for 
applying (MA + -I CH). The difficulty is in proving that this natural partial 
order is ccc. It may not be ccc, in which case M A  may not be applicable. 
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