Mecânica Quântica II (4302404)

Lista de Exercícios Unidade 2 2º Semestre de 2023 Lista de Exercícios 2b

1) Dados dois sistemas A e B que não interagem entre si, mostre que a correção de 1ª ordem em Teoria de Perturbação para a energia do sistema total AB é extensiva, ou seja, pode ser escrita como soma das correções de 1ª ordem para a energia dos sistemas individuais:

$$E^{(1)}$$
0 AB = $E^{(1)}$ 0 A + $E^{(1)}$ 0 B

2) Considere um poço de potencial infinito

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V; \quad V = \begin{cases} 0 & \text{se } 0 < x < a \\ \infty & \text{caso contrário} \end{cases}$$

ao qual adicionamos uma perturbação do tipo delta $H' = \lambda \delta(x - a/2)$.

Obtenha a energia corrigida em 1° ordem.

3) Dados o seguinte hamiltoniano H_0 e a perturbação H'

$$H_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2E & 0 \\ 0 & 0 & -E \end{pmatrix}, \ H' = \begin{pmatrix} 0 & \sigma & 0 \\ \sigma & 0 & \sigma \\ 0 & \sigma & 0 \end{pmatrix}$$

calcule a energia corrigida até a 1° ordem não nula.

4) Para um oscilador bidimensional isotrópico

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2(x^2 + y^2)$$

com uma perturbação $H^{'}=\lambda xy$, obtenha a 1° correção não nula para a energia do estado fundamental e para o primeiro estado excitado.

- 5) Considere um átomo de hidrogênio localizado em uma região do espaço onde há um campo elétrico ε uniforme apontando na direção z, de modo que a energia potencial do elétron é dada por $V_S = -e\varepsilon r\cos\theta$.
 - a) Mostre que o estado fundamental (n = 1) não é afetado por esta perturbação, em primeira ordem.
 - b) O primeiro estado excitado (n=2) é quatro vezes degenerado: $\psi_{200}, \psi_{211}, \psi_{210}$ e ψ_{21-1} . Usando a teoria de perturbação para estados degenerados, determine as correções para a energia (Efeito Stark).
 - c) Determine os autoestados correspondentes às correções encontradas no item anterior e calcule o valor esperado do momento de dipolo $(\vec{p} = -e\vec{r})$ nestes estados.
 - 6. Mostre que $S_z = \frac{\vec{J} \cdot \vec{S}}{J^2} S_z$.
 - 7. Quais são os possíveis valores do momento angular total para os estados ¹S, ³P e ²D?

- 8. Considere que um átomo no estado ²D (L=2, S=1/2) é submetido a um campo magnético. Obtenha os desdobramentos em sub-níveis nos casos
 - a) Zeeman (campo fraco);
 - b) Paschen-Back (campo forte).
- 9. Obtenha o valor médio < **S.L** > para os níveis $^2D_{5/2}$ e $^2D_{3/2}$ e discuta sucintamente o desdobramento de spin-órbita dos estados 2D .
- 10. Considere um átomo de hidrogênio no estado fundamental na presença de um campo magnético uniforme $\mathbf{A} = (1/2) \mathbf{B} \mathbf{x} \mathbf{r}$.
 - a) Obtenha o desdobramento do estado fundamental em primeira ordem em B;
 - b) O termo $e^2A^2/2mc^2$ no hamiltoniano dá origem a uma contribuição diamagnética χ_d . Compute χ_d para o estado fundamental escrevendo a correção da energia devido a esse termo como $\Delta E = -(1/2) \chi_d \mid B \mid^2$.
- 11. Obtenha as possíveis transições entre os níveis ³S e ³P nos casos
 - a) Efeito Zeeman normal (sem considerar spin);
 - b) Efeito Zeeman anômalo (campo fraco);
 - c) Efeito Paschen-Back (campo forte).

Mostre para cada caso os seus resultados em um diagrama de níveis explicitando as transições permitidas e suas correspondentes polarizações.