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* |n some situations, there may be more than one source of heterogeneity
among experimental units



Introduction

» The Latin Square Design is an appropriate design for environments
heterogeneous experiments

» |In the Latin Square Design, in addition to the principles of repetition and

randomization, the principle of local control is used twice to control the effect
of two factors

= More control of experimental units



Introduction

= To control this variability, it is necessary to divide the experimental units into
homogeneous blocks of experimental units in relation to each controlled
factor



Latin Square

Design Characterization

= |f there are two gradients, in perpendicular directions, blocking factors can be
used to simultaneously control both sources of variation

= Physical gradients in the field plot
» Other (orthogonal) experimental sources of variation
= Treatments of interest

When there are two main sources of variation that can be controlled



Latin Square

Example

* Field trials in which the experimental error has two fertility gradients running
perpendicular each other

Gradient 2

Gradient 1



Experimental Design Layout
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Experimental Design Layout

» Consider a competition experiment with 4 sugarcane varieties in which the
experimental area presents a soil fertility gradient in two directions.

Column1 Column2 Column3 Columnd4
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Row 2
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Row 4




Latin Square

Description of the Design

With the Latin Square design you are able to control variation in two directions

» Treatments are arranged in rows and columns

» Each row contains every treatment

» Each column contains every treatment

= The total number of experimental units is thus t# (t t is the number of treatments)

= This is a square design



Latin Square

Description of the Design

» The number of treatments is equal to the number of repetitions

= This design is advisable when the number of treatments varies between 3 and
10

= But, for 3 and 4 treatments, only when the experiment can be repeated in
several Latin squares

= |t has more efficient local control than the randomized block design (horizontal
and vertical control)



Casualization in the Latin Square Design

= The treatments are distributed within the rows, so that each column also
contains all the treatments



Latin Square

Casualization in the Latin Square Design

= The treatments are distributed within the rows, so that each column also
contains all the treatments
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Latin Square

Casualization in the Latin Square Design

* Then, rows are then randomly distributed among themselves, and then the
columns
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Casualizing the lines (2, 4, 5, 1, 3)



Latin Square

Casualization in the Latin Square Design

Final square
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Casualizing the columns (3, 5, 1, 4, 2)



Casualization in the Latin Square Design

= 3x3 Latin Square
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Latin Square

Advantages of the Latin Square Design

= You can control variation in two directions

= Hopefully you increase efficiency as compared to the RCBD




Latin Square

Disadvantages of Latin Square Design

» The number of treatments must equal the number of replicates
» The experimental error to increase with the size of the square

= Small squares have very few degrees of freedom for experimental error



Latin Square

Disadvantages of Latin Square Design

» Effect of the Size of the Square on Error Degrees of Freedom

SOV Df 2x2 3x3 4x4 5x5 8x8
Rows -1 1 2 3 4 7
Columns -1 1 2 3 4 7
Treatments | r-1 1 2 3 4 7
Error (r-1)(-2) |0 2 6 12 42
Total -1 3 8 15 24 63

The experimental error is likely to increase with the size of the square




Latin Square

Statistical Model

» The statistical model for a latin square design is written as:
Vijk =M+ T +Vi+ B + Vi + &k

where Y;j is the observed response, u is the overall mean, 7; is the treatment
effect, B is the row effect, yy is the column effect and &; j is the experimental error



Statistical Model

= One or both of the blocking factors can be treated as random (Mixed Models)

» Treatment effects are usually considered fixed



Latin Square

Statistical Model

= |f rows and columns are random, we assume that:

We assume that:

B;~N(0, 05)
- ]/RNN(O, O')g
" el-jk~N(O, O'ez)

= [, vk and e;j are all independent of each other



Latin Square

Analysis of Variance

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

Rows t—1 SSRow MSgrow = SES%T"
Columns t—1 SScol MScol = %
Treatments ¢t —1 SSTrt MST = Effl"

Residuals (£t —1)(t—2) SSpes  MSkes = =ity
Total t2 —1 SSotal

» There are (t — 1)(t — 2) degrees of freedom for the residual
= More treatment levels increase the residual degrees of freedom, but require a larger
experiment



Latin Square

Analysis of Variance

Source of Degrees of Mean Expected F'-Statistic
Variation Freedom Square Mean Square

Rows t—1 MSRow O2 + itr,rg

Columns t—1 MScol o2 + t{'_l':?r,

Treatments ¢ —1 MSte of+:55>,77 F= %;;

Residuals  (t—1)(t—2) MSge o072
Total t? —1

The F-test for treatment effects is not affected if rows and/or columns are fixed



Let’s Practice 01!

» The first exercise data set consists of stem dry weight (in g,
log10 scale) of different sunflower genotypes

= Six genotypes, denoted A through F were grown in a
greenhouse according to a latin square design

» These data come from Povin, C (1993) ANOVA: Experiments in
Controlled Environments. Design and Analysis of Ecological

Experiments. Ed. SM Scheiner, Ed. J Gurevitch. Chapman &
Hall. 46-67.



Let’s Practice 01!

Use the R function read.csv to import the data Tb D,/O:

Fit the model with fixed (and/or random) effects

» Check if model assumptions are met

Build the ANOVA table and test the null hypothesis of no difference between
genotypes

= Use multiple comparisons to assess pairwise differences



log_dry_weight

b=
=
1

=
LT
l

-1.0

o

| | | | |
C D A E B

reorder(genotype, log_dry_weight)



log_dry_weight
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log_dry_weight
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Let’s Practice 01!

= Fit the model with fixed (and/or random) effects

#F1xed Model

fm <- Tm(log_dry_weight ~ row + column + genotype, data = dados)

anoval(fm)

Analysis of vVariance Table

Response: log_dry_weight

F wvalue Pr(=F)

Df Sum Sq Mean Sg
row 5 0.73072 0.146145
column 5 1.25690 0.251350

4.2691 0.0083606 **
7.34531 0.0004727 ###

genotype 5 0.57970 0.115939
Residuals 20 0.068467 0.034.233

Signif. codes: 0 ****° (_ 001

"fm" used to refer to an adjusted model

3.3867 0.0225142 *

L ]

0.01 *** 0.05 °.

0.1 °

1



Let’s Practice 01!

= Fit the model with fixed (and/or random) effects

= Only genotype as fixed

library(ImerTest)
fme <- Tmer(log_dry_weight ~ genotype + (1 | row) + (1 | column), data = dados)
anoval(fme)

> fme <- Tmer(log_dry_weight ~ genotype + (1 | row) + (1 | column), data = dados)
= anovalfme)
Tvpe IIT Analvsis of Varijance Table with Satterthwaite's method

sum Sg Mean Sq NumDF DenDF F value Pr(=F)
genotype 0.5797 0.11594 5 20 3.3867 0.02231 *

Signif. codes: 0 “#***' (_001 ***' 0.01 *** 0.05 .7 0.1 * " 1

The package “ImerTest” is used to perform statistical hypothesis testing on linear mixed
models fitted with the Ime4 package



Let’s Practice 01!

= Multiple Comparisons

library(emmeans)
fm_means <- emmeans(fm, "genotype™)
1

pairs (fm_means)
plot(fm_means, comparisons = TRUE)
cld(fm_means, adjust = "tukey", Letters = letters)

= The emmeans function, short for "Estimated Marginal Means”: used to calculate and
extract estimated marginal means after fitting a statistical model|



Let’s Practice 01!

= Multiple Comparisons

> library(emmeans)

> fm_means <- emmeans (fm,

> pairs(fm_means)
contrast estimate
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"genotype')
df t.ratio p.value
20 -1.208 0.8280
20 1.853 0.4570
20 0.531 0.994;2
20 -0.391 0.99586
20 2.136 0.3095
20 3.061 0.0591
20 1.739 0.5235
20 0.817 0.9609
20 3.344  0.0330
20 -1.321 0.7702
20 -2.244 0.2622
20 0.283 0.9997
20 -0.922 0.9361
20 1.604 0.6052
20 2.527 0.1632

of: row, column
comparing a family of © estimates



= Multiple Comparisons
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