Protein Phosphatases

-ancient enzymes essential to cell signaling
and cellular regulation
-new targets for Pharmaceuticals

137 = Protein kinase inhibitors (launched)
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o Proteins unit of evolution
Protein Phosphatases (PPPs) (anillions of yrs for 1% change)
are highly conserved

. Histone H4 400
through evolution among Calmodaulin 350
Histone H3 RR]|)
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Protein Phosphorylation

rapid and reversible biochemical reactions
Phosphorylation
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Protein phosphorylation: Kinases & phosphatases

Protein Tyr kinases Protein Ser/Thr kinases
KINASE superfamily

~ 500 enzymes

90 PTK > 400 PSK

Substrate Substrate-Tyr-P Substrate Substrate-Ser/Thr-P

PTP

Protein Tyr(P) phosphatases

~90 \Dual-specificity phosphatases | ~90 PPP
PTP JDUSP

PIP phosphatases (PTEN)

Protein Ser(P)/Thr(P) phosphatases




Protein Ser/Thr Phosphatases

Phosphoprotein phosphatases
(PPP family)



Three families of Ser/Thr Protein Phosphatases
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The PPP Family of Protein Ser/Thr Phosphatases
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Inhibiting PPPs

PP-1 and PP-2A are inhibited by okadaic acid (shellfish toxin) and microcystin (cyclic
peptides produced by cyanobacteria which are potent hepatotoxins).

Also PP-4, PP-5 and PP-6 are inhibited, while PP-2B 1s inhibited by higher (mM)
concentrations.

PP-2B is a target of cyclosporin A and FK506 (immunosuppressants)

Cyclosporin A (CsA) is a lipid soluble fungal undecapeptide (Mr=1,203) widely used
in transplantation for graft rejection; functions as blocker of T cell activation or
proliferation. CsA binds cyclophilin (CyPA) and this complex binds B subunit of
calcineurin in presence of calcium/calmodulin to inhibit PP activity.

FKS506 1s a bacterial (Streptomyces) product, a macrocyclic lactone structurally
unrelated to cyclophilin that complexes with FKB binding protein (FKBP12 from the
TGF- receptors signaling) to inhibit calcineurin PP activity.



Natural Toxins from Diverse Sources
Bind and Inhibit PPP Protein Phosphatases
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Protein Ser/Thr Phosphatases Are Dominant
over Protein Kinases

(most proteins are maintained in a dephosphorylated state!)
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Cell Signaling Technology 2002 catalogue (pg. 15): Western blot analysis of whole cell lysates of Jurkat
cells,.untreated with 0.1uM calyculin A for 20 minutes prior to lysis, using Phospho-Thr antibody.



Catalytic Subunit of Protein Phosphatase-1 (PP1)

PP1, the most widely expressed protein Ser/Thr phosphatase that 1s responsible formore
than 50% of all dephosphorylation reactions in humans...
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Mechanism of Phospho-Ester Hydrolysis by PPP Phosphatases:
in-line attack of metal-activated hydroxide, with trigonal bipyramid intermediate and

inversion of stereochemistry protonation of the leaving alcoholic group by the His of
the active site.
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Type-1 Protein Phosphatase (PP1)

1. Bi-metallic active site with Fe and Zn
2. 3D structure - beta sheet and alpha helix clusters

3. Isoforms a, v1, y2, o

differences mostly in C terminal, allow specific antibodies
alpha NPGGRPITPPRN--SAKAKK
gamma --ATRPVTPPRGMITKQAKK
delta NSG-RPVTPPRTANPPK-KR

4. > 200 regulatory subunits

5. Toxins - microcystin, okadaic acid, calyculin A bind at active site
(3D structures)



Protein Ser(P)/Thr(P) Phosphatase - PP1

many different regulatory-targeting subunits
complex with common catalytic subunit

glycogen
metabolism

dendritic spines

myosin - cytoskeleton protein synthesis



Type-2A Protein phosphatase (PP2A)

Catalytic subunit

1. Bimetal center Fe::Zn and catalytic mechanism same as PP1
2. 3D structure...known in complex with A and in ABC

3. Isoforms o, B 10:1 ratio, essential for development

4. DYFLcooy motif at C terminus conserved
phosphorylation - PTKSs, eg. Src, JAK
methylation - PMT and PME, alters subunit association

5. Toxins — MCLR and OA bind at active site.
Differences between PP1 and PP2A in $12-$13 loop

=>differences in inhibitory doses



Protein phosphatase 2A describes a panoply of phosphatases
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Diversity in regulation Variation in regulatory B subunits

The common heterotrimeric form of PP2A contains a pair of the catalytic subunit
(C), the structural A/PR65 subunit and a regulatory/targeting B subunit (at least 15
distinct B subunits are known).

Various cellular and viral proteins interact with PP2A components as indicated...

Virshup, DM (2000) Current Opinion in Cell Biol 12:180-185

PP2A can be > 80 different “enzymes”




The Structural Basis of Substrate Recognition by PP2A




PP2C=Mn%*'Mg?*-dependent PPase (PPM)

A. Catalytic subunit

1. unrelated to PPP but bimetallic Mg:Mn active center

2. 1soforms a, B1, B2, etc.
3. many new family members in plants genome

B. Regulatory subunits - none?
C. Inhibitor Proteins - none?

D. Substrates

1. CDKs

2. the kinase activation loop
3. PI3K

4. Glycogen synthase
...others



Human Protein Phosphatase 2C
Metal (Mn?")-dependent Phosphatase (MPP)

Abscisic Acid—Mediated Plant
Stress Responses

w/o ABA

Stress response



Protein Tyrosine Phosphatases
(PTPS)



A Class | Cys-based PTPs .
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PTP(-like) Phosphatases
in The Human Genome
(107 genes):

~90 active enzymes

transmembrane

cytoplasmic

assorted others

Cell (2004) 117:699



Crystal structures of six PTP domains show a
conserved fold and Co-backbone

Superimposition of PTP1B (magenta), RPTPa (gray), RPTPpu (red), LAR (blue), SHP1 (green) and SHP2 (yellow).

Andersen et al Mol. Cell. Biol. 2001



Figure 4 Structure of protein tyrosine phosphatase 1B. The PTP loop (dark shading) and WPD
loop are indicated, as is Cys 215 and Arg 221 of the PTP loop and the position of the Ca-atom of
Tyr 46 of the phosphotyrosine recognition loop.




The PTP1B active site

Phosphotyrosine
(Substrate)

Aspl81 @ WPD-loop

PTP-loop




Catalytic 2-step Mechanism of PTPs
PIP Family Mechanism

Phosphate
release




Sub-Families of Tyr Phosphatases (PTPs)
1. Transmembrane PTPs - the prototype CD-45

a. common features (most)
1. single TM helix to span membrane
2. double PTP domain, with activity in N terminal (D1) domain
3. large extracellular domains, related to cell-cell adhesion
4. inhibited by dimerization? Oxidation?
5. activators of src kinases by Tyr527 dephosphorylation

b. differences
1. tissue and developmental expression
2. substrate specificity, but few targets known knockouts and
trapping mutants
3. inhibitors of active sites as pharmaceuticals
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Receptor PTPs catalytic activity is regulated by dimerization:

-Monomeric RTKs exhibit weak basal activity. Ligand binding of RTKs leads to
dimerization, trans-autophosphorylation, and activation.

Monomenc Heseptor TR Limene Recaplor PFTE

Inactive

Weiss, A and Schlessinger, J (1998) Cell 94:277



Receptor PTPs catalytic activity is regulated by dimerization:

-Monomeric RPTPs exhibit enhanced catalytic activity. Ligand binding of RPTPs leads
to dimerization of membrane-proximal PTP domains. ‘Inhibitory wedge’ sequences
from each phosphatase domain interact with the other catalytic domain, preventing
substrate binding.

Weiss, A and Schlessinger, J (1998) Cell 94:277



2. Cytosolic PTPs, the prototype PTP1B

a. common features
1. single PTP domain, plus targeting sequences
2. specificity for P-Tyr vs P-Ser
3. Phospho-Cys-enzyme intermediate
4. Substrate trap by conformational movement
5. Oxidation-reduction control mechanism

b. differences
1. tissue expression
2. specificity for substrates
3. Inhibition by small molecules



InsR Signaling
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Co-Crystal of PTP1B with Chemical Inhibitor - Cmpd?2




3. Dual Specificity Phosphatases, the prototype VH1

a. mechanism common with PTPs, i.e. Cys-based catalytic site,
which is shallow enough to accommodate p-Ser/p-Thr substrates

b. the MKPs (DUSPs), MAP kinase phosphatases
binds to MAPK at site using N-terminal domain through CH2
motif, and this activates the MKP terminal catalytic domain
several members : CL100, MKP1, 2, 3,5, 7

c. the Cdc25 family of CDK phosphatases

low activity phosphatase with extreme specificity

large inhibitory domain, activated by phosphorylation

not really a family member- it's like Rhodanese (Thiosulphate
transferase: converts CN- in SCN-)



The Dual Specificity Phosphatases
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Dual-Specificity Phosphatase: DUSPs
MAPK Phosphatase: Catalytic domain reacts with pTyr-X-pThr

MKP signature sequence 1s HC XXXXXR:

-Nucleophilic attack of cysteine thiolate anion on MAPK P-Tyr
-Aspartate in acid loop donates proton

-Arginine coordinates phosphate group of P-Tyr or P-Thr
-Histidine decreases pKa of cysteine so it exists as anion




MAPK Phosphatases : Use of Docking + Catalysis

A K

Inactive MAPK




PTP Inhibitors

PTP Inhibitor Design (e.g. vs. PTP1B for diabetes and Cdc25 for cancer)

pTyr alone insufficient for high affinity binding to PTPs--adjacent residues
contribute to specificity

By analogy, kinase inhibitor specificity determined by binding to region outside
ATP binding pocket--for PTPase, pTyr binding domain is smaller than kinase ATP
pocket (pTyr takes up ~50% of binding pocket)

So small molecule inhibitors:

--Need to bind PTP catalytic domain and another adjacent region unigue to a
specific PTP simultaneously to confer specificity (based on structure PTP1B and
inh. BPPM)

--Need to penetrate cell membranes

A Bidentate Inhibitor

A strategy for creating selective and high-affinity PTP1B inhibitors. Based on the principle of
additivity of free energy of binding, high-affinity ligands can be obtained by linking two
functional groups that bind to the active site (pTyr binding site) and a peripheral site X.
Specificity arises from the fact that site X is not conserved and from the fact that the tethered
ligand has to bind both sites simultaneously. Zhang ZY (2002) Annu Rev Pharmacol Toxicol.
42:209-34
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Cdc235 - not really related to other PTPs

Tyrosine-specific
phosphatases

VH1-like dual C— VHR

specificity
phosphatases

O —C 1O MAP kinase

phosphatase (MKP)

— OO Cdc25

domain 1
% Rhodanese
domain 2
CDKI (CDC2 or p34cdc?) 1s inactive in G1 due to

phosphorylation on Thr14, Tyr15 and Thr161. Critical threshold
concentration of CDK1 at G2/M transition results in increased
dephosphorylation of Thr14, Tyrl5 by , a dual specificity
phosphatase, leading to CDK1 activation.
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