Cinética Química

Perfil: Cinéticos

Velocidade das Reações	Como medimos a velocidade.
Lei da Velocidade	Como a velocidade depende dos regentes.
Leis de Velocidade Integrada	Como calcular o tempo e/ou a quantidade de material formado ou consumido
Meia-Vida	Como 50% dos reagentes são consumidos.
Equação de Arrhenius	Como a constante da velocidade varia com a T.
Mecanismos	Ligação entre a velocidade e os processos na escala molecular.

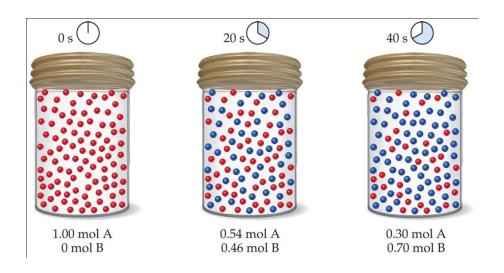
Fatores que Afetam a Velocidade das Reações

Concentração dos Reagentes

Como a concentração dos reagentes aumenta, também há o aumento da probabilidade das colosões.

Temperatura

Em altas temperaturas, as moléculas reagentes possuem uma maior energia cinética, rápido movimento, e mais colisões frequente e com maior energia.


Catálise

Velocidade rxn por mudança do mecanismo

Velocidade das Reações

As velocidades das reações podem ser determinada pelo monitoramento da variação na concentração de ambos os reagentes ou produtos em função do tempo. $\Delta[A]$ vs Δt

Lei da Velocidade Integrada

Considere uma simples reação de $1^{\underline{a}}$ ordem rxn: A \rightarrow B

Velocidade
$$= k \left[A
ight]$$
 Forma Diferencial : $- rac{a \left[A
ight]}{dt} = k \left[A
ight]$

Quanto mais A é consumido conforme tempo t: Integral:

$$-d\left[A
ight] = k\left[A
ight]dt$$
 $\dfrac{d\left[A
ight]}{\left[A
ight]} = -kdt$ $\int \dfrac{d\left[A
ight]}{\left[A
ight]} = -\int kdt$

$$[A]_t = [A]_0 e^{-kt}$$

Lei da Velocidade Integrada

A forma integrada a partir da lei da velocidade de 1ª ordem:

$$[A]_t = [A]_0 e^{-kt}$$

Pode ser rearranjada para dar:

$$ln\frac{\left[A\right]_t}{\left[A\right]_0} = -kt$$

 $[A]_0$ é a concentração inicial de A (t=0). $[A]_t$ é a concentração de A em algum tempo t, durante o curso da reação.

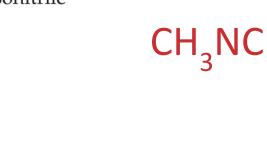
Lei da Velocidade Integrada

Manipulando essa equação produz...

$$ln \frac{[A]_t}{[A]_0} = -kt$$
 $ln [A]_t - ln [A]_0 = -kt$
 $ln [A]_t = -kt + ln [A]_0$

...que fica na forma

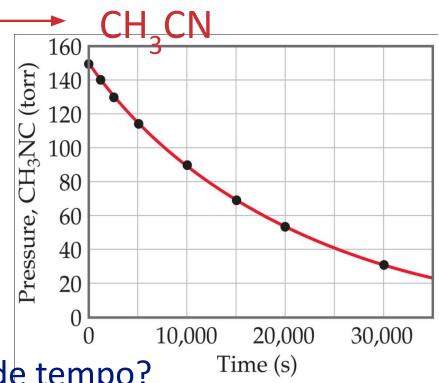
$$y = mx + b$$

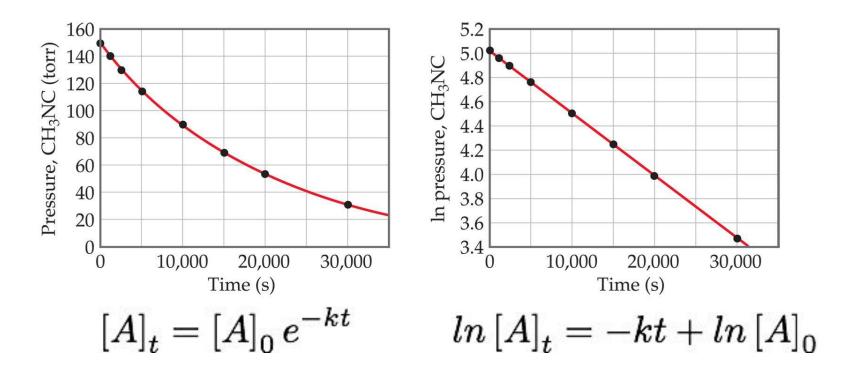

$$ln\left[A\right]_t = -kt + ln\left[A\right]_0$$

Se a reação é de primeira ordem, o gráfico de $ln [A]_t vs. t$ produzirá uma linha reta com uma inclinação de -k.

assim, os gráficos são usados para determinar a ordem de rxn.

Considere o processo em que a Metil isonitrila é convertida em acetonitrila.


Como sabemos que esta é uma reação de primeira ordem?


CH₃NC

Esses dados foram coletados para a reação em 198.9°C.

Será que Velocidade =k[CH₃NC]

É para todos os intevalos de tempo?

- Quando o ln *P* de é graficado em função do tempo, o resultado é uma linha reta.
 - O processo é de primeira ordem.
 - k é uma inclinação negativa: 5.1×10^{-5} s⁻¹.

Processos de Segunda-Ordem

Da mesma forma, integrando a lei de velocidade para processos de segunda ordem em um reagente A:

Velocidade
$$=-rac{d\left[A
ight]}{dt}=k\left[A
ight]^2$$

Rearranjando e integrando:
$$\frac{1}{[A]_t} = -kt + \frac{1}{[A]_0}$$

y = mx + bTambém na forma:

Processos de Segunda-Ordem

$$\frac{1}{[A]_t} = -kt + \frac{1}{[A]_0}$$

Assim, se um processo é de segunda ordem em A, um gráfico de 1/[A] vs. t apresentará uma linha reta de inclinação de k.

Primeira ordem: $ln\left[A\right]_t = -kt + ln\left[A\right]_0$

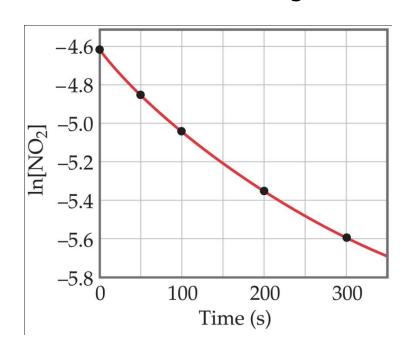
Se a reação é de primeira ordem, o gráfico de $\ln [A]_t$ vs. t produzirá uma linha reta com uma inclinação de -k.

Determinando a ordem da reação

A decomposição de NO₂ em 300 °C é descrita na equação:

$$NO_{2}(g)$$
 NO $(g) + 1/2 O_{2}(g)$

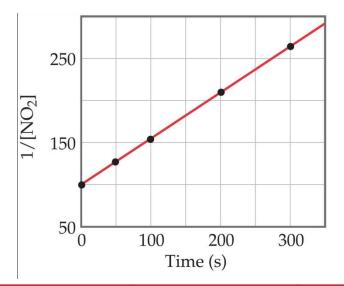
e os dados dessa reação:


Time (s)	[NO ₂], M
0.0	0.01000
50.0	0.00787
100.0	0.00649
200.0	0.00481
300.0	0.00380

Determinando a ordem da reação

Colocando In [NO₂] vs. t produzimos:

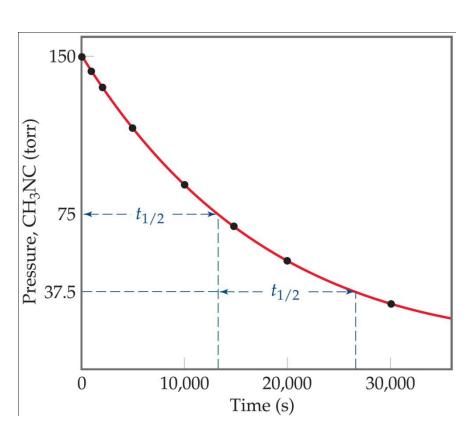
 O gráfico não é uma linha reta, então o processo não é de primeira ordem em [A].


Time (s)	[NO ₂], M	In [NO ₂]
0.0	0.01000	-4.610
50.0	0.00787	-4.845
100.0	0.00649	-5.038
200.0	0.00481	-5.337
300.0	0.00380	-5.573

Não se encaixa:

$$ln\left[A\right]_t = -kt + ln\left[A\right]_0$$

Processos de Segunda-Ordem



$$\frac{1}{\left[A\right]_t} = kt + \frac{1}{\left[A\right]_0}$$

Time (s)	[NO ₂], M	1/[NO ₂]
0.0	0.01000	100
50.0	0.00787	127
100.0	0.00649	154
200.0	0.00481	208
300.0	0.00380	263

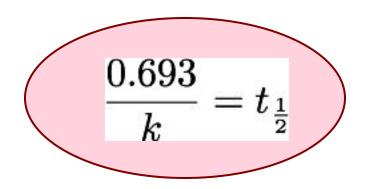
 Essa é uma linha reta. Portanto, o processo é de segunda ordem em [NO₂].

Meia-Vida

- Meia vida é definida como o tempo necesário para que a metade de um reagente seja consumido.
- Por causa da [A] em
 t_{1/2} ser a metade da
 concentração original
 de [A],

$$[A]_t = 0.5 [A]_0.$$

Meia-Vida


Para processos de primeira ordem, coloca-se [A]_t=0.5 [A]₀ na equação integrada:

$$lnrac{0.5\left[A
ight]_{0}}{\left[A
ight]_{0}}=-kt_{rac{1}{2}}$$

$$ln(0.5) = -kt_{\frac{1}{2}}$$

$$ln(2) = 0.693 = -kt_{\frac{1}{2}}$$

NOTE: Para um processo de primeira ordem, a meia vida não depende da [A]₀.

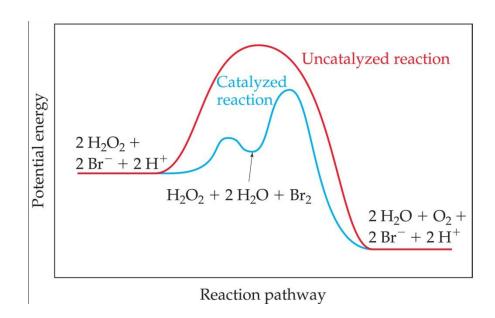
Meia Vida de segunda ordem

Para um processo de segunda ordem, coloca-se $[A]_t=0.5$ $[A]_0$ na equação de 2^a ordem .

$$\frac{1}{0.5 [A]_0} = kt_{\frac{1}{2}} + \frac{1}{[A]_0}$$

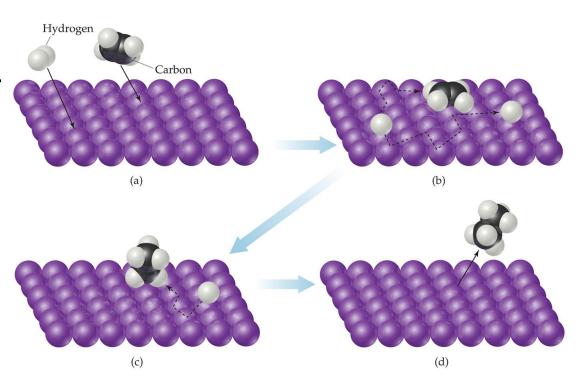
$$\frac{2}{[A]_0} = kt_{\frac{1}{2}} + \frac{1}{[A]_0}$$

$$\frac{2}{[A]_0} - \frac{1}{[A]_0} = kt_{\frac{1}{2}}$$


$$\boxed{\frac{1}{k\left[A\right]_0} = t_{\frac{1}{2}}}$$

Resumo: Cinética

	Primeira ordem	Segunda ordem
Lei da Velocid.	$_{Vel.} = -k\left[A ight]$	Vel. $=-k\left[A\right]^2$
Lei da Velocid. integrada	$ln\frac{\left[A\right]_t}{\left[A\right]_0} = -kt$	$\frac{1}{\left[A\right]_t} = kt + \frac{1}{\left[A\right]_0}$
Meia Vida	$\frac{0.693}{k} = t_{\frac{1}{2}}$	$rac{1}{k\left[A ight]_0}=t_{rac{1}{2}}$
k(T)	$ln(k) = -rac{E_a}{RT} + lnA$	


Catalizadores

- Os catalizadores aumentam a velocidade da reação e diminuem a energia de ativação da reação.
- Os catalizadores alteram o mecanismo pelo qual as reações ocorrem.

Catalizadores

Uma forma do catalisador acelerar uma reação é mantendo os reagentes juntos e ajudar a romper as ligações.

Enzimas

Substrate

Products

Enzyme

Enzyme

Enzyme

Enzyme

Enzyme

- Enzimas são catalizadores em sistemas biológicos.
- O substrato se encaixa no sítio ativo da enzima bem como uma chave se encaixa
 em uma fechadura.

Um catalisador é uma substância que aumenta a velocidade da reação química sem ser consumida no processo.

$$k = A \cdot \exp(-E_{o}/RT)$$

$$E_{a} \downarrow k \uparrow$$

$$A + B$$

$$E_{a} \downarrow k \uparrow$$

$$E_{a} \downarrow$$

$$A + B$$

$$E_{a} \downarrow k \uparrow$$

$$E_{a} \downarrow$$

$$A + B$$

$$E_{a} \downarrow k \uparrow$$

$$E_{a} \downarrow$$

$$A + B$$

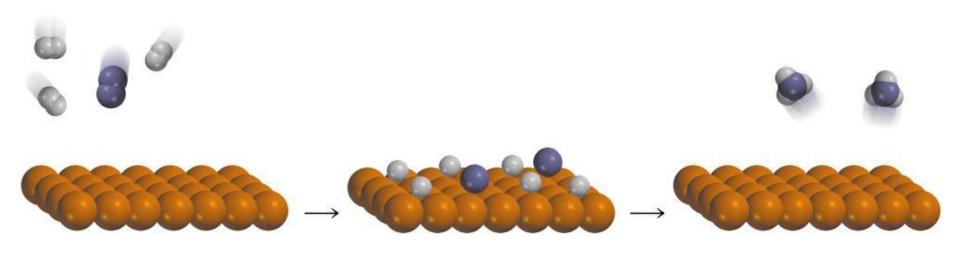
$$E_{a} \downarrow$$

$$E_{a} \downarrow$$

$$A + B$$

$$E_{a} \downarrow$$

$$E_{a}$$

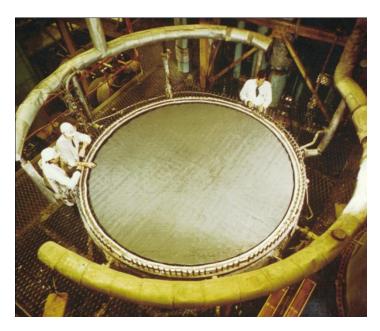

Em uma catálise heterogênea, os reagentes e o catalisador estão em fases diferentes.

- Haber Síntese da amônia
- Processo de Ostwald para produção de ácido nítrico
- Conversores catalíticos

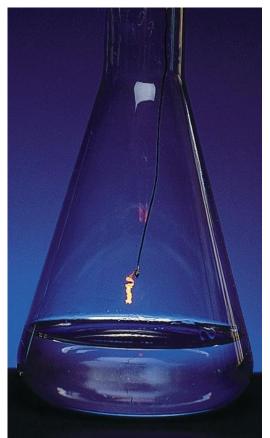
Em uma catálise homogênea, os reagentes e o catalisador estão na mesma fase, geralmente líquida.

- Catálise Ácida
- Catálise Básica

Processo Haber

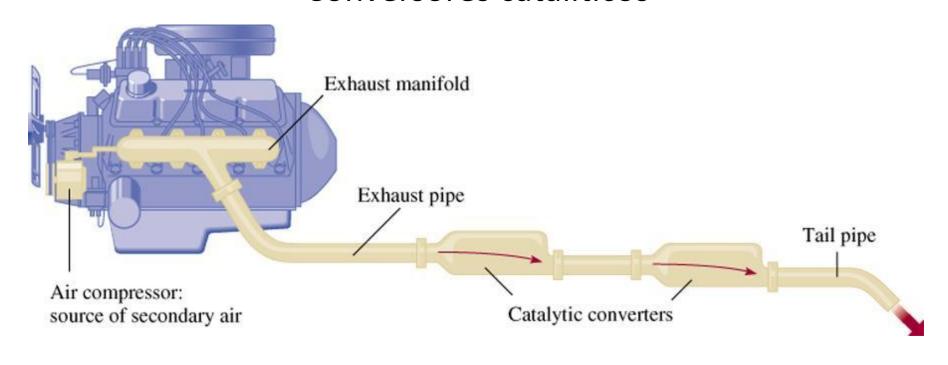

$$N_2(g) + 3H_2(g) \xrightarrow{\text{Fe/Al}_2O_3/K_2O} \rightarrow 2NH_3(g)$$

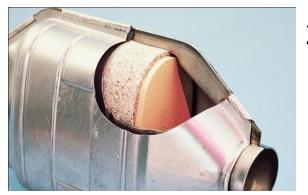
Processo de Ostwald


$$4NH_3(g) + 5O_2(g) \xrightarrow{\text{catalisador de Pt}} 4NO(g) + 6H_2O(g)$$

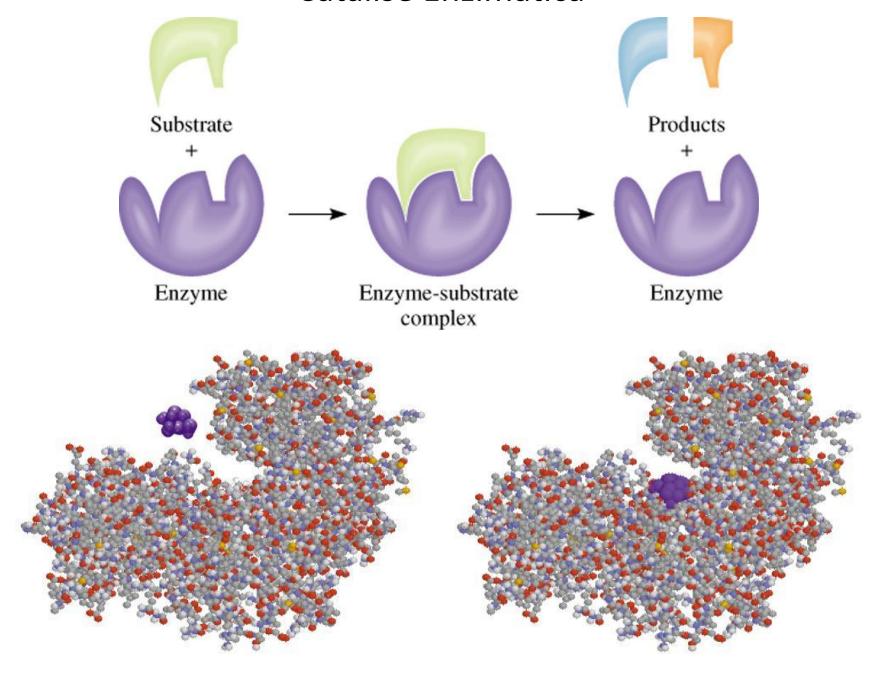
$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

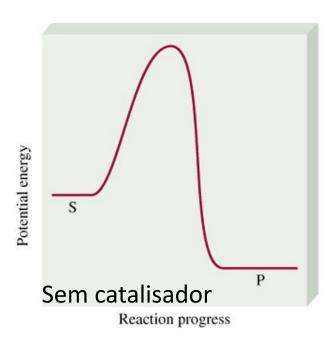
$$2NO_2(g) + H_2O(I) \longrightarrow HNO_2(aq) + HNO_3(aq)$$

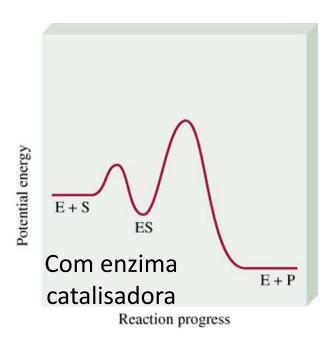


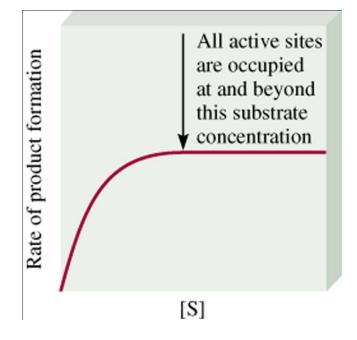

Pt-Rh catalisador usado No processo de Ostwald

Fio Hot de Pt em solução de NH₃


Conversores catalíticos






$$\frac{\text{Conversor}}{\text{catalítico}} > 2N_2 + 3O_2$$

Catálise Enzimática

https://www.youtube.com/watch?v=hGOgK6W51qM

https://www.youtube.com/watch?v=UPen_gbuTOE

https://www.youtube.com/watch?v=m-GYonbxehU