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Signaling via EGF and FGF Receptors
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Signaling pathways that are activated by epidermal growth factor (EGF) or fibro-
blast growth factor (FGF) receptors have been identified and compared (detailed
Connections Maps are available at Science’s Signal Transduction Knowledge
Environment). Both receptors stimulate a similar complement of intracellular
signaling pathways. However, whereas activated EGF receptors (EGFRs) function as
the main platform for recruitment of signaling proteins, signaling through the FGF
receptors (FGFRs) is mediated primarily by assembly of a multidocking protein
complex. Moreover, FGFR signaling is subject to additional intracellular and
extracellular control mechanisms that do not affect EGFR signaling. The
differential circuitry of the intracellular networks that are activated by EGFR and
FGFR may affect signal specificity and physiological responses.

The human genome contains 59 genes that

encode 20 distinct families of receptor tyro-

sine kinases (RTKs) (1). In response to stim-

ulation by specific ligands, RTKs regulate a

great diversity of cellular processes (2), in-

cluding cell survival, proliferation and differ-

entiation, cell metabolism, and cell migration.

Dysfunctions in RTKs and their signaling

pathways have been linked to diabetes, ath-

erosclerosis, severe developmental pathologies,

and various cancers (3). The EGF receptor

(EGFR) family comprises four members de-

signated EGFR, ErbB2, ErbB3, and ErbB4

(4). The intrinsic protein tyrosine kinase (PTK)

activities of these receptors and their abilities

to recruit and activate intracellular signaling

pathways are controlled by members of the

EGF family of growth factors. Although cer-

tain members of the EGFR family can be

activated by several EGF family members

(e.g., EGFR), others do not directly bind any

ligand (e.g., ErbB2) or are devoid of intrin-

sic PTK activity (e.g., ErbB3). Therefore, the

action of ErbB3 and ErbB2 are dependent

upon combinatorial interactions with other

members of the EGFR family that are stim-

ulated by EGF, transforming growth factor a
(TGF-a), heparin-bound EGF (HB-EGF), or

other EGF family members (4).

The fibroblast growth factor receptor

(FGFR) family also comprises four RTKs de-

signated FGFR1, FGFR2, FGFR3, and FGFR4

(5). An important hallmark of FGFRs is that

the diversity of this RTK family is controlled

by alternative RNA splicing, resulting in the

generation of multiple splice variants (6) in

the extracellular domains that exhibit dis-

tinct tissue expression patterns and differen-

tial ligand-binding characteristics toward the

22 known FGFs. Consequently, a single Fgfr

gene can encode two receptors that exhibit

different FGF-binding characteristics (6) and

that are expressed in different tissues (i.e.,

mesenchyme, epithelium).

In this Viewpoint, we compare key fea-

tures underlying the action of EGFRs and

FGFRs that may lead to their unique pleio-

tropic responses and physiological roles. This

comparison may provide insights into one of

the key open questions in cell signaling, that

is, how signaling specificity is generated fol-

lowing stimulation of a common complement

of signaling pathways by a given RTK.

Before ligand stimulation, intramolecular

interactions within the extracellular domains

of each of the EGF and FGF receptors main-

tain the two receptors in an inactive mono-

meric state (7). Both receptors are activated

by ligand-induced dimerization, tyrosine auto-

phosphorylation, and stimulation of their in-

trinsic PTK activities (2). Moreover, similar

repertoires of intracellular signaling pathways

are stimulated by both RTKs (2). Yet, in-

spection of the various steps involved in the

action of the two receptors shows that sig-

naling through FGFR involves additional lay-

ers of control that take place both inside and

outside the cell.

EGFR is activated by the binding of one

type of ligand molecule (i.e., EGF, TGF-a)

(2, 4); in contrast, the activation of FGFR

involves two different ligands, FGF and hepa-

ran sulfate proteoglycan (HSPG), that act to-

gether to activate FGFRs (2, 8). The binding

of each ligand alone is insufficient for stabi-

lization of FGFR dimerization, a prerequisite

for tyrosine autophosphorylation and stimu-

lation of the intrinsic PTK activity. HSPG in-

creases the binding affinity of FGF to FGFR

and stabilizes FGFR dimerization and acti-

vation. Furthermore, it is thought that FGF

bound to HSPG in the extracellular matrix

may provide a store of FGF molecules.

Comparison of EGFR and FGFR signal-

ing pathways that are summarized in the

STKE Connection Maps (9, 10) shows that,

for the most part, a similar repertoire of sig-

naling proteins are recruited and activated by

the two receptors. Yet, the regulation of the

signaling pathways by FGFR is less direct,

involving additional layers of control. In the

case of EGFR, tyrosine autophosphorylation

sites on the receptor function as the main

platform for recruitment of signaling com-

ponents that are activated by EGF signaling

(2, 11). In addition, some signaling pathways

are activated by accessory proteins that are

tyrosine phosphorylated by EGFR (Fig. 1).

In contrast, a docking protein (FRS2) that is

tyrosine phosphorylated by FGFR (12) re-

cruits the lion_s share of the signaling compo-

nents that are activated by FGF stimulation,

and only a few signaling pathways are ac-

tivated by direct interactions with the FGFR

(Fig. 1).

Tyrosine autophosphorylation sites lo-

cated in the C terminus of EGFR (13) func-

tion as binding sites for the adaptor proteins

Grb2, Nck, and Shc; for phospholipase Cg
(PLC-g); and for the transcription factor,

STAT1 (9). Grb2 molecules are recruited by

EGFR directly and indirectly through tyrosine-

phosphorylated Shc, leading to the activation

of the Ras–mitogen-activated protein kinase

(MAPK) cascade (9, 14). Recruitment to the

membrane and tyrosine phosphorylation en-

hance the enzymatic activity of PLC-g, leading

to the formation of two second messen-

gers, diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP
3
). IP

3
releases Ca2þ from

internal stores, which in turn acts in concert

with DAG to translocate protein kinase C

(PKC) to the cell membrane and stimulate its

enzymatic activity (9). PKC then phospho-

rylates and regulates the activity of many pro-

teins, including EGFR; phosphorylation of a

threonine residue (Thr654) in the juxtamem-

brane domain modulates EGF binding af-

finity and kinase activity of the EGFR (15).

Nck may link the EGFR with the actin cyto-

skeleton (9), and tyrosine phosphorylation of

STAT1 leads to transcription of genes that

regulate cell cycle arrest (9). In addition, EGF

stimulates a cell survival pathway mediated by

phosphoinositide 3-kinase (PI3K) and the pro-

tein kinase Akt (16) by an indirect mecha-

nism in which tyrosine phosphorylation of

the docking protein Gab1 or ErbB3 by EGFR

leads to recruitment and activation of PI3K.
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Although the signaling pathways acti-

vated by FGFRs substantially overlap with

those activated by EGFRs, the pathways are

activated through the formation of a multi-

docking protein complex induced by tyrosine

phosphorylation. Tyrosine phosphorylation of

FRS2 leads to recruitment of four Grb2 mol-

ecules directly and two Grb2 molecules in-

directly through tyrosine phosphorylation of

the protein tyrosine phosphatase Shp2 in com-

plex with FRS2. Grb2 molecules bound to

FRS2 recruit the nucleotide exchange fac-

tor SOS, leading to the activation of the Ras-

MAPK signaling cascade. In addition, Grb2

recruits the docking protein Gab1, which is

tyrosine phosphorylated by FGFR, leading to

recruitment and activation of the PI3K-Akt

cell survival pathway (16, 17).

Differences in the mechanisms of nega-

tive regulation between FGFR and EGFR are

also apparent, despite involving similar reg-

ulatory elements. The ubiquitin ligase Cbl

interacts with EGFR directly and indirectly

through Grb2, promoting ubiquitination and

degradation of EGFR (18). Grb2, bound to

Cbl, does not interact directly with FGFR

but, rather, binds to tyrosine-phosphorylated

FRS2, promoting ubiquitination and degra-

dation of FRS2 and FGFR (19). FRS2 is also

the site of an additional negative-feedback

loop from MAPK, which is absent in the

EGFR pathway. The binding of tyrosine-

phosphorylated Sprouty to the SH2 domain

of Grb2 sequesters Grb2 and prevents its

binding to the activated EGFR or FRS2,

causing attenuation of the Ras-MAPK cas-

cade in EGF and FGF signaling (18, 20).

However, it was proposed that Sprouty may

play a bimodal negative and positive role

in regulation of signaling through EGF and

other RTKs (20).

Although both EGFR and FGFR stimu-

late a similar repertoire of canonical intra-

cellular signaling pathways, signaling by

FGFR is more complex and subject to addi-

tional control mechanisms. The less strin-

gent control of EGFR activity may explain

why overexpression of EGFR and ErbB2

occurs frequently in different cancers (3).

If signaling pathways are viewed as com-

ponents of intracellular networks, the spec-

ificity generated by an intracellular network

may be affected by layers of control that

may influence signal duration, signal am-

plitude, and spatial localization of key reg-

ulatory elements. In addition, inhibitory

signals promoted by cross talk between RTKs

(21); by protein phosphatases, receptor

endocytosis, and degradation; and by other

negative-feedback mechanisms may also

affect signal specificity and biological

outcome (22).
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Fig. 1. Cell signaling by EGF or FGF receptors. An abbreviated version of
signaling by EGFR (left) and FGFR (right). Detailed description is
presented in STKE Connections Maps (9, 10). Stimulatory and inhibitory
stimuli are depicted in black and red, respectively. Abbreviations: HSPG,

heparan sulfate proteoglycan; E2Ub, ubiquitin-conjugating enzyme; IP3,
inositol 1,4,5-triphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate.
Additional abbreviations are in the text and in the Connections Maps
(9, 10).
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