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been shown to be causally involved in the
development and progression of many
human cancers. Consequently, RTKs and
their growth-factor ligands have become
rational targets for therapeutic intervention
using humanized antibodies and small-
molecule drugs. In recent years, RTK-based
cancer therapies — for example, for the
treatment of metastatic breast cancer, gas-
trointestinal stromal tumours and non-
small-cell lung cancer — have reached
widespread clinical use and have thereby
demonstrated the power of gene-based
therapy development.

Early discoveries
The beginning of growth-factor research can
be traced back to 1952, when Rita Levi-
Montalcini in the laboratory of Viktor
Hamburger discovered a secreted factor in
mouse tumour cells that potently promoted
neurite outgrowth in chicken embryos1 (TIME-

LINE 1). This protein — nerve growth factor
(NGF) — was purified from snake venom
and mouse salivary-gland extracts2,3 by Levi-
Montalcini and Stanley Cohen in 1957. Five
years later, following on from the work on
NGF, Cohen isolated and characterized
another salivary-gland protein that induced
precocious eyelid opening and tooth eruption
when injected into newborn mice4. This novel
bioresponse-mediating substance was termed
epidermal growth factor (EGF), as it stimu-
lated the proliferation of epithelial cells5. In
1986, these important discoveries of NGF and
EGF earned Levi-Montalcini and Cohen the
Nobel Prize in Physiology or Medicine.

In 1975, using 125I-labelled EGF and
fibroblasts from different species, Graham
Carpenter confirmed the presence of specific
binding sites (receptors) for EGF on the sur-
face of target cells (REF. 6). Three years later,
Cohen and co-workers identified EGFR as a
170-kDa membrane component that showed
increased 32P incorporation in response to
EGF treatment in A-431 epidermoid carci-
noma cells7. It was proposed at that time that
the phosphorylation of membrane compo-
nents and membrane-associated proteins
might be crucial events in the generation of
intracellular signals that regulate prolifera-
tion. However, it was not until 1979 that the
modification of proteins by phosphorylation
on tyrosine residues was discovered through
the study of tumour viruses8. Hunter and
Sefton then made the important finding in
1980 that the transforming protein of Rous
sarcoma tumour virus, v-SRC, has tyrosine-
phosphorylation activity9. This indicated that
deregulated protein tyrosine phosphorylation
might be important in tumorigenesis.
Moreover, the seminal discovery of the cellu-
lar origin of animal retroviral oncogenes by
the 1989 Nobel laureates Michael Bishop and
Harold Varmus raised the question as to
whether oncogenes that initiate signalling
pathways through tyrosine phosphorylation
could also induce human cancer.

The concept of signal generation by tyro-
sine phosphorylation gained further experi-
mental support in the early 1980s when three
reports showed that EGFR10, the insulin
receptor (INSR)11 and the platelet-derived
growth factor receptor (PDGFR)12 are pro-
tein tyrosine kinases that can be activated 
by their respective ligands. Subsequently,
Hunter and co-workers showed that the
stimulation of A431 cells by EGF, and that of
NIH-3T3 cells by PDGF, leads to rapid 
tyrosine phosphorylation of intracellular
proteins downstream of the activated
growth-factor receptors13,14. Further molecu-
lar characterization of RTKs and their down-
stream signalling partners, however, had to
wait until the mid-to-late 1980s.

Receptor tyrosine kinases are a subclass
of cell-surface growth-factor receptors
with an intrinsic, ligand-controlled
tyrosine-kinase activity. They regulate
diverse functions in normal cells and have
a crucial role in oncogenesis. Twenty years
ago, the first primary structure of a
receptor tyrosine kinase, the epidermal
growth factor receptor, was elucidated.
The characterization of both the molecular
architecture of receptor tyrosine kinases
and the main functions of these proteins
and their ligands in tumorigenesis opened
the door to a new era in molecular
oncology and paved the way to the
development of the first target-specific
cancer therapeutics.

In the 20 years since the isolation of the
cDNA encoding the epidermal growth fac-
tor receptor (EGFR) and the deduction of
its amino-acid sequence, intensive research
efforts have led to important insights into
the molecular mechanisms of receptor tyro-
sine kinase (RTK) function. Moreover,
substantial advances have been made in
understanding the key roles of RTKs in the
signalling pathways that govern fundamen-
tal cellular processes, such as proliferation,
migration, metabolism, differentiation and
survival, as well as those that regulate inter-
cellular communication during develop-
ment. RTK activity in resting, normal cells is
tightly controlled. When they are mutated
or structurally altered, however, RTKs
become potent oncoproteins: abnormal
activation of RTKs in transformed cells has
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highly relevant to future developments.
Second, the screening of cDNA libraries
yielded sequences that were related to EGFR
but clearly distinct, which gained importance
in subsequent studies. The EGFR family is
now known to comprise four members:
EGFR, human EGFR-related 2 (HER2; also
known as neu/ERBB2), the kinase-impaired
HER3 and HER4.

In the years following the elucidation of
the primary structure of EGFR, the
nucleotide sequences and deduced primary
amino-acid sequences of several other
RTKs were reported by the Genentech labo-
ratory and its collaborators. These included
INSR29,30, the IGF1 receptor (IGF1R)31 and
PDGFR32, as well as those that are encoded
by the proto-oncogenes KIT 33 and FMS34.
This series of studies confirmed that, in
spite of their unique biological roles, RTKs
are highly related in structure and share a
domain arrangement that is very similar to
that of EGFR. The RTK class of cell-surface
receptors now comprises 58 known mem-
bers that are distributed among 20 subfam-
ilies. More than half of these have been
found to be overexpressed or mutated in
human hyperproliferative or hypoprolifera-
tive diseases and are therefore considered to
be targets for cancer therapy35.

Signal transduction through RTKs
Mechanisms of RTK activation. An impor-
tant challenge after the cDNA cloning of sev-
eral RTKs was the identification of the mole-
cular mechanisms by which these receptors
transmit signals across the plasma mem-
brane. In a landmark paper published in
1986, Ullrich and co-workers reported that

The first peptide sequences of purified
EGFR immediately caused a sensation. Julian
Downward — who at that time was in Michael
Waterfield’s laboratory at the ICRF — searched
known protein sequences for matches and hit
the jackpot27. He found a high level of similar-
ity between the EGFR peptides and sequences
of an avian oncogene, v-erbB, which had 
been reported shortly before by Tadashi
Yamamoto28. This discovery connected, for the
first time, an animal oncogene with a human
gene that encoded a cell-growth-controlling
membrane protein.

More detailed information was obtained
from cloning and sequencing the complete
EGFR cDNA26. Truncations, deletions and
mutations in the v-erbB oncogene were identi-
fied that, as it was speculated at the time, were
found to be the genetic basis of the conversion
of a proto-oncogene into an oncogene that can
cause malignant cancer in chickens infected
with avian erythroblastosis. Moreover, the
characterization of the EGFR cDNA provided
the first complete amino-acid sequence of a
cell-surface receptor that had signal-generating
ability and provided detailed insights into its
molecular architecture.

Human EGFR was found to be a large gly-
coprotein with a modular structure: it con-
tains an extracellular ligand-binding domain,
a transmembrane region and a cytoplasmic
tyrosine-kinase region that is flanked by non-
catalytic regulatory regions. The EGFR cDNA-
cloning project26 yielded two other important
discoveries. First, Southern blot analysis with
an EGFR cDNA probe showed a 25-fold
amplification of EGFR in human A431 epi-
dermal carcinoma cells — a prototypical
genetic abnormality that should prove to be

EGFR primary structure 
The development of molecular cloning in
the mid-1970s led to an important break-
through in the field of RTK research. This
technology allowed the identification of the
cDNAs that encode important physiological
peptide hormones and growth factors, such
as insulin15,16, EGF17,18, insulin-like growth
factor 2 (IGF2)19, NGF20, PDGF21,22 and
transforming growth factor-α (TGF-α)23.
This, in turn, led to their sequencing and
the determination of their amino-acid
sequences. Incidentally, the ability to pro-
duce peptides such as somatostatin24 in
bacteria and, later, to manufacture med-
ically important hormones, including
insulin and growth hormone25, on a large
scale gave rise to the biotech industry in the
late 1970s.

As cDNA cloning technologies improved
during the early 1980s, it became feasible to
clone large gene transcripts. Several labora-
tories took advantage of this by directing
their efforts towards the identification of the
cell-surface receptor that mediates the mito-
genic activity of EGF. It was widely expected
that this accomplishment would signifi-
cantly improve the understanding of the
mechanisms that regulate basic biological
phenomena, such as the proliferation and
differentiation of both normal and trans-
formed cells. In 1984, a team of collaborators
from the Imperial Cancer Research Fund
(ICRF; now part of Cancer Research UK),
Genentech and The Weizmann Institute of
Science isolated and characterized the cDNA
sequence of human EGFR — the prototypi-
cal RTK — from normal placental cells and
A431 tumour cells26.
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Timeline 1 | Breakthrough discoveries on RTK signal transduction and RTK-based cancer therapy
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SH3-domain-containing adaptor molecule
GRB2 (also known as ASH) was discovered
two years later51–53 and completed the now clas-
sical RTK– GRB2–SOS–RAS signal-transduc-
tion cascade54. These observations, together
with a series of publications that linked RAS to
RAF and MEK, provided important insights
into how RTKs regulate extracellular-signal-
regulated kinases (ERKs) and the transcription
of genes that are required for proliferation and
other important cellular responses55.

An important advance in the following
years was the identification of additional
downstream signalling pathways of activated
RTKs. Phosphatidylinositol 3-kinase
(PI3K)56, the survival mediator AKT (also
known as protein kinase B)57 and the signal
transducer and activator of transcription
(STAT) proteins58 were found to be activated
by RTKs and to be involved in cellular
responses such as anti-apoptotic signalling,
motility and invasiveness.

In recent years, EGFR and other RTKs
have been shown to be stimulated by heterol-
ogous signals that arise from cytokine recep-
tors59, integrins60, membrane depolarization61,
cellular stress62 and G-protein-coupled recep-
tors (GPCRs)63 (FIG. 1c). In several normal and
transformed cell types, EGFR signal transacti-
vation by GPCRs has been shown to rely on
cell-surface metalloproteases that mediate the
processing of EGF-like-growth-factor precur-
sors64,65. Recently, EGFR signal transactivation
pathways have been implicated in the patho-
genesis of hyperproliferative diseases, such as
cancer64,65 and cardiac hypertrophy66, as well
as in Staphylococcus aureus 67 and Helicobacter
pylori68 infections. Taken together, these 
findings established that EGFR functions as a

they had designed a chimeric receptor 
molecule that comprised the extracellular
region of INSR joined to the transmembrane
and intracellular domains of EGFR36.
Remarkably, they found that the EGFR
kinase domain of the chimeric protein was
activated by insulin binding, indicating that
individual RTKs use closely related mecha-
nisms for signal transduction across the
plasma membrane. This, and several other
later studies, established that ligand binding
to RTKs results in their dimerization and the
autophosphorylation of key tyrosine residues
in the activation loops of their catalytic
kinase domains, resulting in stimulation of
tyrosine-kinase activity37.

Crystallographic studies in the 1990s 
provided more detailed structural informa-
tion as to how the dimerization of RTKs 
is regulated by their growth-factor ligands.
For extracellular regions of the vascular
endothelial growth factor (VEGF) receptor
FLT1 (REF. 38), and the NGF receptor
TRKA39, a bivalent ligand was located at the
receptor–receptor interface, where it was
shown to directly mediate dimerization.
Surprisingly, a different arrangement was
found in the case of EGFR, for which two
monomeric ligand molecules are bound to
an EGF-induced dimer of the EGFR extra-
cellular region40. Consistent with this — in
two recent publications — Ogiso and col-
leagues41, as well as Garrett and colleagues42,
reported that EGFR dimerization is mediated
by a unique ‘dimerization loop’, which
becomes exposed after growth-factor-induced
domain rearrangement. These data showed
that EGFR dimerization is mediated entirely
by receptor–receptor interactions (FIG. 1a).

Downstream signalling. In the early 1980s,
how the tyrosine-kinase activity of activated
RTKs leads to intracellular signal generation
and cellular responses was still unknown. A
first step towards answering this key question
was provided in 1984 when Kamata and
Feramisco showed that EGF stimulates the
RAS oncoprotein to switch from its inactive
GDP-bound form to its active GTP-bound
form43. Two years later, Stacey and co-workers
showed that RAS is essential for cell transfor-
mation by RTK-derived oncoproteins44, indi-
cating that RAS is a downstream mediator of
activated RTKs.

In 1989, phospholipase Cγ1 (PLCγ1) was
identified as the first downstream substrate
that physically interacts with activated EGFR,
demonstrating a connection between EGFR
stimulation, phosphatidylinositol turnover,
intracellular Ca2+ mobilization and activation
of protein kinase C (PKC)45,46 (FIG. 1b). The
determination of the structure of PLCγ1 led
to the identification of SRC-homology 2
(SH2) domains and led to some key discover-
ies by the groups of Pawson and Hanafus.
They found that SH2 domains bind tyrosine-
phosphorylated peptides in vitro47,48 and that
phosphotyrosine residues in the cytoplasmic
regions of RTKs are recognized as docking
sites by signalling factors such as PLCγ1
through their SH2 domains.

It was not until 1990 that Julian Down-
ward, as well as Wolfman and Macara, iden-
tified one of the missing links between
RTKs and RAS. They identified several
mammalian cytosolic factors that catalyse
the exchange of RAS-bound GDP for GTP
— the RAS guanine-nucleotide-exchange
factors (GEFs)49,50, or SOS proteins. The
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alternative mRNA splicing85. More recently,
impaired receptor downregulation has been
recognized as another mechanism of RTK
deregulation86. In particular, oncogenic
forms of the ubiquitin ligase CBL were
shown to function as dominant-negative
mutants that prevent CBL from negatively
regulating RTKs87,88.

Discovery of HER2/neu
In 1985, as a by-product of the EGFR cloning
project, Axel Ullrich’s group at Genentech
described the complete primary structure of a
putative RTK that showed a high level of
homology to human EGFR and was therefore
named human EGFR-related 2 (HER2)89.
Other laboratories independently identi-
fied this new EGFR relative with unknown
function and named it ERBB2 (REF. 90).
Interestingly, the chromosomal localization of
HER2 is identical to that of the rat neu onco-
gene91 — as was established by a collaboration
between the Weinberg and Ullrich laborato-
ries and in the laboratory of Uta Franke —
and this provided another connection
between an RTK and cancer development 
in animals. The oncogenic significance of
neu was further substantiated when Robert
Weinberg and co-workers showed that 
monoclonal antibodies (mAbs) against the neu
oncogene reverted its transforming effects in

co-workers reported that the targeted disrup-
tion of the metalloproteinase tumour-necrosis
factor-α-converting enzyme (Tace)80 results in
a similar phenotype to that found in Egfr-null
mice — it is characterized by multiple epithe-
lial defects81. Tace was found to be required for
ectodomain cleavage and solubilization of
Tgf-α, and there is evidence to indicate that
Tace has an even broader role in regulating the
availability of other Egf-like growth factors65,82.

Deregulation of EGFR in human cancer
In the 1980s, numerous reports described
the overexpression of EGFR in various
epithelial tumours and substantiated the
view that deregulated EGFR signalling has
an important role in human cancers.
Following these observations, increased
stimulation of EGFR through autocrine
growth-factor loops, in particular through
TGF-α83, was identified as a common mech-
anism of RTK deregulation. Moreover, many
laboratories embarked on a massive search
for EGFR mutations in human cancers and
several deletions and point mutations were
described that result in increased catalytic
tyrosine-kinase activity of the receptor84. The
most prevalent of these mutations in
tumours was found to be EGFRvIII, an
EGFR deletion mutant that lacks exons 2–7,
which can arise from gene rearrangement or

point of convergence for diverse signalling
pathways and defines key biological out-
comes, such as cell proliferation, differentia-
tion, motility and survival, in response to a
wide range of physiological stimuli.

In vivo functions of RTKs 
The use of gene-targeted mouse models has
led to important findings regarding the role of
EGFR and other RTKs, as well as their ligands,
in mammalian development (TABLE 1). By
1995, inactivation of Egfr was reported by
three groups. Egfr knockout in mice resulted
in embryonic lethality69 or severe failure of
epithelial development in several organs —
including skin, lung and gastrointestinal
tract70,71. The multiple abnormalities associ-
ated with Egfr deficiency confirmed that this
receptor is required for a wide range of cellular
activities and for epithelial development 
in vivo. Subsequently, the targeted disruption
of the other EGFR family members — Her2,
Her3 and Her4 (REFS 72–74) — were shown to
cause defects in neural and cardiac develop-
ment. In contrast to Egfr knockout, the tissue-
restricted or mild phenotypes of knockouts
for several Egfr ligands — such as Egf 75,
Tgf-α76,77, amphiregulin75 and heparin-
binding Egf (HB-Egf)78,79 — indicated con-
siderable redundancy in the functions of
these growth factors. In 1998, Roy Black and 
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Figure 1 | The epidermal growth factor receptor signalling network. a | Ligand binding to the epidermal growth factor receptor (EGFR) induces dimerization
through a receptor-mediated mechanism. Signal diversification is generated by the presence of multiple EGF-like ligands and the formation of different dimeric
receptor combinations. b | Receptor dimerization results in cross-autophosphorylation of key tyrosine residues in the cytoplasmic domain, which function as
docking sites for downstream signal transducers. EGFR stimulation results in activation of signalling cascades that include the RTK–GRB2–SOS–RAS–RAF–
MEK–ERK, PI3K–AKT, PLCγ and STAT pathways. EGFR can activate PI3K through RAS-GTP in some cell types. c | EGFR acts as a point of convergence for
heterologous signals from G-protein-coupled receptors (GPCRs; metalloprotease-mediated EGFR signal transactivation), cytokine receptors, integrins, membrane
depolarization and agents that are induced by cellular stress. The EGFR thereby defines crucial cellular responses, such as proliferation, differentiation, motility and
survival. ERK, extracellular-signal-regulated kinase; GEF, guanine-nucleotide-exchange factor; PI3K, phosphatidylinositol 3-kinase; PLCγ, phospholipase Cγ;
STAT, signal transducer and activator of transcription.



NIH-3T3 cells92. The crucial next step, which
addressed the key question of whether genetic
abnormalities in the EGFR or HER2 systems
could be identified in human tumours, was
made through a collaboration formed in 1985
by the Ullrich laboratory and Dennis Slamon,
an oncologist at the University of California,
Los Angeles. Slamon had assembled a collec-
tion of primary breast tumours and was ready
to use Ullrich’s gene probes to search for
abnormalities in tumour DNA. Two years later,
this collaborative team reported that the HER2
gene is amplified in 30% of invasive breast can-
cers and, for the first time, showed a significant
correlation between HER2 overexpression in
tumours and reduced patient survival and
time to relapse93. These findings established
HER2 as a prognostic factor and indicated a
crucial role of HER2 overexpression in the
pathogenesis of breast and ovarian cancers94.

Given that a specific ligand for HER2
homodimers had, and has still, not been
identified, the role of HER2 within the cel-
lular signalling network was largely unclear
during the years following its discovery. The
first clue to this was provided in 1988, when
Stern and Kamps showed that EGFR activa-
tion induces transphosphorylation of HER2
through heterodimerization95. This was 
subsequently confirmed by King and 
colleagues96 and extended by Nancy Hynes

and co-workers, who showed that HER2 is
the preferred heterodimerization partner for
EGFR, HER3 and HER4, and that HER2
thereby provides an additional mechanism
for the recruitment of diverse intracellular
signalling pathways97. This and other studies
established that the existence of multiple 
ligands and receptors provides the EGFR 
signalling network with the ability to regulate
a wide range of cellular responses.

RTK-based cancer therapies
Monoclonal antibodies. The discovery of
HER2 gene amplification in breast and
ovarian cancer provided an important
opportunity to evaluate the concept of tar-
get-specific cancer therapy. The Genentech
group set out to develop HER2-specific
mAbs and to assess their anti-oncogenic
potential in cell-culture and animal-model
systems98,99. This provided the basis for the
subsequent humanization of mAb 4D5 and
the development of the therapeutic anti-
body trastuzumab (Herceptin, Genentech,
Inc.) as the first targeted anti-kinase thera-
peutic agent based on genomic research
(FIG. 2). Trastuzumab was approved 
by the United States Food and Drug
Administration (FDA) for the treatment of
HER2-overexpressing metastatic breast
cancer in 1998 (see TABLE 2 for a selection of
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Table 1 | Use of gene knockouts to study the functions of receptor tyrosine kinases and their ligands

Mouse model Description Phenotype References

Egfr –/– Egfr knockout Impaired epithelial development in several organs, including skin, 69–71
heart, lung and gastrointestinal tract; survival for up to 3 weeks after birth

Her2 –/– Her2 knockout Defects in neural and cardiac development; embryonic lethality 72

Her3 –/– Her3 knockout Defects in cerebellar and cardiac development; embryonic lethality 73

Her4 –/– Her4 knockout Defects in neural and cardiac development; embryonic lethality 74

Tgfα –/– Tgf-α knockout Abnormal skin architecture, wavy hair, curly whiskers and corneal 76,77
inflammation

HB-Egf –/– HB-Egf knockout Heart failure with enlarged ventricular chambers and cardiac valves; 78
lethality in first postnatal week

Egf –/– Egf knockout No overt phenotype 75

Egf –/–, Ar–/– Egf/Ar double- Defects in mammary-gland development 75
knockout

Tace∆Zn/∆Zn Disruption of essential Multiple epithelial defects affecting eyes, hair and skin; corneal 81
Zn2+-binding motif inflammation; lethality between E17.5 and first day after birth

Pdgfrα –/– Pdgfrα knockout Defects in neural-crest-cell development and somite patterning; 133
embryonic lethality

Pdgfrβ –/– Pdgfrβ knockout Defects in kidney development; haematological disorders; 134
embryonic lethality

Vegfr1 –/– Vegfr1 knockout Defects in organization of embryonic vasculature; lethality in utero at 119
mid-somite stage

Vegfr2 –/– Vegfr2 knockout Defects in development of haematopoietic and endothelial cells; 120
lethality in utero 8.5–9.5 days post coitum

Vegf –/+ Heterozygous Vegf Defects in angiogenesis and blood-island formation; embryonic lethality 135,136
knockout

Ar, amphiregulin; Egf, epidermal growth factor; Egfr, Egf receptor; HB-Egf, heparin-binding Egf; Her, human Egfr-related; Pdgfr, platelet-derived growth factor receptor;
Tace, tumor-necrosis factor-α-converting enzyme; Tgfα, transforming growth factor-α; Vegf, vascular endothelial growth factor; Vegfr, Vegf receptor.

Figure 2 | Receptor tyrosine kinases: sites of
therapeutic intervention. Deregulation of the
receptor tyrosine kinase (RTK) signalling network is
crucial for the development and progression of
hyperproliferative diseases (for example, cancer
and cardiac hypertrophy) and infectious diseases
(for example, bacterial and viral infections).
Neutralizing antibodies, which block the bioactivity
of RTK ligands, RTK-targeted antibodies, which
either target overexpressed receptors or receptor
heterodimerization, and small-molecule inhibitors of
RTK kinase activity have been developed to
interfere with RTK signal transduction.
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Small-molecule inhibitors. After EGFR and
other tyrosine kinases had been validated as
suitable pharmacological targets for anti-
cancer drugs, one of the hottest races in phar-
maceutical development began — to identify
rationally designed, small-molecule anti-
cancer drugs. Levitzki’s group at the Hebrew
University in Jerusalem was at the forefront 
of the development of tyrosine-kinase
inhibitors that were targeted to RTKs and
demonstrated their potential use as antiprolif-
erative agents in the late 1980s45,103. The thera-
peutic approach to targeting the EGFR with
small-molecule inhibitors is based on the
early observations by Honegger and co-work-
ers in 1987 that mutations in the ATP-binding
pocket of EGFR abrogate its tyrosine-kinase
function104 and interfere with its oncogenic
signalling105,106. In 1994, the tyrosine-kinase
inhibitory activities of quinazolines were first
described107,108, and two years later Wakeling
and co-workers reported the pharmacological
characteristics of gefitinib (Iressa (ZD1839),
AstraZeneca) as a potent and selective
inhibitor of EGFR tyrosine-kinase activity109.

A visionary effort and landmark accom-
plishment in EGFR-targeted cancer therapy
was the design of the mouse mAbs 225 and
528 to extracellular epitopes of the recep-
tor101,102 by Mendelsohn and colleagues in
the early 1980s. On the basis of its promising
antitumour activity in cultured human
tumour cell lines and rodent models, the 
225 antibody was selected for clinical 
development. In 2003, the Swiss Agency 
for Therapeutic Products (Swissmedic)
approved the use of the chimeric human–
mouse anti-EGFR antibody cetuximab
(IMC-C225 (Erbitux), ImClone Systems/
Merck KGaA) for the treatment of patients
with colorectal cancer who no longer
respond to standard chemotherapy treat-
ment with irinotecan. In early 2004, the FDA
approved cetuximab to treat patients in the
USA with advanced, metastatic colorectal
cancer. The fact that it took 20 years to
develop cetuximab as a therapeutic exempli-
fies the many pitfalls that can significantly
affect the realization of a novel concept in
clinical application (TIMELINE 2).

RTK-targeted therapies that have been
approved or are in clinical development).
Trastuzumab binds HER2 on the surface of
tumour cells98 and induces receptor inter-
nalization, inhibition of cell-cycle progres-
sion and recruitment of immune-effector
cells. Demonstration of the antitumour
activity of trastuzumab in breast cancer
patients provided the proof of principle that
therapeutic agents targeted against a human
oncoprotein in a major cancer indication
could be successful.

Another anti-HER2 antibody, 2C4 —
known as pertuzumab in its humanized form
(Omnitarg (rhu mAb-2C4), Genentech) —
was first described by Hudziak and col-
leagues in 1989 (REF. 98). It is now in Phase II
clinical trials and represents a second gener-
ation of anti-HER2 monoclonal antibodies
that interfere with the mechanism of onco-
genic signal generation by HER2–HER3
heterodimers100. It therefore complements
the molecular armamentarium that is avail-
able for treating cancers that do not show
HER2 expression.
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Table 2 | Cancer therapies targeted to receptor tyrosine kinases 

Names Targets Status Description Company

Trastuzumab, Herceptin HER2 Approved for metastatic Humanized anti-HER2 IgG1κ Genentech
breast cancer

Imatinib, Glivec, STI571 BCR–ABL, KIT, Approved for CML and GIST 2-Phenylaminopyrimidine Novartis
PDGFR

Gefitinib, Iressa, ZD1839 EGFR Approved for NSCLC Quinazoline AstraZeneca

Cetuximab, Erbitux EGFR Approved for colorectal cancer Chimeric anti-EGFR IgG1 ImClone/Merck

Bevacizumab, Avastin VEGF Approved for colorectal cancer Humanized anti-VEGF (rhu mAb-VEGF) Genentech

OSI-774, Tarceva EGFR Clinical development Quinazoline Genentech/
Roche/OSI

CI-1033 EGFR, HER2 Clinical development 4-Anilinoquinazoline, irreversible inhibitor Pfizer

EKB-569 EGFR, HER2 Clinical development 4-Anilinoquinoline-3-carbonitrile, irreversible Wyeth
inhibitor

CDP860 PDGFR Clinical development Anti-PDGFβ-receptor antibody fragment Celltech

Pertuzumab, Omnitarg, 2C4 HER2 Clinical development Humanized anti-HER2 (heterodimerization Genentech
inhibitor)

SU6668 VEGFR2, PDGFR, Clinical development Indoline-2-one Sugen/Pfizer
FGFR

SU11248 VEGFR2, KIT, Clinical development Indoline-2-one Sugen/Pfizer
PDGFR, FLT3

ZD6474 VEGFR2 Clinical development Quinazoline AstraZeneca

PTK-787/ZK222584 VEGFR1/2, PDGFR Clinical development Anilinophthalazine Novartis/Schering

AG013736 VEGFR2, PDGFR Clinical development – Pfizer

CP549, 632 VEGFR2, FGFR1, Clinical development – Pfizer
TIE2

PKC-412, midostaurin PKC, VEGFR2, Clinical development N-Benzoylstaurosporine Novartis
PDGFR, FLT3, KIT

CEP-701 FLT3, TRK kinases Clinical development Indolocarbazole alkaloid Cephalon

MLN-518, CT53518 PDGFR, KIT, FLT3 Clinical development Quinazoline Millennium

CML, chronic myelogenous leukaemia; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; FLT, FMS-related tyrosine kinase; GIST,
gastrointestinal stromal tumour; HER, human EGFR-related; Ig, immunoglobulin; NSCLC, non-small-cell lung carcinoma; PDGFR, platelet-derived growth factor
receptor; PKC, protein kinase C; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.



cancers. More importantly, however, the
experimental results of Millauer and Ferrara
demonstrated the clinical potential of anti-
angiogenic therapy by targeting either the lig-
and or the corresponding receptor as crucial
elements of a biological signalling system.

Therapeutic applications. On the basis of
these findings, VEGF and VEGFRs became
established as important targets for thera-
peutic intervention in tumour growth.
VEGF was targeted by monoclonal neutral-
izing anti-bodies and VEGFR by small
chemical compounds. Bevacizumab
(Avastin, Genentech) is a humanized anti-
body against VEGF124 that has recently been
approved by the FDA for the treatment of
colorectal cancer in the USA. Bevacizumab
is the first FDA-approved therapy that is
designed to inhibit angiogenesis.

The first small-molecule VEGFR antago-
nist to enter clinical trials was SU5416
(Sugen/ Pfizer), which was later followed by
SU6668. These compounds competitively
block ATP binding to the tyrosine-kinase
domain of the receptor, thereby inhibiting
tumour angiogenesis in vivo and inhibiting
the growth of xenografts that are established
from various human cancers125,126. The
related compound SU11248 targets multiple
receptor tyrosine kinases127, including KIT,
PDGFR, FLT3 and VEGFR2, and is now
being evaluated in Phase II clinical trials for
the treatment of patients with various 

In 2002, gefitinib was approved in Japan for
the treatment of inoperable and recurrent
non-small-cell lung carcinoma (NSCLC) and
was also approved a year later in the USA.

Several pharmaceutical companies and
academic laboratories have successfully
developed small-molecule tyrosine-kinase
inhibitors. Imatinib (Glivec (STI571),
Novartis; known as Gleevec in the USA)
was originally developed as a derivative of a
PKC inhibitor by Ciba scientists led by Alex
Matter. It has provided the proof of concept
for the clinical efficacy and tolerability of
this class of compound and was the first
selective inhibitor to be approved by the
FDA for the treatment of cancer. Imatinib
was first described in 1996 by Druker and
colleagues as having potent activity against
the BCR–ABL oncoprotein110. This consti-
tutively active non-receptor tyrosine kinase
is expressed in chronic myelogenous
leukaemia (CML) cells that express the
Philadelphia chromosome — a reciprocal
translocation between chromosomes 9 and
22 that replaces the first exon of ABL with
sequences from the BCR gene. This translo-
cation represents the key oncogenic event
in 95% of patients with CML. In addition
to ABL and BCR–ABL, the RTKs PDGFR
and KIT were also found to be potently
inhibited by imatinib111. As KIT is thought
to have an important role in the pathogene-
sis of gastrointestinal stromal tumours
(GISTs), clinical studies with imatinib were

successfully extended to this tumour
type112. Imatinib received approval by the
FDA for use in patients with CML in 2001
and for advanced GIST in 2002.

RTKs and anti-angiogenic therapy
VEGF and its receptors as targets. VEGF and
its receptors are known to have important
functions in the regulation of tumour
angiogenesis113,114. In 1992, DeFries discov-
ered that FMS-like-tyrosine kinase 1 (FLT1)
is a receptor for VEGF115; a second VEGF
receptor, VEGFR2 (also known as FLK1 or
KDR), was subsequently described116–118. A
crucial role for both of these RTKs in angio-
genesis was shown in knockout mice119,120.
Proof that VEGF and VEGFR signalling are
required for tumour angiogenesis was pre-
sented in two seminal studies in the mid-
1990s. Napoleone Ferrara and his associates
showed that anti-Vegf antibodies abrogate
the growth of tumour xenografts in nude
mice121, and Birgit Millauer and colleagues
showed that a dominant-negative Vegfr2
mutant blocks the subcutaneous growth of
experimentally induced glioblastomas in the
same model122. The broad relevance of this
discovery was later substantiated by data
that were obtained from various other
tumour types123. The use of retroviruses
encoding dominant-interfering mutants of
RTKs in this series of experiments indicated
a therapeutic application of retroviral 
gene therapies in the treatment of human
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Murine monoclonal
antibody (mAb) 225
developed against
epidermal growth factor
receptor (EGFR). It
results in anti-
proliferative effects in
cell culture/nude-
mouse-xenograft
tumour models

Human
EGFR-
related 2
(HER2)
sequences
published

HER2 gene
found to be
amplified in
breast cancer.
This correlates
with disease
progression

mAb 225
licensed to
Hybridtech for
Phase I trial

The human–murine
chimeric antibody
C225 is developed

Antitumour
effect of mAbs
4D5 and 2C4
discovered

Phase III trial

A family of
anilinoquinazoline
tyrosine-kinase
inhibitors is
described

United States
Food and
Drug
Administration
(FDA) approval

FDA refuses to file
ImClone’s
Biologics License
Application

FDA Approval

Eli Lilly acquires
Hybridtech — the
development of
C225 is abandoned

C225 is
licensed to
ImClone 

Phase II trial

Pharmacological
characteristics
are reported.
There is anti-
tumour activity in
human
xenografts

In vivo efficacy
in human
xenografts with
and without
highly activated
EGFR signalling

Fast-track approval
in Japan

FDA approval

EGFR cDNA is
cloned and shown
to be homologous
to v-ErbB. EGFR is
a cellular oncogene

EGFR cDNA
is cloned

Phase I trial
of Rhu mAb

Switzerland
approves
Erbitux (Merck) 

Clinical trials
commence

mAb 2C4 in
development

Approval in
Europe

Timeline 2 | Development of selected RTK inhibitors as anticancer therapeutics 

Stages in the development of different receptor tyrosine kinase inhibitors are shown as follows: green boxes, cetuximab; purple boxes, gefitinib; red boxes, trastuzumab.
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cancers. The angiogenesis inhibitors ZD6474
(AstraZeneca)128 and PTK-787 (Novartis/
Schering)129 are other promising compounds
that have progressed to Phase II and III clinical
trials, respectively.

Conclusions
In the 20 years since the cloning of the first
cDNA encoding an RTK — EGFR — much
progress has been made in our understand-
ing of the fundamental signalling mecha-
nisms of RTKs, their biology and the patho-
logical consequences of their deregulation.
Although a complete understanding of RTK
function and dysfunction in diverse tissues
and multiple biological processes is still to
be achieved, studies of members of this
family have already had a significant impact
on cancer therapy. Trastuzumab, imatinib,
gefitinib, cetuximab and bevacizumab have
demonstrated the potential of molecularly
targeted cancer therapeutics. Several other
RTK-based, experimental anticancer strate-
gies are now undergoing clinical evaluation
— for example, drugs that target FLT3 in
acute myeloid leukaemia (AML) — or 
are in preclinical development, such as
modulators of IGF1R, MET, VEGFR3,
TIE2 and TRK receptor signalling (TABLE 2).
Important questions — such as the defini-
tion of the optimal dose and schedule of
drug administration and the issue of drug
resistance that has been seen in imatinib-
treated CML130 and GIST131 patients —
remain to be addressed.

Both academic and industrial research will
further focus on evaluating RTKs as promising
molecular targets for cancer treatment. An
impressive example is a recent study in which
high-throughput sequencing technologies,
combined with bioinformatics, were used to
systematically analyse the tyrosine kinome in
colorectal cancer132. This large-scale sequencing
approach identified several previously un-
known mutations in tyrosine-kinase genes that
could be targeted for therapeutic intervention
in the future. Due to the extensive complexity
of pathogenic alterations in the cancer-cell sig-
nalling network, genomics-based diagnostic
techniques, such as gene-array, tissue-array and
single-nucleotide-polymorphism analysis, will
help to identify patients who are likely to
respond favourably to a particular drug that is
targeted to a signalling molecule. Ultimately,
because of the plasticity of the cancer-cell
genome, it will be essential to develop combi-
nation therapies involving small-molecule and
antibody cocktails that function through 
distinct and complementary mechanisms 
of action in order to achieve the rapid and
complete eradication of tumours.
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