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The classic paradigm of G protein-coupled receptor (GPCR)

activation was based on the understanding that agonist binding

to a receptor induces or stabilizes a conformational change to

an ‘active’ conformation. In the past decade, however, it has

been appreciated that ligands can induce distinct ‘active’

receptor conformations with unique downstream functional

signaling profiles. Building on the initial recognition of the

existence of such ‘biased ligands’, recent years have

witnessed significant developments in several areas of GPCR

biology. These include increased understanding of structural

and biophysical mechanisms underlying biased agonism,

improvements in characterization and quantification of ligand

efficacy, as well as clinical development of these novel ligands.

Here we review recent major developments in these areas over

the past several years.
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Introduction
That a given G protein coupled receptor (GPCR) can

functionally couple to more than one heterotrimeric G

protein has been known for many years. However, it was

quite surprising when it was first noted in the mid 1990s

that, at a single GPCR, different ligands could be ‘biased’

or ‘functionally selective’ toward one or another of these

G proteins. Even more surprising were the discoveries a

few years later that GPCRs could also signal through b-

arrestins and that ligands could be biased toward either a

G protein or b-arrestin-mediated pathways. The study of

this important and potentially therapeutically relevant

phenomenon has exploded over the last several years.

Here we review some of the most important recent

developments.
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In recent years the list of known biased ligands for

GPCRs has grown substantially. While the majority of

the ligands identified target the binding site of the

endogenous ligand for a given receptor (known as orthos-

teric ligands), recent work has identified a new class of

biased ligands, biased allosteric modulators, which bind

non-traditional ligand binding sites topographically dis-

tinct from the orthosteric binding site [1]. Biased allo-

steric modulators are characterized by the ability to

modulate agonist affinity and/or efficacy toward a biased

receptor conformation without affecting receptor activity

on their own. In addition to the discovery of a large

number of biased ligands acting on multiple receptor

types, several major advances have been made regarding

the mechanisms underlying biased agonism.

Mechanistic insights into biased agonism
Different receptor states may vary in their ability to acti-

vate specific transducers such as G proteins or b-arrestins,

as well as to affect transducer functionality in a selective

manner. This is supported by the observation that b-

arrestin function is dependent on the phosphorylation

pattern or ‘barcode’ of the receptor to which it is recruited

(Figure 1) [2,3�,4,5]. Nobles et al. [3�] demonstrated that b-

arrestin recruited to the b2-adrenergic receptor (b2AR)

phosphorylated by either G protein receptor kinase

(GRK) 2 or GRK6 results in desensitization of receptor

signaling and/or receptor internalization whereas only

GRK6-phosphorylated b2AR induced recruitment of b-

arrestin involved in extracellular-signal regulated kinase 1

and 2 (ERK1/2) activation. This is consistent with previous

work on multiple different receptors showing a require-

ment for GRK2 and GRK3-mediated receptor phosphoryl-

ation for receptor internalization, whereas GRK5 and

GRK6 mediated receptor phosphorylation is necessary

for b-arrestin-dependent ERK1/2 signaling [2,5–9].

Additionally, distinct populations of phosphorylation sites

on the b2AR have been identified for GRK2 compared to

GRK6 [3�] suggesting bias occurring at the most proximal

level of GPCR signal transduction. Interestingly, carve-

dilol, a weak b-arrestin biased agonist at the b2AR [10],

stimulated receptor phosphorylation only at GRK6-

specific sites, whereas the full agonist isoproterenol

stimulated b2AR phosphorylation at both GRK2-specific

and GRK6-specific sites. These findings demonstrate that

ligands may possess the ability to stimulate unique phos-

phorylation ‘barcodes’ on the receptor, which may in turn

result in activation of distinct b-arrestin-mediated cellular

functions.
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Bar code hypothesis to explain differential functions of b-arrestin. At the level of the receptor, biased ligands stabilize active receptor conformations

structurally distinct from active conformations stabilized by balanced ligands. These unique conformations, in turn, recruit unique subsets of GRKs and

as a consequence, differential phosphorylation patterns or ‘bar codes’ are generated on the receptor. At the level of the transducer, in this case b-

arrestin, phosphorylation on the receptor promotes its recruitment and binding to the receptor. However, different phosphorylation ‘bar codes’ may

stabilize distinct, active conformations of transducers with resulting unique functional profiles. These ligand-specific functional profiles promote activity

of distinct complex intracellular signaling networks and ultimately lead to divergent physiological responses.
Signaling bias may refer to preferential activation of b-

arrestin-dependent signaling compared to G protein-de-

pendent signaling, or vice versa. However a recent study

by Blättermann et al. serves as the first example of a biased

ligand that discriminates between Ga and Gbg subunits

adding a new dimension to the understanding of biased

agonism. In this study of the oxoeicosanoid receptor

(OXE-R), they identified an allosteric OXE-R-specific

ligand, Gue1654, which selectively inhibits Gbg but not

Gai signaling induced by the OXE-R agonist, 5-oxo-ETE

[11��]. Indeed the authors speculated that Gue1654

exerts its effects on the OXE-R as a biased allosteric

modulator that causes a change in the unbiased Gbg and

Gai signaling profile of 5-oxo-ETE to a pattern of exclu-

sive Gai activation.

These results are somewhat difficult to reconcile with the

current understanding of G protein activation where

heterotrimeric G protein interacts with active receptor

through the Ga subunit causing exchange of Ga-bound

GDP with GTP and activation of Ga with release of Gbg

subunits enabling them to initiate signaling on their own

[12]. However, it has been indicated that Gi protein

activation, specifically, may involve rearrangement of

the Gbg and Ga subunits rather than dissociation
www.sciencedirect.com 
[13,14]. Thus, it is plausible that Gue1654-bound acti-

vated OXE-R induces a Gi protein active conformation

where solely Ga activity is initiated. Using a biolumines-

cence resonance energy transfer (BRET)-based assay, it

was shown that Gue1654 inhibited agonist stimulated

recruitment of Gg subunit to OXE-R while having no

effect on Ga or Gb recruitment to the receptor [11��].
These observations suggest that Gue1654 may promote a

spatial separation and/or rearrangement of the Gbg to the

agonist bound OXE-R.

Quantification of ligand bias
Quantifying ligand bias is important not only to pharma-

cologically characterize a compound but also in the design

of biased drugs, for example, for lead optimization and

selection of candidate compounds. While qualitative

approaches, such as a comparison of efficacies or an

assessment of relative rank order of potencies [15–17],

can identify extremely biased compounds, they usually

cannot identify weakly biased compounds or compare

different levels of bias between compounds. Thus, differ-

ent approaches have been developed to calculate ‘bias

factors’ that quantify the level of bias toward G protein-

mediated or b-arrestin-mediated signaling [15,18�].
These approaches are based on using simple fits of
Current Opinion in Cell Biology 2014, 27:18–24
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concentration-response data alone [18�], fitting such data

combined with dissociation constants from independent

binding experiments [18�] or fitting concentration-

response data with more complicated routines [16]. There

is some controversy with regards to the best way to

calculate bias factors [15,16,19], although it appears that

bias factors calculated using these different approaches

are, in general, similar to one another.

Methodological advances
A common means of determining agonist efficacy for

specific transducer pathways is by measurement of sec-

ond messenger production or downstream signaling

events in cell-based assays, such as by monitoring pro-

duction of cAMP or phosphorylation of ERK1/2. How-

ever, downstream signals are often amplified to different

extents depending on the assay being used [18�,20,21].

Thus, conclusions about transducer efficacy drawn solely

based on downstream signaling events may be imprecise

and misleading. In this context, novel approaches to

determine transducer efficacy directly are of significant

interest. One such approach has recently been applied to

study direct G protein coupling and activation using

bioluminescence resonance energy transfer based assays

on two receptor systems; angiotensin II type 1a receptor

(AT1AR) and oxytocin receptor (OTR) [22�,23]. Apart

from characterizing direct interaction between receptor

and transducer, an advantage of this approach is that a

panel of transducer subtypes can be investigated provid-

ing detailed understanding of receptor-transducer

pharmacology that is hard to obtain otherwise.

Using this experimental set-up it was demonstrated that

angiotensin II stimulation of AT1AR caused activation of

multiple G proteins, including Gi1, Gi2, Gi3, GoA, GoB, Gq,

G11, G13, and Gs. In addition, when stimulated by the b-

arrestin-biased agonist [1Ser4Ile8Ile]-angiotensin II (SII),

a very small partial activation of several of the same G

proteins, including Gi/o and Gq/11, was observed. These

results are in conflict with previous findings that SII is a

complete b-arrestin-biased agonist with trivial to no

effects on Gq activity [24]. In the new study it was shown

that SII-stimulated intracellular calcium mobilization and

ERK1/2 phosphorylation was blocked by the Gq/11

specific inhibitor YM-254890. In addition, it was shown

that SII inhibited cAMP production and that this effect

together with ERK1/2 phosphorylation was sensitive to

pre-treatment with PTX.

Using the same methodology as Sauliere et al. [22�],
Busnelli et al. [23] showed that oxytocin stimulation

recruits and activates several G proteins including Gi1,

Gi2, Gi3, GoA, GoB, and Gq to the OTR. A panel of

oxytocin analogs was tested and showed a general

inability to stimulate Gi1, GoA, and GoB, indicating Gq,

Gi2, and Gi3 subtype bias [23]. Most interesting was a

previously identified Gi/o biased ligand, atosiban [25], and
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a new oxytocin analog, DNaLOVT, which showed sub-

type-specific bias toward Gi3 and Gi1, respectively. In

contrast to oxytocin, neither of these peptides induced b-

arrestin recruitment or b-arrestin-dependent receptor

endocytosis demonstrating these analogs are Gi sub-

type-specific biased ligands [23,25].

These studies highlight the difficulties in exploring

biased agonism in vitro. Cellular signaling profiles are

highly sensitive to the systems, cell types, receptor/trans-

ducer expression levels, and readouts used to assess them.

In their study, Sauliere et al. note differences in the

relative contributions of various G protein subtypes as

well as b-arrestins 1 and 2 to angiotensin or SII-induced

ERK1/2 activation between overexpressed and endogen-

ous cell types [22�]. Whether differences reported in the

activity of the biased ligand SII to promote levels of G

protein activation are due to differences in cell types,

expression levels of receptors, transducers or signaling

endpoints such as ERK1/2, or the even varying assays

used remains to be determined.

Conformational plasticity and multiple ligand-
specific conformations of receptor enable
biased GPCR signaling
The ‘two-state’ receptor model (inactive and active

states) was previously widely accepted to explain GPCR

conformation and function. In this model, all ligands with

similar functional capabilities stabilize a common recep-

tor conformation. However there is a growing body of

evidence supporting ‘multi-state’ models in which

GPCRs are dynamic proteins with a high level of

plasticity, manifesting in thermally accessible multiple

distinct ligand-specific conformations [26,27�,28–
30,31��,32,33,34�,35–38,39��]. Recently a novel chemical

labeling/quantitative mass spectrometry based proteo-

mics approach was applied to monitor the conformational

changes of the b2AR in the presence of nine functionally

distinct ligands [27�]. Unexpectedly, two patterns of

conformational rearrangements of the receptor were

observed: one consistent with classic agonism and the

other with ligand-specific conformational changes, even

amongst functionally similar ligands. These results pro-

vide direct evidence for multiple conformational states of

the b2AR. Similar evidence supporting a ‘multi-state’

model has been reported for other GPCRs including

rhodopsin [40], V2R [34�], ghrelin receptor [41], M2

muscarinic acetylcholine receptor (mAChR) [36], chole-

cystokinin-2 receptor (CCK2R) [37], thromboxane A2

receptor (TP) [42], chemokine receptor CCR5 [38],

and glucagon-like peptide-1 receptor (GLP-1R) [35].

Conceptually, GPCRs can be visualized as oscillating

amongst a series of conformational intermediates associ-

ated with a complex energy landscape [28,33,39��,40,43–
45]. This energy landscape is influenced by both ligands

and effector proteins bound to the receptor [39��,41].
www.sciencedirect.com
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Pharmacologically distinct ligands regulate receptor

activity by shifting the conformational equilibrium and

the shape of this landscape. A biased ligand, therefore,

should shift the receptor’s conformational equilibrium to

a specific state or states that preferentially activates a

specific signaling network inside the cell without activat-

ing others. Accumulating experimental data has demon-

strated that the conformations of a GPCR stabilized by

unbiased ligands, G protein-biased ligands, or b-arrestin-

biased ligands are distinct from one another

[12,27�,34�,41,46,47]. Characterization and comparison

of these distinct conformations by a variety of biophysical

techniques will provide new insights into the structural

basis of biased GPCR signaling.

Molecular and structural mechanisms
underlying biased agonism
Recent structural determination efforts as well as bio-

chemical and biophysical studies are beginning to shed

light on the mechanisms by which biased ligands regulate

receptor activity. The data suggest that conformational

changes in transmembrane domain (TM) 7-helix (H) 8

and extracellular loop (ECL) 2 may all play a role in b-

arrestin-mediated signaling, whereas conformational

changes in TM3, 5 and 6 as well as intracellular loop

(ICL) 3 have been associated with G protein-mediated

signaling [12,31��,34�,36,38,42,48�,49]. A site-specific
(19)F NMR study of the b2AR in complex with various

ligands revealed that binding of an unbiased agonist

induced a G protein-specific active conformation of

TM6, whereas binding of putatively b-arrestin-biased

ligands primarily impacted the conformational states of

TM7 and H8 [31��]. Similarly, fluorescence spectroscopy

of the V2R showed that conformational changes of TM6-

ICL3 are associated with G protein-dependent signaling

whereas changes of TM7-H8 domains are associated with

b-arrestin-mediated signaling [34�].

In addition, it has been recently observed that insertion of

a mutation in the interface between TM6 and TM7 that

sterically hinders their movement could induce G

protein-biased signaling for the CC-chemokine receptor

CCR5 [38]. In contrast, G protein-mediated signaling was

found to be suppressed in the thromboxane receptor by

disruption of a GxxGxxxL helical interaction motif in

TM5 [42]. In the mAChR, mutation of residues Tyr2.61

and Trp3.28 in an allosteric binding pocket introduces

biased signaling properties to previously unbiased ligands

suggesting these residues may act as molecular switches

or gatekeeper residues for functional selectivity [36].

In addition to the biophysical assays described above,

several X-ray crystal structures of GPCRs in putatively

biased agonist-bound states have been reported in recent

years [48�,49]. Comparison of these structures with those

of receptors occupied by unbiased ligands has provided

further insight into the structural basis of biased agonism
www.sciencedirect.com 
[48�,49–51]. For example, for the b1AR, putatively b-

arrestin-biased ligands interact with additional residues in

a ‘minor’ binding pocket near TM7 and ECL2, but have

weaker contact with TM5 compared to unbiased ligands

[49,50]. For serotonin receptors, ergotamine (ERG) exhi-

bits strong functional selectivity for b-arrestin-mediated

signaling at the 5-HT2B subtype, but is relatively

unbiased at the 5-HT1B receptor. Comparison between

the crystal structures of these two serotonin receptors

occupied by ERG demonstrated the ‘P5.50-I3.40-F6.44’

trigger motif (previously shown to be an interface be-

tween TM5, 3 and 6 near the base of the ligand binding

pocket in the b2AR) and the D(E)RY motif (TM3) adopt

active-like conformation in the 5-HT1B/ERG structure.

In contrast, an intermediate active conformation or inac-

tive state is observed in the 5-HT2B/ERG structure

[48�,51]. In addition, another key receptor activation

microswitch, the NPxxY motif in TM7, as well as the

overall conformation of TM7 exhibit more pronounced

activation features in the 5-HT2B/ERG structure [48�,51].

For class B GPCRs, recent X-ray crystal structures of the

TMs of the GLP-1R and corticotrophin-releasing factor

receptor 1 have also provided a structural framework to

explain receptor activation and biased agonism [52,53].

Mutagenesis studies of the human GLP-1R suggested

that ECL2 and distinct clusters of polar transmembrane

residues of the GLP-1R may serve important roles in

receptor activation and biased signaling [35,54].

The co-crystal structure of the b2AR/Gs complex has also

provided structural information about the interface be-

tween the receptor and G protein. The receptor interacts

with the G protein via TM5, 6, ICL2 and 3. There is no

substantial contact with TM7 and H8 [12], domains

previously identified to be important in b-arrestin-de-

pendent signaling [34�]. However these are still very early

days in terms of understanding the structural basis of

biased signaling.

Clinical application
The recognition that biased ligands can activate distinct

subsets of downstream signaling cascades relative to

unbiased ligands has led to a paradigm shift in terms of

how ligand efficacy is defined and characterized. In

addition, it has stimulated significant interest in the

potential clinical implications of these agents. Indeed

recent evidence supports the hypothesis that biased

ligands may possess unique pharmacologic properties

compared to traditional unbiased ligands.

Over the past few years, several biased agonists have

begun to advance in clinical development. One example

is TRV120027, a b-arrestin-biased ligand at the AT1AR

currently in clinical development for the treatment of

acute heart failure. Previous work has shown that b-

arrestin-biased agonists at the AT1AR stimulate cardiac

contractility in isolated cardiac myocytes [55] as well as in
Current Opinion in Cell Biology 2014, 27:18–24
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in vivo animal studies [56,57]. This in vivo effect appears

to be secondary to a b-arrestin-dependent mechanism

promoting myofilament response to calcium via altered

protein phosphorylation [58].

In a canine model of heart failure, infusion of TRV120027

resulted in significant increases in cardiac output and

renal blood flow as well as decreases in mean arterial

pressure (MAP), right atrial pressure, and pulmonary

capillary wedge pressure (PCWP) suggesting a unique

profile of pharmacologic activity for this biased agonist

[57]. When co-administered with the loop diuretic fur-

osemide, furosemide-mediated diuresis and naturesis was

maintained, as was glomerular filtration rate, while PCWP

was significantly decreased compared to furosemide alone

[59]. In first-in-human studies, TRV120027 was found to

be safe and tolerable when administered via intravenous

infusion and resulted in significant reductions in MAP in

those patients with elevated levels of plasma renin

activity, a common feature in patients with acute heart

failure [60].

In addition to the development of a biased agonist at the

AT1AR, recent work has evaluated the use of G protein-

biased agonists at the m-opioid receptor (MOR) as a

means to reduce the side effects of unbiased MOR

agonists such as morphine. In b-arrestin2 knock out mice,

early evidence suggested that morphine analgesia was

enhanced and prolonged with reduced desensitization

[61], whereas morphine-induced constipation and respir-

atory depression were reduced compared to wild type

animals [62]. It was therefore speculated that a G protein-

biased ligand might maintain the analgesic effects of

opioids such as morphine while simultaneously reducing

unwanted side effects such as respiratory depression and

gastrointestinal dysfunction commonly observed with

clinically used MOR agonists. Indeed, TRV130, a novel

MOR G protein-biased agonist was observed to be

potently analgesic while causing less respiratory depres-

sion and gastrointestinal dysfunction compared to equia-

nalgesic doses of morphine when administered in mice

and rats [63]. Additionally, in first-in-human studies,

TRV130 exhibited favorable pharmacokinetic and phar-

macodynamics profiles as well as excellent tolerability

[64]. These results suggest this G protein-biased agonist

could represent a step forward in the clinical develop-

ment of biased ligands by displaying a profile of main-

tained desired analgesic effects while simultaneously

reducing unwanted side effects mediated via the same

receptor.

Conclusions
The classical paradigm of ligand efficacy has undergone

major revisions over the past several years with the

introduction of concepts such as biased agonism. The

recognition that ligands can induce specific receptor

activation profiles has stimulated significant interest in
Current Opinion in Cell Biology 2014, 27:18–24 
obtaining a better understanding of the physiologic,

pharmacologic, structural and biophysical mechanisms

underlying this phenomenology. Recent research has

broadened the understanding of ligand bias and demon-

strated that bias may originate at the most proximal sites

of cellular signaling such as, for example, receptor phos-

phorylation patterns. In addition, ligand bias has also been

identified for activation of specific subsets of a single

transducer, for example, distinct G protein activation

patterns. The proliferation of atomic-level information

about receptors and receptor/transducer interactions has

further enhanced understanding of how specific receptor

conformational changes may engender biased patterns of

cellular function. Finally, the recent ongoing clinical de-

velopment of several biased agonists for a variety of

indications suggests that future drug design may increas-

ingly consider incorporation of an assessment of ligand

bias as a potential means to develop safer and perhaps

more effective medications.
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