Biologia Molecular Computacional IBI5035/QBQ2507 - 2023

Anotação funcional de genes

Eduardo Moraes Rego Reis Instituto de Química - USP

Estudos ômicos em larga-escala Identificam listas com dezenas a centenas de genes com padrão de expressão alterada

- Situações patológicas
- Estágio do desenvolvimento
- Tratamento com droga
- outros

A **anotação funcional** auxilia na interpretação dos resultados e na identificação das alterações mais relevantes para explicar o fenômeno biológico de interesse.

Anotação funcional e análise de enriquecimento gênico

Objetivo:

Atribuir significado biológico a um ou mais grupos de genes identificados durante experimentos.

Estratégia:

Identificar o enriquecimento de algum tipo de padrão entre os genes selecionados, acima do esperado ao acaso.

Exs.:

- Possuam as mesmas funções moleculares ou participem nos mesmo processos biológicos
- Codifiquem proteínas que se localizam nos mesmos componentes celulares (ex. Núcleo, mitocôndria, membrana plasmática)
- Participem das mesmas vias metabólicas
- Sejam ativados pelos mesmos fatores de transcrição
- Estejam envolvidos em uma mesma doença

Permite gerar hipóteses para experimentação adicional

Exemplo de aplicação de análise de enriquecimento gênico

Genes diferencialmente expressos no fígado de camundongos em um modelo de obesidade estão enriquecidos em genes relacionados ao metabolismo lipídico

45,000 genes interrogados

397 genes diferencialmente expressos (GDEs)

Cho et al., 2012 Nature 488, 621–626

68 GDEs em vias relacionadas a lipogênese e síntese de triglicerídeos (na figura)

Análises de enriquecimento dependem de informações (anotações) estruturadas de genes e suas funções

- Gene Ontology
- KEGG: Kyoto Encyclopedia of Genes and Genomes
- Reactome

mais alguns bancos de dados biológicos

Gene Ontology

 Vocabulário estruturado e controlado que descreve produtos gênicos em termos de processos biológicos, funções moleculares e componentes celulares

B

В

в

В

В

Ex.: Term Neighborhood for regulation of B cell activation (GO:0050864)

http://www.geneontology.org/

Welcome to the Gene Ontology website!

The Gene Ontology project is a major bioinformatics initiative with the aim of standardizing the representation of gene and gene product attributes across species and databases. The project provides <u>a controlled vocabulary of terms</u> for describing gene product characteristics and gene product annotation data from GO Consortium members, as well as tools to access and process this data. Read more about the Gene Ontology...

Search the Gene Ontology Database	
Search for genes, proteins or GO terms using AmiGO:	
P53	GOI
◎ gene or protein name ○ GO term or ID	
AmiGO is the official GO browser and search engine. Browse the Gene Ontology with AmiGO.	

The Gene Ontology project very much encourages input from the community into both the content of the GO and annotation using GO. We are very happy to work with others to ensure that the GO is both complete and accurate, and we also very much encourage communities to submit GO annotations for inclusion in the GO database. Please contact us.

The Gene Ontology Consortium is supported by a P41 grant from the National Human Genome Research Institute (NHGRI) [grant <u>5P41HG002273-09</u>]. See the full list of funding sources. The Gene Ontology Consortium would like to acknowledge the assistance of many more people than can be listed here. Please visit the <u>acknowledgements page</u> for the full list.

Cellular tumor antigen p53

protein from Homo sapiens (human)

 \subset

Term associations 🖡 Gene product information 🌩 Peptide Sequence 🌩 Sequence information 🕈

Term Associations	
Download all association information in: 🗋 gene association format 📋 RDF-XML	
Current filters Ontology: biological process Filter associations displayed ? Filter Associations Ontology Evidence Code All IBA IBA IBA IRD Nolecular function	
Select all Clear all Perform an action with this page's selected terms	Ontology
GO:0002326 : B cell lineage commitment 34 gene products view in tree	biological process
GO:0007569 : cell aging 878 gene products view in tree	biological process
G0:0071479 : cellular response to ionizing radiation 239 gene products view in tree view in tree	biological process
GO:0034644 : cellular response to UV GO:0034644 : cellular response to UV 386 gene products view in tree view in tree	biological process
G0:0007417 : central nervous system development 4539 gene products view in tree view in tree	biological process
G0:0051276 : chromosome.organization 9485 gene products view in tree view in tree	biological process

KEGG: Kyoto Encyclopedia of Genes and Genomes

http://www.genome.jp/kegg/

Tryptophan metabolism - Reference pathway

Pathway menu | Organism menu | Pathway entry | User data mapping]

Reference pathway

GCG

-

100% -

http://www.reactome.org/

Métodos para análise de enriquecimento de categorias gênicas

Programas para análises de enriquecimento de categorias funcionais

- DAVID (<u>http://david.abcc.ncifcrf.gov/</u>)
- G:Profiler (<u>http://biit.cs.ut.ee/gprofiler/)</u>
- GSEA (Gene Set Enrichment Analysis www.broadinstitute.org/gsea/)
- Ingenuity Pathway Analysis (Comercial)

Identificação de categorias enriquecidas entre genes de interesse

•parte de uma lista de genes selecionada com algum critério (expressão diferencial, abundância, outros)

• utiliza conhecimento *a priori* (ex. GO, vias moleculares, anotações funcionais, outras...)

• Testa a probabibilidade de uma determinada categoria estar sobre-representada na lista de genes selecionada em relação ao universo de genes.

 assume uma distribuição hipergeométrica (= teste exato de Fisher (chi-quadrado) mono-caudal)

	Genes selecionados	Total de genes	
Pertencem a categoria X	10 (k)	70 (K)	$P(X=k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N-K}{n-k}}$
Não pertencem a categoria X	90 (n - k)	930 (N – K)	$\binom{N}{n}$
Total	100 (n)	1000 (N)	

Testar se a frequência de genes da categoria x na lista selecionada (10/100; 10%) é maior que o esperado ao acaso (70/1000; 7%)

Passos em uma análise de enriquecimento de categoria gênica

- Definir a lista de genes de interesse e o universo de genes avaliados ("background"). Nota: No caso do RNAseq ou outra análise global, o total de genes anotados pode ser usado como referência
- Selecionar os genes de interesse para verificar o enriquecimento de termos/categorias (ex. DEGs)
- Executar teste de enriquecimento com correção para testes múltiplos (ex. Bonferroni, Benjamini-Hochberg) para controlar o número de falsos -positivos.

g:Profiler

a web server for functional interpretation of gene lists

http://biit.cs.ut.ee/gprofiler/

J. Reimand, T. Arak, P. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo: g: Profiler -- a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkw199 (PDF, more)

[?] Organism Homo sapiens ÷ , [?] Ouery (genes, proteins, probes)	Options [?] ✓ Significant only [?] □ Ordered query	Z Z	[?] Gene Ontology Biological process Cellular component Molecular functi Inferred from experiment [IDA, IPI, IMP, IGI, IEP]
	 [?] No electronic GO annotations [?] Chromosomal regions [?] Hierarchical sorting [?] Hierarchical filtering Show all terms (no filtering) ‡ [?] Output type Graphical (PNG) ‡ 	G P A a G X S Y Ba Rd E 8	Genetic interaction [IGI] / Physical interaction [IPI] Traceable author [TAS] / Non-traceable author [NAS] / Inferred by curator [IC] Expression pattern [IEP] / Sequence or structural similarity [ISS] / Genomic cont Biological aspect of ancestor [IBA] / Rapid divergence [IRD] Reviewed computational analysis [RCA] / Electronic annotation [IEA] No biological data [ND] / Not annotated or not in background [NA]
	Show advanced options	k n	Biological pathways 🗹 KEGG 🗹 Reactome
[?] or Term ID:		ff mi	[?] Regulatory motifs in DNA 🗹 TRANSFAC TFBS 🗌 miRBase microRNAs
g:Profile! Clear		ha <mark>co</mark>	[?] Protein databases 🗹 Human Protein Atlas 🗹 CORUM protein complexes
Example or random query g:Profiler version r1665_e85_eg32. Version info		🗹 h h	[?] Human Phenotype Ontology (sequence homologs in other species)
		om 🔽	[?] Online Mendelian Inheritance in Man
		d 😑	[?] BioGRID protein-protein interactions

						ENSGOO	ENSCOOL	ENSGOOD	ENSGOOD	ENSGOO	ENSGOO	ENSGOOD	ENSGOO	ENSCOOL	ENSGOOD	ENSGOO	ENSGOO	ENSGOO	ENSGOO	ENSGOO	
GO	:MF		stats		<u>>></u>	0001	0000	00016	0001	0001	0001	0000	0001	0000	0001	0001	0001	0001	0001	1000	
	Term name	Term ID 🗳	p _{adj}	-log ₁₀ (p _{adj})	≤16	32437	13573 76208	34256	34584	64136	29691	39482	38061	01617	34452	74718	13555	07290	19655	53071	
	ATP-dependent activity, acting on DNA	GO:0008094	2.211×10 ⁻⁵																		
	histone methyltransferase activity	GO:0042054	6.488×10 ⁻⁵																		
	DNA helicase activity	GO:0003678	1.626×10 ⁻⁴																		
	protein methyltransferase activity	GO:0008276	4.078×10 ⁻⁴																		
	N-methyltransferase activity	GO:0008170	5.455×10 ⁻⁴																		
	catalytic activity, acting on DNA	GO:0140097	6.083×10 ⁻⁴																		
	histone-lysine N-methyltransferase activity	GO:0018024	2.237×10 ⁻³																		
	helicase activity	GO:0004386	3.617×10 ⁻³																		
	S-adenosylmethionine-dependent methyltransfera	GO:0008757	3.984×10 ⁻³																		
	protein-lysine N-methyltransferase activity	GO:0016279	6.140×10 ⁻³																		
	lysine N-methyltransferase activity	GO:0016278	6.454×10 ⁻³																		
	G-quadruplex DNA binding	GO:0051880	9.863×10 ⁻³																		
	methyltransferase activity	GO:0008168	1.252×10 ⁻²																		
	transferase activity, transferring one-carbon groups	GO:0016741	1.538×10 ⁻²																		
	3'-5' DNA helicase activity	GO:0043138	1.990×10 ⁻²																		
	ATP-dependent activity	GO:0140657	3.229×10 ⁻²																		
	histone methyltransferase activity (H3-K4 specific)	GO:0042800	3.338×10 ⁻²																		

Comparação do transcritoma de tumores de pâncreas com tecido não tumoral por RNAseq

398 genes codificadores de proteína (GENCODE v.22) diferencialmente expressos no PDAC (padj < 0.001, FC > |10|)

Genes com expressão aumentada no câncer de pâncreas estão enriquecidos em proteínas com potencial para biomarcador de diagnóstico

Tutorial enriquecimento de categorias gênicas - gProfiler

Tutorial - gProfiler

Analisar lista de genes diferencialmente expressos em tumores de pâncreas Identificados através de RNAseq (Paixão et al., Cellular Oncology 2022). Critérios de seleção: razão exoressão Tumor / nãotumor > |2x| (>= |1| log2|) e padj < 0,00001

Lista disponível na pagina da disciplina: DEGs – tumor de pâncreas. Abrir a planilha (Excel, csv).

Na coluna 1, selecionar genes com expressão aumentada ou diminuida nos tumores. No gProfiler, analise separadamente os genes aumentados (razão > 1 log2) e os genes diminuídos (razão < -1 log2) nos tumores.

Investigue se existem termos enriquecidos (padj < 0.05) entre genes com expressão aumentada ou diminuída. Utilize diferentes ontologias:

- GO Processos biológicos, Funções moleculares, Componente celular
- KEGG
- BioCarta
- Outros
- Reporte no relatório uma tabela com o nome e estatísticas das 5 categorias mais significativas (ou que você considere mais relevante no contexto do câncer). Pode ser uma categoria de cada ontologia.

"Gene Set Enrichment Analysis"

http://www.broadinstitute.org/gsea/index.jsp

- Estratégia alternativa que parte de uma lista genes ranqueada em função do fenótipo de interesse (expressão gênica, outros).
- Evita a utilização de um critério arbitrário na seleção dos genes de interesse. Ex. genes diferencialmente expressos X vezes

O que são "gene sets" ?

Conjuntos de genes definidos a partir de conhecimento biológico prévio

Ex.:

- Publicações científicas sobre vias bioquímicas
- Padrões de co-expressão observados em experimentos prévios

O programa GSEA pode usar conjuntos curados de "gene sets" disponíveis publicamente, ou fornecidos pelo usuário

"Molecular Signatures Database" - Conjunto curado de gene sets

http://www.broadinstitute.org/gsea/msigdb/index.jsp

c1 positional gene sets for each human chromosome and cytogenetic band.

C2 curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.

C3 motif gene sets based on conserved cisregulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.

C4 computational gene sets defined by mining large collections of cancer-oriented microarray data.

C5 GO gene sets consist of genes annotated by the same GO terms.

C6 oncogenic signatures defined directly from microarray gene expression data from cancer gene perturbations.

C7 immunologic signatures defined directly from microarray gene expression data from immunologic studies.

- 🕨 C1 (positional gene sets, 326 gene sets) 🖬
 - by chromosome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y
- C2 (curated gene sets, 4722 gene sets) 2
 - CGP (chemical and genetic perturbations, 3402 gene sets) 12
 - CP (Canonical pathways, 1320 gene sets) 2
 - CP:BIOCARTA (BioCarta gene sets, 217 gene sets) 2
 - CP:KEGG (KEGG gene sets, 186 gene sets) 2
 - CP:REACTOME (Reactome gene sets, 674 gene sets)
- C3 (motif gene sets, 836 gene sets) 12
 - MIR (microRNA targets, 221 gene sets) 2
 - TFT (transcription factor targets, 615 gene sets) 12
- C4 (computational gene sets, 858 gene sets) 2
 - CGN (cancer gene neighborhoods, 427 gene sets) 12
 - CM (cancer modules, 431 gene sets) 1
- C5 (GO gene sets, 1454 gene sets) 12
 - BP (GO biological process, 825 gene sets) 2
 - CC (GO cellular component, 233 gene sets) 1
 - MF (GO molecular function, 396 gene sets) 2
- 🕨 C6 (oncogenic signatures, 189 gene sets) 🖬
- 🕨 C7 (immunologic signatures, 1910 gene sets) 😰

GSEA - Etapas na identificação de "gene sets" significativamente enriquecidos

- Passo 1: Cálculo do valor de enriquecimento ("Enrichment Score" ES)
- Passo 2: Estimativa da significância estatística de ES (comparação com distribuição ao acaso)
- Passo 3: Correção para testes múltiplos ("False Discovery Rate")

Exemplo de uso do GSEA: Identificação de "gene sets" relacionados com inativação do cromossomo X em listas de genes expressos em linhagens celulares de machos e fêmeas

Subramanian A et al. PNAS 2005;102:15545-15550

Baixa sobreposição entre os genes com expressão correlacionada à sobrevida do paciente identificados em 3 estudos de câncer de pulmão

Stanford

Fig. 5. Single gene overlaps in lung cancer studies. This Venn diagram shows the pairwise and three-way overlap between the top 100 genes correlated with poor outcome in the Michigan, Boston, and Stanford data sets. Pairwise overlap is determined by using genes that appear on the technology platforms of both studies. Three-way overlap is the overlap of the pairwise overlaps. Restricting to genes on all three platforms would reduce the gene space by 50% in the Michigan study and by 70% in the Boston and Stanford studies.

Subramanian A et al. PNAS 2005;102:15545-15550

Boston Dataset

Michigan Dataset

P < 0.001

Alta sobreposição entre as vias correlacionadas à sobrevida do paciente nos diferentes estudos de câncer de pulmão

Data set: Lung cancer outcome, Boston study										
Enriched in poor outcome										
Hypoxia and p53 in the cardiovascular system	0.050									
Aminoacyl tRNA biosynthesis	0.144									
Insulin upregulated genes	0.118									
tRNA synthetases	0.157									
Leucine deprivation down-regulated genes	0.144									
Telomerase up-regulated genes	0.128									
Glutamine deprivation down-regulated genes	0.146									
Cell cycle checkpoint	0.216									

Data set: Lung cancer outcome, Michigan study	
Enriched in poor outcome	
Glycolysis gluconeogenesis	0.006
vegf pathway	0.028
Insulin up-regulated genes	0.147
Insulin signalling	0.170
Telomerase up-regulated genes	0.188
Glutamate metabolism	0.200
Ceramide pathway	0.204
p53 signalling	0.179
tRNA synthetases	0.225
Breast cancer estrogen signalling	0.250
Aminoacyl tRNA biosynthesis	0.229

FDR ≤ 0.25

Tutorial - GSEA

 identificar "gene sets" com expressão aumentada (FDR < 25%) em pacientes com cancer de pulmão com pior prognóstico utilizando dados de expressão gênica gerados nos estudos de Boston e Michigan.

• verificar se existem "gene sets" em comum entre os dois estudos. Quais são eles?

• Escolher um "gene set" enriquecido nos dois estudos e verificar se existem genes diferencialmente expressos em comum. Rportar os resultados no relatório.

 o tutorial abaixo apresenta uma visão geral de como realizar análises utilizando o programa: https://www.youtube.com/watch?v=KY6SS4vRchY

Baixar o programa no site http://www.gsea-msigdb.org/gsea/downloads.jsp

Software

There are several options for GSEA software. All options implement exactly the same algorithm. Usage recommendations and installation instructions are listed below. For details on the GSEA algorithm and software refer to the Documentation. For details on the latest release refer to the Release Notes. The source is available from our GitHub organization.

See the license terms page for details about the license for the GSEA software and source code. Please note that the license terms vary for different versions of the software.

GSEA v4.1.0 Mac App	Download and unzip the Mac App Archive then double-click the GSEA application to run it. You can move the app to the Applications folder or anywhere else.	download GSEA_4.1.0.app.zip
GSEA v4.1.0 for Windows	Download and run the installer. A GSEA shortcut will be created on the Desktop; double-click it to run the application. 64-bit Windows is required	download GSEA_Win_4.1.0-installer.exe
GSEA v4.1.0 for Linux	Download and unzip the Archive. See the included readme.txt for further instructions. 64-bit Linux is required	download GSEA_Linux_4.1.0.zip
GSEA v4.1.0 for the command line (all platforms)	Download and unzip the Archive. See the included readme.txt for further instructions. Requires separate Java 11 installation.	download GSEA_4.1.0.zip
GSEA v4.1.0 Java Web Start (all platforms)	Launches the GSEA desktop application from the web. Requires separate Java 8 installation. Please use a configuration smaller than your computer's total memory.	Launch with 168 (6r 32 or 84-bit Java) 🗸
	This option will be removed in a future release.	

A versão Java não necessita instalação no computador.

Dica: pode ser preciso adicionar o site do provedor do programa como exceção de segurança no Java

Baixar os arquivos com os dados de expressão gênica (*.gct) e identificação das amostras (*.cls)

\leftarrow	\rightarrow C		A 1	Vão se	guro	gs	ea-msigdb.c	org/gsea/d	ata	sets.jsp				
	defesa Hen	rique	e		Aulas		IQ 50 anos -	Cancer		Emissao de NF- Ace	CCP	Paper RNAseq - PD	Paper Exoma	Pancreatic Cancer

Example Datasets

DATASET	DESCRIPTION	RELEVANT DATA (save link to download)	REFERENCE
Gender	Transcriptional profiles from male and female lymphoblastoid cell lines Results of C1 GSEA analysis of this dataset Results of C2 GSEA analysis of this dataset	Gender_hgu133a.gct Gender_collapsed.gct Gender.cls	Unpublished
p53	Transcriptional profiles from p53+ and p53 mutant cancer cell lines Results of C2 GSEA analysis of this dataset	P53_hgu95av2.gct P53_collapsed.gct P53.cls	Unpublished
Diabetes	Transcriptional profiles of smooth muscle biopsies of diabetic and normal individuals Results of C2 GSEA analysis of this dataset	Diabetes_hgu133a.gct Diabetes_collapsed.gct Diabetes.cls	Mootha et al. (2003) Nat Genet 34(3): 267-73
Leukemia	Transcriptional profiles from leukemias - ALL and AML Results of C1 GSEA analysis of this dataset	Leukemia_hgu95av2.gct Leukemia_collapsed.gct Leukemia.cls	Armstrong et al. (2002) Nat Genet 30(1): 41-7.
Lung cancer	Transcriptional profiles from two independent lung cancer outcome datasets	Lung_Michigan_hu6800.gct Lung_Michigan_collapsed.gct Lung_Michigan.cls Lung_Michigan.cls Lung_Boston_hgu95av2.gct Lung_Boston_collapsed.gct Lung_Bost collapsed common_Mich_Bost.gct Lung_Boston.cls	Beer et al. (2002) Nat Med 8(8): 816-24. Bhattacharjee et al. (2001) Proc Natl Acad Sci U S A 98(24): 13790-5.

Dica: baixar também a anotação da plataforma de microarranjos de DNA Affy HU6800 https://data.broadinstitute.org/gsea-msigdb/msigdb/annotations_legacy/unconverted_chips/HU6800.chip

Carregar os arquivos do passo anterior no programa GSEA

👧 GSEA 4.1.0 (Gene set enrichment analysis)	. , , , , , , , , , , , , , , , , , , ,							×
File Downloads Help								Ĩ
Steps in GSEA analysis	Home i 🗓 Load data 🗙 i 🔛 Run Gsea 🗙 i 🕵 Col	lapse Dataset from Probes to Syr	mbols × 🗄	🍯 Gsea 🗙			4 1	
Load data	Load data: Import data into the application							
Run GSEA	Method 1: 📂 Browse for files	Method 3: drag and drop files here	3		Supported file formats Dataset: res or gct (Broac pcl (Stanford) txt (tab-delim to Phenotype labels: cls Gene sets: gmx or gmt Annotations: chip	I/MIT), ext) or grp 2) File Format He	en	
Tools Image: Second s	Method 2: Solad last dataset used	Clear	<u> </u>	Open Examinar: Accesso rápido	GSEA GSEA Hu6800 Lung_Boston.cls Lung_Boston_hgu95av2.gct Lung_Michigan.cls Lung_Michigan.ls		C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tipo Arqu Arqu Arqu Arqu Arqu
GSEA reports Processes: click 'status' field for results Name Status I I Gsea Error! C I Gsea Error! G I Gsea Error! G II Gsea Error! G II Gsea Error! G II Gsea Error! G II Gsea Error! B II Gsea II	Recently used files (double click to load, right click for more options) .IGSEAILung_Boston.cls .IGSEAILung_Michigan.cls .IGSEAILung_Boston_hgu95av2.gct .IGSEAILung_Michigan_hu6800.gct		Object cach (objects are D D D C D C D C D C D C D C D C D C D C	Área de Trabalho Bibliotecas Este Computador Rede	Lung_Michigan_hub800.gct Lung_Michigan_hub800.gct Nome do objeto: Todos os Arquivo Todos os Arquivo	25 (*.*) 25 (*.*)		
Show results folder								
19:53:03 🕀 13066341 [INFO] - <html><body><</body></html>	b>This will remove these files from this list (but NOT delete the files themselv	es)					488M of 673M	i

Na aba "Run GSEA", selecionar:

- Item "Expression dataset": selecionar o dado de expressão (Michigan ou Boston)
- Item Gene Set Database": selecionar o gene set "Hallmarks"
- -Item "Phenotype": selecionar DEAD vs ALIVE (Michigan ou Boston)
- Item Chip Platform": Hu6800.chip (Michigan) ou Human_AFFY_HG_U95_MSigDB.v7.4.chip (Boston)
- Item "Analysis Name":
- dead_vs_alive_Michigan ou
- dead_vs_alive_Boston
- Clicar "Run" (rodar analises separadas para cada cada dataset).
- O exemplo ao lado se refere a análise com os dados de Michigan
- Para visualizar os resultados clicar no processo após finalizado

ile Downloads Help					
teps in GSEA analysis		Home 🗄 🗓 Load data 🗴	🔛 Run Gsea 🛛 🗙	Collapse Dataset from Probes to Symbols	× 🗄 🎳 Gsea
Load data		Gsea: Set parameters and run ennuin			
e 2		Required fields			_
Run GSEA		Expression dataset	Lung_Michiga	n_hu6800 [7129x86 (ann: 7129,86,chip na)]	
		Gene sets database	ftp.broadinstit	ute.org://pub/gsea/gene_sets/h.all.v7.4.symbols.gmt …	
🔓 Leading edge analysis		Number of permutations	1000		
		Phoneture labels	2021) OBO2507	IRISO25) GSEAN LURA Mishinga ala#DEAD Jacob ALIVE	1
📩 Enrichment Map Vi	sualization	Phenotype labels	2021\QBQ2507		
-		Collapse/Remap to gene symbols	Collapse		J
ools		Permutation type	gene_set	-	
Pup GSEADronaulus	d	Chip platform]sea/annotatio	ns_versioned/Human_AFFY_HG_U95_MSigDB.v7.4.chip	
Kull GSEAPTeranke	u		L*		
P		Basic fields			Hide
Collapse Dataset		Dasic ficius			
		Analysis name	dead_vs_alive_	Michigan	
Chip2Chip mapping		Enrichment statistic	weighted	-	
		Metric for ranking genes	Signal2Noise	•	
		Gene list sorting mode	real	•	
Analysis history			decord for a)
	,	Gene list ordering mode	descending	•	
ocesses: click 'status' field	for results	Max size: exclude larger sets	500		
Name	Status	Min size: exclude smaller sets	15	-	
🖾 Gsea	Error!	Save results in this folder	C:\Users\edua	r\gsea_home\output\nov16	
III Gsea	Success Error	-			
🖬 Gsea	Error!	Advanced fields			Show
🖾 Gsea	Error!				SHOW
Gsea	Error!	-			
🗳 Gsea	···· Success				
🗳 Gsea	Success	-4			

Enrichment in phenotype: DEAD (31 samples)

- 32 / 50 gene sets are upregulated in phenotype DEAD
- 24 gene sets are significant at FDR < 25%
- 14 gene sets are significantly enriched at nominal pvalue < 1%
- 18 gene sets are significantly enriched at nominal pvalue < 5%
- Snapshot of enrichment results
- Detailed <u>enrichment results in html</u> format
- Detailed enrichment results in TSV format (tab delimited text)
- <u>Guide to</u> interpret results

Enrichment in phenotype: ALIVE (31 samples)

- 18 / 50 gene sets are upregulated in phenotype ALIVE
- 2 gene sets are significantly enriched at FDR < 25%
- 2 gene sets are significantly enriched at nominal pvalue < 1%
- 2 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- Detailed enrichment results in html format
- · Detailed enrichment results in TSV format (tab delimited text)
- · Guide to interpret results

Dataset details

- · The dataset has 12600 native features
- After collapsing features into gene symbols, there are: 8909 genes

Gene set details

- · Gene set size filters (min=15, max=500) resulted in filtering out 0 / 50 gene sets
- · The remaining 50 gene sets were used in the analysis
- · List of gene sets used and their sizes (restricted to features in the specified dataset)

Gene markers for the DEAD versus ALIVE comparison

- · The dataset has 8909 features (genes)
- # of markers for phenotype DEAD: 3301 (37.1%) with correlation area 37.8%
- # of markers for phenotype ALIVE: 5608 (62.9%) with correlation area 62.2%
- · Detailed rank ordered gene list for all features in the dataset
- · Heat map and gene list correlation profile for all features in the dataset

Global statistics and plots