Experimentos em microscopia óptica

Marcação de células – fluorescência

Estruturas

- Mitocôndria
- **Citoplasma**
- Membrana
- Núcleo
- **Centríolo**
- **Citoesqueleto**
- Lisossomos
- Retículo Endoplasmático
- Golgi

Processos

- **Viabilidade**
- **Proliferação**
- □ Mitose
- □ Migração
- **Ciclo cellular**
- Potencial de membrana
- Espécies reativas de oxigênio
- **Apoptose**
- □ Necrose

Imunofluorescência Anticorpos

Marcação direta Corantes

imunofluorescência

Direta:

Anticorpo primário contendo fluoróforo se liga a proteínas celulares

Indireta:

Anticorpo secundário contendo fluoróforo se liga ao complexo anticorpo primárioproteína

Adequado para:

- Tecidos congelados, não fixados e fixados em etanol
- Células fixadas com paraformaldeído ou com metanol/acetona

Method	Direct	Indirect
Example	Step 1: CF™488A mouse anti-A + CF™568 mouse anti-B	Step 1: Mouse anti-A + rabbit anti-B Step 2: CF™488A goat anti-mouse + CF™568 goat anti-rabbit
Advantages	 Rapid single-step staining Can use multiple antibodies from same host 	 Secondary amplifies signal A few labeled secondaries can detect many primaries
Disadvantages	 No signal amplification from secondary Each primary must be labeled individually 	 Two-step staining Requires antibodies from different hosts

Anticorpos Conjugados

 Fluoróforo 				(nm)	(nm)	
Label	Validated application(s)	AF405	Violet	402	421	35,000
Alova Fluor® dy (AF)	Immunofluorescence (ICC/IF),	AF488	Cyan- green	495	519	73,000
Alexa hoor ayes	cytometry	FITC	Cyan- green	495	519	72,000
Phycoerythrin (R-PE)	Flow cytometry (internally validated in ICC/IF)	AF555	Yellow- green	555	565	155,000
FITC (Fluorescein isothiocyanate)	ICC/IF and/or flow cytometry	R-PE	Yellow- green	565	578	1,960,000
APC (Allophycocyanin)	Flow cytometry (internally validated in ICC/IF)	AF568	Orange	578	603	88,000
PerCP (Peridinin chlorophyll)	Flow cytometry (internally validated in	AF594	Orange- red	590	617	92,000
	ICC/IF)					abo

Download here the fluorochrome chart with the emission and excitation fluorescence spectra for 30 of the most commonly used fluorochromes.

Em^{Max}

EC

QY

-

0.92

0.92

0.1

0.84

0.69

0.66

Ex^{Max}

Color*

Label

cam website

corantes fluorescentes

Estruturas celulares .

- Proteínas
- Glicanas
- Ácidos nucléicos
- ...

Processos

- Viabilidade corante é resultado de um metabolismo em células vivas
- Morte corante de DNA que não penetra na membrana intacta
- Proliferação, Divisão e Migração corante penetra na célula e se liga covalentemente à aminas livres

exemplos

Estruturas/Processos	DNA	Mitocôndria	Morte	Proliferação	Viabilidade
Marcadores	DAPI	Rhodamina 123	lodeto de Propídeo	CFSE	Calceína

• DAPI

Permeável na membrana

• DAPI +DNA

• Excitação/Emissão

Marcadores fluorescentes

Marcadores fluorescentes

Nuclear Stains	Catalog No.	Color (Ex/Em*)	Cell permeability	For live / fixed cells	Fixable after staining?	Features
NucSpot® 470 Nuclear Stain	40083	Green (460/546 nm)	Membrane impermeant	Dead cells Fixed cells	No ¹	 Nuclear-specific green counterstain for fixed cells Selectively stains dead cells in live cultures Excellent match for blue LED excitation sources
NucSpot® Live 488 Nuclear Stain	40081	Green (500/515 nm)	Membrane permeant	Live cells Fixed cells	Yes	 Low-toxicity nuclear stain Fix before or after labeling Live cell staining may require verapamil (included)
NucSpot® Live 650 Nuclear Stain	40082	Far-red (650/675 nm)	Membrane permeant	Live cells Fixed cells	Yes	 Low-toxicity nuclear stain for the Cy®5 channel Fix before or after labeling Live cell staining may require verapamil (included) Compatible with SIM, STED, or STORM
RedDot™1 Far-Red Nuclear Stain	40060	Far-red (662/694 nm)	Membrane permeant	Live cells	No ²	 For short-term live cell staining (≤4 hours) Analyze DNA content/cell cycle by flow cytometry Useful for cell number normalization for In Cell Western® Can be excited at wavelengths between 488 and 647 nm Detect in Cy®5 or APC channel
RedDot™2 Far-Red Nuclear Stain	40061	Far-red (665/695 nm)	Membrane impermeant	Dead cells Fixed cells	No ¹	 Far-red nuclear stain for dead or fixed cells Selectively stains dead cells Specific nuclear counterstain for fixed cells Can be excited at wavelengths between 488 and 647 nm Detect in Cy®5 or APC channel
Live-or-Dye NucFix™ Red	32010	Red (520/610 nm)	Membrane impermeant	Dead cells	Yes	 Reactive nuclear stain for dead cells Specifically stains dead cell nuclei Fix/permeabilize without dye transfer between cells
Hoechst 33258, 10 mg/mL in H ₂ O Hoechst 33258, pentahydrate Hoechst 33342, 10 mg/mL in H ₂ O Hoechst 33342, trihydrochloride trihydrate	40044 40045 40046 40047	Blue (358/461 nm)	Membrane permeant	Live cells Fixed cells	Yes	 Classic nuclear counterstain for live cells Can also be used on fixed cells
DAPI DAPI, 10 mg/mL in H ₂ O DAPI, dilactate 10 mg in H ₂ O	40011 40043 40009	Blue (358/461 nm)	Membrane permeant	Live cells Fixed cells	Yes	 Classic nuclear counterstain for fixed cells Can be used at higher concentrations to stain live cells Dilactate salt has improved water solubility

Marcadores fluorescentes

Link ThermoFisher

Link Cell Staining Tool

Microscopia de fluorescência

Felts et al., JBC, 2000

Microscopia de fluorescência

Anti-tubulin MoAb

Goat anti-mouse-Rhodamine

centrososmos

Anti-pericentrin PoAb Goat anti-mouse-FITC

úcleo

sobreposição

Microscopia de fluorescência

Fibras de Estresse

Adesões focais

Rhodamine-Phalloidin

Anti-vinculin MoAb Goat anti-mouse-FITC

CITOTOXICIDADE NO ESCURO

CITOTOXICIDADE NO ESCURO - PPIX

MTT – p24

[PpIX] = 20 – 200 μg/mL

CITOTOXICIDADE NO ESCURO - PDZ

MTT – p24

TESTES DE VIABILIDADE

Citometria de Fluxo

TESTES DE VIABILIDADE

Citometria de Fluxo

Live/Dead Assay Sytox Green → mortas Resazurina → vivas

ANÁLISE DO CRESCIMENTO

Monitoramento do

crescimento

Medida do tamanho

	⊈ Ke	sults						~
	File	Edit	Font Re	esults			\frown	
		Area	Mean	Min	Мах	Angle	Length	_
	1	0.020	45.433	22.064	159.667	-76.139	2.183	
	2	0.018	53.235	3.666	133.667	14.931	1.994	
							\smile	
l	•							

ANÁLISE DO CRESCIMENTO

Placa de 96 poços – 10⁴ células

$$d_{ap} = 0,64 \pm 0,03 \text{ mm}$$

Barra de escala: 1 mm

ANÁLISE DO CRESCIMENTO

PLACA MULTIPOÇOS	р6		p24	p9	96
Placa de ímã	6	96+6	24	96	96
Nº de células	1	0 ⁶	10 ⁵	10 ⁵	10 ⁴
Diâmetro aparente (mm)	2,05 ± 0,07	3,55 ± 0,07	2,39 ± 0,04	1,87 ± 0,08	0,64 ± 0,03
Tempo inicial (dias)	19	17	5	5	4
Tempo máximo (dias)	-	-	20	10	23
Observações	Longo temp Baixo número	o para início o de amostras	Médio número de amostras	Dificuldade do magn Alto número	uso da caneta ética de amostras

Célula: melanoma não-pigmentado (B78H1) – Grupo controle (somente luz)

Célula: melanoma não-pigmentado (B78H1) – Grupo tratamento (TFD por A2F)

Célula: melanoma pigmentado (B16F10) – Grupo controle (somente luz)

Célula: melanoma pigmentado (B16F10) – Grupo tratamento (TFD-A2F)

Non-pigmented – B78H1 cell line

Average ~ 25 ± 1 min

Increase in the photobleaching rate for sites around the nuclei

Pigmented – B16F10 cell line

Average ~ 24 ± 8 min

- Considerable variation;
- Melanin TPA;
- Melanin weak green fluorescence;
- PS oxidation;

Microscopia confocal

Microscopia Confocal

DISTRIBUIÇÃO DOS FSs

Crio-seccionamento

DISTRIBUIÇÃO DA PPIX

Crio-seccionamento – p24

[PpIX] = 50 μg/mL

DISTRIBUIÇÃO DO PDZ

Crio-seccionamento – p24

1 mm

DISTRIBUIÇÃO DO PDZ

Quantificação do PDZ

1 mm

Figura 19 – Culturas tridimensionais de melanoma humano em função do tempo de levitação. Imagens em microscopia dos tumores em placa de 24 poços. Escala: 200 μm.

Figura 20 – Viabilidade celular dos tumores de melanoma ao longo dos dias de levitação. Fonte: Elaborada pela autora.

Figura 21 – Imagens em microscopia confocal de fluorescência dos tumores de melanoma. a) Os esferoides obtiveram espessura aproximada de 80 μm devido ao arranjo de imãs abaixo da placa de 96 poços durante a impressão magnética, conferindo um maior "achatamento" do tumor. Os magnetos podem ser retirados após a formação dos esferoides sem perda da estrutura. b) Os tumores em placas de 24 poços adquiriram espessura entre 120 a 130 μm. Isso ocorreu porque o arranjo de imãs, nesse caso, ficou acima da placa de cultivo, permitindo maiores graus de liberdade e interações em diferentes planos das células de melanoma.

Figura 30 – Imagens espectrais, com aumento de 20 vezes, de tumores de melanoma incubados com Photodithazine[®] e Photogem[®], em diferentes tempos. Escala: 1 mm.

Figura 31 – Imagens de fluorescência em microscopia confocal de tumores de melanoma imersos em solução de PDZ e Photogem[®], ambos na concentração de 50 μg/mL. Destaque para a distribuição homogênea do PDZ nas culturas em detrimento da heterogênea para o Photogem[®]. As imagens foram obtidas com aumento de 40 vezes e a escala refere-se à 50 μm.

Fotossensibilizador	Tempo de incubação (horas)	Concentração de FS intracelular (µg/mL)
	4	$(3,00 \pm 0,05)$
Photodithazine [®]	8	$(3,24 \pm 0,05)$
	16	$(5,70 \pm 0,11)$
	24	$(3,45 \pm 0,06)$
	4	$(1,52 \pm 0,05)$
Photogem®	8	$(2,71 \pm 0,50)$
	16	$(3,25 \pm 0,59)$
	24	$(6,14 \pm 0,82)$

Tabela 6 –	Resultados	da	quantificação	de	fotossensibilizadores	intracelulares	em	culturas	de	melanoma
	humano em	mo	nocamada.							

Tabela 7 –	Resultados da quantificação de fotossensibilizadores intracelulares em culturas tridimensionais de
	melanoma humano.

Fotogoongibilizadan	Tompo do incuboção (honos)	Concentração de FS
Fotossensibilizador	Tempo de incubação (noras)	intracelular (μg/mL)
	4	$(0,82 \pm 0,02)$
Photodithazine[®]	8	$(1,60 \pm 0,03)$
	16	$(2,67 \pm 0,04)$
	24	$(1,90 \pm 0,03)$
	4	$(0,25 \pm 0,03)$
Dhotogow[®]	8	$(0,80 \pm 0,10)$
Photogem	16	$(1,08 \pm 0,12)$
	24	$(1,97 \pm 0,19)$

Figura 33 – Gráfico normalizado dos experimentos de TFD em tumores de 80 μm de espessura (placa de 96 poços) com diferentes doses de irradiação, através do ensaio de MTT. Cada dose de luz define um determinado tempo de iluminação, sendo em ordem crescente 7min e 58 s, 15 min e 55 s, 47 min e 45 s. Os respectivos grupos controle designados por "0", representam as amostras tumorais não incubadas com Photodithazine[®]. Os grupos identificados por * se referem aos que apresentaram diferença estatística significativa (p<0,05), com relação aos seus respectivos grupos controle.</p>

Figura 34 – Imagens em microscopia óptica dos tumores de melanoma humano (com 80 μm de espessura) após 24 horas da TFD em 20 J/cm². A letra C representa o grupo controle, enquanto os demais números as concentrações de Photodithazine[®] utilizadas. Escala: 200 μm.

Figura 35 – Imagens em microscopia confocal da fluorescência natural de tumores de melanoma humano (com 80 μm de espessura) incubados com marcadores, após 24 horas da TFD em 20 J/cm². A emissão de fluorescência em verde representa as células mortas (SYTOX[®]), enquanto em vermelho as vivas (C₁₂-resofurin). A letra C é o controle e, os outros números, as concentrações de Photodithazine[®]. Escala: 1 mm.

Figura 38 – Comparativo da resposta fotodinâmica em tumores de diferentes espessuras, para a mesma dose de irradiação (20 J/cm²) e intervalo de concentrações de Photodithazine[®].

MICROESPECTROSCOPIA RAMAN

CONTROLE

Controle

TERAPIA FOTODINÂMICA

TERAPIA FOTODINÂMICA

	Incuba	ções	Irradiaç	ão	Ímã pós	Viabilidade		Tempo da	Tempo da
Protocolo	Nº	[FS] Dose (µg/mL) (J/cm ²)	TFD	Teste	Tempo pós TFD (h)	imagem (h)	medida Raman (h)		
6	3 (a cada 48h)	50	3 (a cada 48h)	1	Sim	Citometria	24 (pós TFD3)	24 e 96 (pós TFD3)	24 e 120

TERAPIA FOTODINÂMICA

	Incuba	ções	Irradiaç	ão	Ímã pós	Viabilidade		Tempo da	Tempo da
Protocolo	Nº	[FS] (μg/mL)	Sessões	Dose (J/cm ²)	TFD	Teste	Tempo pós TFD (h)	imagem (h)	medida Raman (h)
6	3 (a cada 48h)	50	3 (a cada 48h)	1	Sim	Citometria	24 (pós TFD3)	24 e 96 (pós TFD3)	24 e 120

